
  

  

Abstract—Brain-actuated robotic systems have been 
proposed as a new control interface to translate different human 
intentions into appropriate motion commands for robotic 
applications. This study proposes a brain-actuated humanoid 
robot navigation system that uses an EEG-BCI. The 
experimental procedures consisted of offline training sessions, 
online feedback test sessions, and real-time control sessions. 
During the offline training sessions, amplitude features from the 
EEGs were extracted using band power analysis, and the 
informative feature components were selected using the Fisher 
ratio and the linear discriminant analysis (LDA) distance metric. 
The Intentional Activity Classifier (IAC) and the Motor 
Direction Classifier (MDC) were hierarchically structured and 
trained to build an asynchronous BCI system. During the 
navigation experiments, the subject controlled the humanoid 
robot in an indoor maze using the BCI system with real-time 
images from the camera on the robot’s head. The results showed 
that three subjects successfully navigated the indoor maze using 
the proposed brain-actuated humanoid robot navigation system. 

I. INTRODUCTION 
Brain-Computer Interface (BCI) system has been 

devised to translate different mental states into 
appropriate commands. From a clinical viewpoint, 

electroencephalography (EEG)-based BCIs have received 
increasing interest because they are easier to record and are 
associated with less risks compared to other more invasive 
BCI systems [1], [2]. Recent studies have demonstrated the 
feasibility of EEG-based brain-actuated devices, such as 
mobile robots, neuroprosthetics, wheelchairs and humanoid 
robots [3], [5]-[7]. 

The first example of these devices was a mobile robot that 
was developed by Millan et al. [1]. They applied an 
asynchronous BCI protocol and a band power analysis method 
as the feature extraction method. To improve the stability and 
accuracy of the system, they employed a state-dependent 
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agent-based model. In that study, human subjects successfully 
moved a robot between several rooms by mental control.  

Another interesting type of the brain-actuated device is the 
wheelchair navigation system [3], [4]. Recently, Iturrate et al. 
[3] proposed a new brain-controlled wheelchair that uses a 
P300-based protocol and an automated navigation system. 
Because the proposed wheelchair can avoid obstacles by using 
a laser scanner, the user is only required to focus on the desired 
direction of movement using the interface system that displays 
a real-time virtual reconstruction of the environment. They 
demonstrated that all of the subjects were able to successfully 
operate the device. 

Among the various brain-actuated devices, the humanoid 
robot control system has been highlighted because humanoid 
robots can perform more varied and complicated actions and 
their motions are similar to those of humans. The first 
brain-actuated humanoid robot that used EEG-BCI was 
attempted by Bell et al. [5]. In that study, the user selected a 
target box that was between a green box and a red box based 
on the detection of P300 signals, and a Fujitsu HOAP-2 
humanoid robot conveyed the box to a pre-defined location. 
Although the results demonstrated successful control of the 
humanoid robot, there were some limitations: 1) the robot 
motions were pre-programmed and were limited to the two 
selective choices (i.e., the two boxes), and 2) the timing of the 
motion commands was controlled by the system, not by a user. 

Based on the previous studies, many systems employed 
obstacle avoidance or the agent-based model to enhance the 
performance on navigation tasks. The low information transfer 
rate (20-30 bits/min) and the limited control capacities make it 
difficult to use in a complex tasks [6]. Meanwhile, these 
systems were designed as a menu-based system using the 
P300-based protocol, and because of this characteristic, the 
controllability based on state-dependent conditions, such as 
the perceptual states of an encountered environment, and the 
number of choices of a menu-based system is restricted.  

