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Incremental Motion Learning through Kinesthetic Teachings and New Motion 

Production from Learned Motions by a Humanoid Robot 
 

Sumin Cho and Sungho Jo* 

 

Abstract: This work presents a new incremental motion learning algorithm through kinesthetic teach-

ings and a new motion production algorithm by combining learned motions in a humanoid robot. The 

proposed algorithms are useful for improving the motions that a humanoid robot can produce. The 

learning algorithm consists of data encoding, time alignment, dimensional reduction, parameter estima-

tion in the Gaussian mixture model (GMM) of motions, GMM refinement, and motion generation steps. 

The overall procedure is built to be incremental. No historic data memorization is required in any step, 

and model parameters are enough information to generate motions. The motion production algorithm 

allows a robot to extract new motions simply from learned motions without requiring teaching sessions. 

A series of experiments with a humanoid robot serves to validate the performance of the proposed al-

gorithms. 
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1. INTRODUCTION 

 

Robotic learning of motions by imitation or through 

demonstrations has been a commonly investigated as a 

strategy for human-robot friendly interaction, especially 

as a way of teaching motions to a robot without serious 

programming [1-5]. A robot observes multiple demon-

strations of a specific skill or is taught kinesthetically 

over teaching sessions. Then, the robot extracts a genera-

lized motion out of the demonstrations or teachings. The 

overall procedure can be described as a motion learning 

algorithm. Existing literature summarizes these overall 

issues well [6-9]. 

This paper focuses on kinesthetic teaching, which is a 

teaching strategy that involves a teacher moving robot 

limbs directly to implement a specific motion while a 

robot encodes the motion [10]. The teaching strategy is 

convenient because it does not require any external sen-

sors, such as a motion tracker, other than internal encod-

ers in a robot. Regardless of whether extra sensors are 

used or not, the principle of a learning algorithm remains 

the same. 

Even though learning from demonstrations or through 

kinesthetic teaching is easy to learn and convenient, en-

coding every motion through this scheme seems ineffi-

cient. Learning some motions may allow other motions 

to be reproduced without full learning. Imagine that a 

novice dancer exercises upper and lower body gestures 

separately to master a dancing gesture or learns an over-

all dancing performance step by step. This enables the 

dancer to create elaborate dance performances by adding 

or deducting specific local motions. Take, as another 

example, a novice golfer practicing a tee shot by separat-

ing the motion into take-back, down-swing, and follow-

through. It is not necessary to learn the whole motion 

pattern fully from demonstrations or teaching processes. 

Such examples inspire us to investigate motion produc-

tion from learned motions. The motion production 

scheme is useful for increasing the number of reproduci-

ble motions in a robot quickly and for diversifying the 

motions easily. 

By combining these two strategies (motion learning 

from kinesthetic teachings and motion production from 

learned motions), a robot can generate a range of com-

plex motions easily. Such a technique may improve dra-

matically the performances of robots. This work aims to 

propose a new approach for incremental motion learning 

and motion production from learned motions in a robot. 

The remainder of this paper is organized as follows. 

Section 2 illustrates the overall steps of incremental mo-

tion learning from kinesthetic teaching. Section 3 ex-

plains new motion production from learned motions by 

fusing different joint trajectories spatially or by connect-

ing two learned motions successively. The proposed ap-

proach is evaluated through experiments in Section 4, 

and this work is concluded in Section 5. 

 

2. INCREMENTAL MOTION LEARNING AND 

GENERATION 

 

Our learning algorithm is fundamentally based on a 

framework that combines the Gaussian Mixture Model 

(GMM) with the Gaussian Mixture Regression (GMR) 
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[1,11]. This approach is advantageous because it handles 

recognition and reproduction steps in a common proba-

bilistic framework, while the two step processes can be 

distinct. Our approach possesses the advantages directly. 

In addition, our approach addresses incremental learning 

of the GMM with no assumptions about the model para-

meters. The number of Gaussian components in the 

GMM is not initially fixed but is obtained autonomously 

during the learning process. The incremental temporal 

alignment is integrated to align motion data. The Prin-

cipal Component Analysis (PCA) is applied to build a 

compact representation by reducing the dimensional 

space of motion [12,13]. Motion data are projected onto 

a low-dimensional latent space to maintain a satisfying 

motion representation. In our approach, the latent space 

of motion is refined whenever a new kinesthetic teaching 

is provided. Previous studies [1,11] require specific as-

sumptions, such as a fixed latent space and a predeter-

mined number of GMM parameters, before learning.  

 

2.1. Motion model 

The Gaussian Mixture Model (GMM) has popularly 

been used as a probabilistic model framework to 

represent a group of similar motion trajectories [1,11]. 

The probabilistic density function is represented by a 

combination of K Gaussian components. 
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where µk and Σk are the mean vector and covariance 

matrix, respectively, of the k-th component. 

πk, µk and Σk for 1,2, ,k K= …  are model parameters. 