This study proposes a novel brain-actuated humanoid 
robot navigation system that allows direct-control so that the 
users to can select low-level motion primitives (e.g., “stop”, 
“forward walk”, “body turn”, “left head turn”, and “right head 
turn”) instead of high-level motion primitives (e.g., go to the 
limited target place) in the menu-based system. To implement 
a direct-control system, a band power based BCI system was 
used to extract the low-level commands from the user’s 
intention (e.g., left hand, right hand and foot). This feature 
differs from previous P300-based humanoid robot control 
systems, which used limited targets and high-level commands 
[5], and it enables the user to control the robot in more varied 
angles of motion. In addition, the system employed the 
asynchronous paradigm. Since an asynchronous BCI system 
has no global cues: instead, it continuously detects not only the 
intentional-control (IC) states (e.g., motor imagery) but also 
non-control state (NC, formerly called idling state), it enables 
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user to regulate the timing of control and shows higher ITR 
than synchronous system [10]-[12]. To enrich the control 
capacity of the navigation system, the control paradigm was 
designed to enable the user to select five different motions, 
such as left or right head spin, left or right turning walk, or a 
straight walk, using just three motor commands based on the 
postural dependent states. This approach creates a successful 
navigation system that enables the user to navigate the indoor 
maze using the humanoid robot. 

II. METHODS 
The system consisted of three sub-systems: the BCI system, 

the interface system, and the control system. During the three 
main procedures (offline training, online feedback testing, 
and real-time control), the system processed three different 
types of data, (i.e., sensed visual information, measured EEG 
signals, and motion commands). 

A. Training Protocol 
During the offline training sessions, subjects were asked to 

imagine the motor imagery (MI) tasks, which were referred to 
as “left hand imagery”, “right hand imagery”, and “foot 
imagery” or were asked to stay in the Non-Control (NC) state 
referred to as “rest”. The subjects were instructed to select 
one side of the foot consistently during the entire experiment 
to prevent confusion. During the first two days, the subject 
underwent three offline training sessions per day. Each 
session consisted of 20 trials per task, and the interface 
system provided training cues on the interface monitor as 
illustrated in Fig. 1.A. During each session, nothing happened 
for the first 2 s. Then, the first text cue (e.g., “rest”) with a 
solid circle appeared in the center of screen. After 4 s, a cue 
with the target arrows and the related text appeared to indicate 

one of the MI tasks. To prevent forecasting, the presentation 
order of the cues was block randomized. After each offline 
training session, the BCI system 1) analyzed the collected 
EEG data to extract the appropriate features, 2) selected the 
informative feature components, and 3) trained two 
hierarchical classifiers based on the selected feature 
components.  

During the online feedback test, the interface system 
displayed a target cue and a classified mental state using the 
fading feedback rule. After the first two days of the offline 
training sessions, subjects repeated an online feedback test 
run and an offline training run until the hit ratio of the online 
test run was greater than 75%. Each feedback test run 
consisted of 15 trials per task. The NC and MI states of each 
trial lasted for 6 s. Its presentation order was also block 
randomized.  

B. Experimental Setup 
Three healthy male subjects (right handed, age 26.3 ±  3.1 

yr) participated in the experiments. They had not participated 
in any prior BCI experiments. They were required to navigate 
from a departure point to a destination point in the indoor 
maze via five waypoints as Fig. 2 illustrated. The maze 
measured 1.5 m (width) by 3 m (length). A circled number of 
front waypoints and the arrows of guided direction were 
denoted on the walls and the user was able to check these 
guide signs using the interface system. To become familiar 
with the control system, each subject underwent an open trial 
for fifteen minutes before the main experiments. They 
participated in all of the sessions to test the real-time control 
scenario as follows. The subjects were able to obtain 
information on the robot states and their mental states through 
the interface system. A camera on the robot acquired visual 
images at 5 frames per sec. The mental states from the fading 
feedback system were updated every 250 msec. Each subject 
had access to the robot state and the mental state information 
on the PC screen using the interface system. Each subject 
controlled the robot three times using the proposed BCI 
system and one time using keyboard keystrokes for 
comparison. During the manual keyboard control, each 
subject was asked to drive the robot using three keys: up, right, 
and left. The manual session was performed prior to the BCI 

 
Fig. 1. A) Training protocol: after the ready and rest sessions, the 

subject was asked to imagine a motor imagery indicated by a cue B) 
Fading feedback rule was used to secure a robust classification of a mental 
state from the ongoing EEG. 

 
Fig. 2. Objective of the navigation task was to depart the start area and to 
arrive at the goal area by passing the five waypoints. 
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control sessions. 
 

C. Data Acquisition 
 During the experiments, the EEG signals of a subject were 

recorded at a sampling rate of 250 Hz from 21 electrodes (F3, 
Fz, F4, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, 
CP3, CPz, CP4, TP8, P3, Pz, and P4 see Fig.3.). The sampled 
EEG signals from 9 channels (FC3, FCz, FC4, C3, Cz, C4, P3, 
Pz and P4) were spatially filtered with the large Laplacian 
filter [2], [7]. Every 250 ms, the amplitudes in the 4-36 Hz 
band was estimated over the last two seconds (i.e., 500 
samples) using an autoregressive frequency analysis [7] with 
a model order of 16. Therefore, in the offline training sessions, 
32 amplitude feature vectors with 288 dimensions (9 channels 
multiplied by 32 frequency components in the 4-36-Hz band) 
were collected within the MI and Rest periods (4 sec) for each 
trial. These feature vectors were used to select  the feature 
components and to train the classifiers. During the online 
tests and the real-time control sessions, the feature vectors 
were sampled every 250 ms from the selected feature 
components and were used to produce the real-time feedback 
and the classification of the motion commands. 

D. Feature Selection 
To select informative feature components in the 

time-channel-frequency domain, the Fisher ratio [8] and the 
Linear Discriminant Analysis (LDA) [9], [10] were used. For 
the amplitude feature vector from the NC and MI states, let   
𝜇𝑟𝑒𝑠𝑡and 𝜎𝑟𝑒𝑠𝑡  denote the mean and variance, respectively, of 
the amplitude feature set from the “rest” state, and let 𝜇𝑀𝐼and 
𝜎𝑀𝐼 denote the mean and variance, respectively, of the 
amplitude feature set from the MI state.  The Fisher ratio is 
defined as the ratio of the between-class variance to the 
within-class variance [8] as follows:
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The Fisher ratio is a measure of the (linear) discrimination 
and the separability of the two variables, and it can also be 
considered as a signal-to-noise ratio. Among the 
channel-frequency pairs that were acquired from the EEG 
data of the two mental states (“rest” vs. each of the MIs), a 
channel-frequency pair with the highest Fisher ratio value 
was considered the most discriminative channel frequency 
pair. The corresponding channel and a frequency window of 5 
Hz centered at the top-scoring frequency were selected as the 
most discriminative band. The amplitude value averaged over 
the window was designated as the first informative amplitude 
feature. For the second top-scoring channel in the Fisher ratio, 
the same procedure was applied to select the second 
informative amplitude feature. 

To avoid any unintentional noisy periods, the informative 
time periods were determined for the NC and MI mental 
states by using a LDA classifier. The amplitude feature 
segments from the training trials between 2 s and 6 s were 
assigned to the NC class, and the signal segments between 6 s 
and 10 s are assigned to the MI class as illustrated in Fig. 4. 
The discriminant values were averaged over the time, and the 
1-s intervals that were centered at the maximum and 
minimum LDA distance points were selected as the optimal 
MI period and the optimal rest period, respectively. 

E. Classification 
To translate the intended EEG data into its appropriate 

movement commands for the humanoid robot, the Intentional 
Activity Classifier (IAC) and the Movement Direction 
Classifier (MDC) were hierarchically employed. The IAC 
classifies between the NC and MI states. If the signals were 
interpreted as the MI state by the IAC, then the MDC 
classified the specific MI state as either “left-hand”, 
“right-hand”, or “foot” states.  

Based on the feature selection method, the training feature 

 
Fig. 4. Channel-frequency selection using the Fisher ratios from the 

three sets of “rest” vs. MI tasks. (A) Topographical distribution of the 
Fisher ratios of subject A. The Fisher ratios on the topological diagram 
were selected from the top-scoring frequencies of each set. The first two 
top-scoring channels for the “left hand imagery” tasks were channels C4 
and FC4, channels C3 and FC3 were selected for the “right hand imagery” 
tasks, and channels CPz and Cz were selected for the “foot imagery” 
tasks. (B) Spectral distribution of the Fisher ratios for subject A. For the 
“left hand imagery” tasks, the maximum Fisher ratio of C4 was 0.15 at 12 
Hz, and a 5-Hz window centered at 12 Hz was selected as the 
discriminative frequency region. 

 
Fig. 3. EEG electrode positions with respect to the international 10-20 
system. Electrode positions marked with gray circles are only used in 
computation of the spatial filter. The nine black circles indicate 
electrode positions used as main feature channels. All the electrodes are 
referenced to the left and right mastoids.  
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set for the IAC consisted of the informative amplitude 
features that were extracted from two of the most 
discriminative bands during the NC and MI periods. The 
Linear Discriminant Analysis (LDA) was used to train the 
feature sets for the IAC. As a result of the training, the 
negative output values denoted the NC classes, and the 
positive output values of the IAC denoted the MI classes. To 
find a suitable threshold that balances the true positives (TPs) 
and the false positives (FPs), a sample-by-sample receiver 
operator characteristic (ROC) analysis [11] was used. The 
two axes of the ROC curve consisted of the true positive rate 
(TPR) and the false negative rate (FPR). The points above the 
ROC curve were calculated from a given threshold. In this 
study, a balanced point was considered as a threshold that 
resulted in a TPR value that equals 1-FPR [11], and the 
threshold value on the point was used to redefine the IAC’s 
threshold.  

The informative amplitude features from the MI states 
during the MI period were used to train the MDC. When the 
IAC classified a feature into an MI class, the MDC was 
applied to the result to indicate the appropriate MI class of 
either the “left-hand”, “right-hand”, or “foot” classes. The 
quadratic Fisher’s Discriminant Analysis [9] was used to 
identify the most appropriate MDC.   

F. Fading Feedback Rule 
The fading feedback rule was designed to avoid abrupt 

false classifications. When the selection level was zero, the 
first classification was defined as the candidate classification. 
If the last classification was equal to the candidate 
classification, the selection level was increased; otherwise, 
the selection level was decreased. When the selection level 
was equal to N (N=4 per second), the system generated the 
decisions, such as left, right, and foot. To inform the user of 
the selection level, the interface system transparentized the 
arrow and the text to an extent that was proportional to the 
selection level. During the online test and the real-time 
experiment, the subjects inspected the feedback sign, which 
showed the result of the algorithm with the selection level and 
its classification, as illustrated in Fig. 1. B. 

G. Humanoid Robot Control System 
A Nao humanoid robot (Aldebran Inc., France) [12] with 

25 degrees of freedom was used as the robot platform. The 
camera on its head transmitted images of the front view to the 
interface system. To observe the encountered environment 
and to walk to the target position, five motion commands (e.g., 
stop, forward walk, body turn, left head turn and right head 
turn) were programmed. If the body and the head faced the 
same direction, detection of the “foot” state commanded the 
robot to walk forward. Because the robot takes a relatively 
long time to walk, for the convenience of control, the robot 
was designed to continue walking forward until a “left hand” 
or “right hand” state was detected. If the head and body faced 
different directions, the foot event turned the body to be 
aligned with the head. A “left hand” or “right hand” command 
stopped the robot if it was walking forward, and continuous 
left and right events turned the head to the left or the right, 

respectively. A left or right turn was achieved by 
straightening the body after making a left or right turn of the 
head. It should be noted that our control scheme is different 
from the state dependent agent-based model [1, 3] because its 
design was based on postural sensing information and not on 
environmental conditions. 

III. RESULTS 

A. Feature Selection  
To improve the signal-to-noise ratio and to enhance the 

classification performance, a time-channel-frequency feature 
set was selected for each subject as explained in Section II.C. 
Table I describes the selected feature components of the three 
subjects.  

For the left-hand feature components, the two top-scoring 
channels over the right sensorimotor cortex (i.e., electrode 
locations C4, CP4 or FC4) and the frequencies around the 
alpha (mu) frequency (i.e., 9-15 Hz) were selected. For the 
right-hand feature components, channels over the left 
sensorimotor cortex (i.e., electrode locations C3 or FC3) and 
the frequencies around the alpha (mu) frequency (i.e., 7-16 
Hz) were selected. In the experimental setup procedure, the 
subjects were instructed to imagine movement of one side of 
the foot. Because subject A chose the right foot and the others 
chose the left foot, the selected channel locations tended to 
bias toward the appropriate side. For the foot frequency 
components, alpha (mu) bands (i.e., 6-14 Hz) and beta bands 
(i.e., 21-32 Hz) were occupied. 

B. Performance of the BCI System 
Table II-III provides details about the performance of the 

two hierarchical classifiers for the three subjects. During the 
first two days, the subjects underwent six sessions of the 
offline training; one offline training session and one online 
test are then repeated until the hit ratio of the trained MDC 
exceeds 75%. Table II shows the number of offline training 
trials per mental task, the true positive and false positive 
ratios of the IAC and the accuracy of the MDC for each task. 
As described in Section II.D, the threshold of the IAC was 
adjusted to the balanced point so that the sums of the TPR and 
the FPR of the IAC for all subjects were equal to one. For 
subject A and C, two and four additional offline training 
sessions were performed, respectively. After all of the offline 
training runs, the accuracy was 84.5% for subject A, 87.3% 

 TABLE I 
THE RESULT OF FEATURE SELECTION 

Subject Left Right Foot 
Ch Freq Ch Freq Ch Freq 

A C4 11-15 C3 12-16 CPz 10-14 
FC4 9-13 FC3 8-12 CP3 21-25 

B FC4 9-13 C3 9-13 FCz 26-30 
C4 10-14 FC3 7-11 FC4 28-32 

C C4 9-13 C3 11-15 CPz 9-13 
CP4 10-14 FC3 11-15 FCz 6-10 
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for subject B and 75.8% for subject C.  
To ensure robust classification, the fading feedback rule 

was applied to the result classifications, and the BCI control 
performance was directly related to the results from the 
fading feedback rule. Table III shows the online test 
performance using the fading feedback rule for the given 
mental tasks. The response time was the time (in seconds) that 
was required for the motion commands from the fading 
feedback rule.  

C. Navigation Performance 
This section describes the evaluation of the navigation 

performance of the brain-actuated humanoid robot. The 
performance was measured by the following metrics:  

1) Time: time in seconds that was required to accomplish 
the task; 

2) Path length: distance in meters that was traveled to 
accomplish the task; 

3) Way-Point: the number of waypoints; 
4) Collisions: the number of collisions; 
The results are summarized in Table IV. For all subjects, 

the performance metrics from the manual and BCI 
experiments was averaged, and the metric values of the BCI 
control experiment was divided by the manual metrics in the 
ratio rows. Because all of the subjects were recommended to 
pass the five waypoints as possible and because the control 
system and the interface system successfully guided them to 
navigate the maze, they passed all the five waypoints without 
any collisions in the manual control scheme. However, 
although they successfully achieved the goal position during 
the BCI control experiments, they passed averagely 3.8 
waypoints with 0.8 collisions. For the path length, the average 
path length in the manual experiments was 434.0 cm, and the 
average path length in the BCI experiments was 423.0 cm; the 
ratio was 0.99. Because the waypoints were located near to 
the edge of the maze, the trials that passed all of the 

waypoints used longer paths than the trials that missed some 
of the waypoints. For subject C, the average path length of the 
BCI control experiments was shorter than the path length of 
the manual control experiment because only an average of 2.7 
waypoints was passed. However, for subject B and C, the 
average number of passed waypoints in the BCI experiments 
was 4.0 and 4.7, respectively, and the ratio of the path length 
was 1.06 and 1.10, respectively. Although the averaged path 
length ratio was 0.99, the average time of the BCI control was 
1.31 times longer than the manual control. 

IV. CONCLUSION 
Although our BCI system is less accurate than the 

menu-based humanoid robot navigation system [5], it is 
sufficient to navigate in the indoor environment using the 
proposed direct-control paradigm. Furthermore, this study 
introduces the novel humanoid navigation system for 
controlling a humanoid robot using the low-level motion 
commands with the asynchronous BCI system. In our control 
system, subjects were able to command the humanoid robot 
to position its head at any angle, turn the body to the target 
angle, and walk to the destination position. As a result, the 
ratio between the time required for operating the robot by 
mental control and the time required for manual keyboard 
control was 1.31. A previous investigation by Millan et al. [1] 
obtained a ratio of 1.35 with the agent-based model that 
restricts the motion of robot by environmental states. In our 
experiments, the travelled distance ratio between the mental 
and manual controls was an average of approximately 99%. 
This study introduces the feasibility that a person can control 
a humanoid robot in a remote place as if he or she was 
mentally synchronized to the robot. However, because of the 
number of collisions and passed waypoints showed in Table 
IV, a more accurate BCI system or a collision avoidance 
robotic system will be required to control the humanoid robot 
in real-world. In addition, to represent the more complex 
function of the humanoid robot besides the navigation, 
additional mental states are required. The accuracy problem 
of the BCI system could be resolved by extracting the other 
informative features (i.e., the adaptive auto-regressive (AAR) 

TABLE III 
THE PERFORMANCE OF THE ONLINE TESTS  

USING THE FADING FEEDBACK RULE 

 A B C 

Hit Ratio 
(%) 

Left 80.0 100.0 86.7 
Right 86.7 93.3 66.7 
Foot 73.3 86.7 73.3 

Average 80.0 93.3 75.6 

Response 
Time 
(sec) 

Left 2.83 2.12 2.96 
Right 2.90 2.77 3.38 
Foot 3.65 2.96 3.64 

Average 3.13 2.62 3.32 
 
 

TABLE IV 
THE PERFORMANCE OF THE REAL-TIME NAVIGATION CONTROL  

Subject SESSION Time 
(s) 

Path 
Length 
(cm) 

Way- 
points 
(times 
/trial) 

Collisions 
(times 
/trial) 

A 
Manual 432.7 403.7 5.0 0.0 

BCI 642.4 429.0 4.0 0.7 
Ratio 1.48 1.06 - - 

B 
Manual 452.9 389.4 5.0 0.0 

BCI 632.3 430.1 4.7 1.0 
Ratio 1.40 1.10 - - 

C 
Manual 424.4 508.9 5.0 0.0 

BCI 448.8 410.0 2.7 0.7 
Ratio 1.06 0.81 - - 

Average 
Manual 436.7 434.0 5.0 0.0 

BCI 574.5 423.0 3.8 0.8 
Ratio 1.31 0.99 - - 

 

TABLE II 
THE RESULTS OF THE OFFLINE TRAINING 

 A B C 
Trials 160 120 200 
TPR 0.62 0.66 0.64 
FPR 0.38 0.34 0.36 

Accuracy 
(%) 

Left 88.8 96.6 78.5 
Right 89.4 82.0 74.0 
Foot 75.3 83.2 75.0 

Average 84.5 87.3 75.8 
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coefficients and the fractal dimensions) and finding the 
optimal components using optimization methods, such as 
generic algorithms [13]. Furthermore, the hybrid BCI system 
that combines the P300 protocol or steady state visually 
evoked potentials with proposed BCI system could be 
considered as an alternative system [14]. We also anticipate 
testing the proposed system with physically disabled people. 
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