Previous works [11,14] proposed that a generalized 

motion from the GMM can be computed by the Gaussian 

Mixture Regression (GMR). The temporal and spatial 

value decomposition of the model parameters are 
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Thus, the GMR gives the following functions [11,14]: 
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New parameters with the time value are respectively 

defined as: 
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where µ(t) represents the regressed trajectories in the 

latent space.  

This work proposes expressing accumulated informa-

tion after the j-th teaching session compactly as { ,jG  

}jL  where 
1

{ , , }
j j jj K

kk k kG π µ
=

= Σ is a collection of the 

GMM parameters in the latent space, and { , }j j j
L v P=  

consists of parameters to describe the latent space. 

Details on Lj are provided in Section 2.4.  

Fig. 1 illustrates the overall procedure of our algorithm. 

The following sections will explain each step. 

 

2.2. Kinesthetic teaching data acquisition 

A teacher holds robot limbs and moves them to 

generate a desired motion in each kinesthetic teaching 

session. The motion is recorded in terms of 3D joint 

angle trajectories through encoders on the robot. The 

collected joint angle trajectory information is represented 

by 
1 1

{ }( ) ( ) ({ , }) ,
j j

j j N j j N
i t s ii i iθ θ θ θ
= =

= =  where N j is the 

total number of data points from j-th kinesthetic teaching. 

Each ( )j
iθ  consists of a time value ( )j

t iθ  and a posture 

vector ( ) ,j d
s i Rθ ∈  where d is the dimensionality of the 

joint space. 

 

2.3. Incremental temporal alignment 

Each sensed teaching trajectory is different in sample 

length. To apply a learning framework, the motion 

trajectories are temporally aligned to the same length by 

applying a dynamic time warping (DTW) algorithm [15-

17]. DTW is a template based dynamic programming 

matching algorithm. It assigns a template trajectory and 

aligns other trajectories with respect to the template by 

finding a warping path trajectory that minimizes distance 

from the template trajectory. In our case, encoded 

teaching trajectories are not available immediately. 

Therefore, our template trajectory is not fixed but is 

refined incrementally as further teaching data becomes 

Fig. 1. Incremental motion learning algorithm overview. Each related section number is indicated. 
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available. We propose using the learned motion 
1 1

1
( ){ }j j N

iiφ φ− −

=
=  until the ( j-1)-th kinesthetic teaching 

(see (21)) as a template trajectory for the j-th kinesthetic 

teaching. Its time component is represented by 
1( )j

t iφ −

 

and a posture vector 
1( ).j

s iφ −

 For the first teaching 

session, no template trajectory is required. For the j-th 

teaching session, using the DTW, a set of matching pairs 

between the template and the j-th kinesthetic teaching is 

found. Assuming the number of elements in the set is M, 

and each element is expressed by ( ( ), ( )),l lϕ ϑ  

,1, ,l M= …  where ( )lϕ  is from 
1
,

jφ −

 and ( )lϑ  is 

from θ j, each corresponding time value is estimated as 
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where subscript t indicates its time component. 

Therefore, each aligned data point is expressed as 

[ ( )lτ ( )] .Tlϑ  However, its time interval is inconsistent, 

and the number of data points can be unfixed depending 

on the matching condition. 

According to the DTW method, the matching set 

should always contain the first and the last data points to 

satisfy the boundary condition. Therefore,  
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the total sample number is fixed to be N over different 

teachings. Aligned data points with the fixed interval can 

be generated from 
1

{ ( )}M
l

lϑ
=

 using a linear interpolation 

function defined as 
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where ( )pτ  is selected among ( ),lτ ,1, ,l M= …  to be 

a time step value that is nearest to but not greater than t, 

and ( )
s
pϑ  is a posture vector in .( )pϑ  The 

interpolation function describes an aligned spatial 

posture vector at each time. Let 
1

{ ( )}j j N
iiξ ξ
=

=  denote 

the aligned data points of the j-th kinesthetic teaching: 

( )( ) [ ( ] .) ( )
j T
i t i f t iξ =  (6) 

To modify model parameters after the j-th kinesthetic 

teaching accordingly to the new time alignment, a func-

tion is declared to interpolate between the pre-aligned 

and the aligned time values as follows 
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where ( )
t
pϕ  is a time value in .( )pϕ  In addition, two 

regression functions 
1( )j
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 and 
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−
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as described in (2). Similar to (3), 1ˆ{ ( ),j
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1
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in the latent space is adjusted taking into account the new 

time alignment as follows 
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As a result, we obtain the aligned data trajectory 

1
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=

 and a parameter set 1 1

1
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ii iµ
− −

=
Σ  for 

the GMR that represents previous data information 

inclusively. 

 

2.4. Dimensional reduction 

The parameter set described in the latent space is 

updated to include the most recent data 
1
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=

 in the 

joint space. For the inclusion, let 1 1
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Thus, the following equations yield the update of the 

parameter set: 
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resulting in 
1

( ) ( ){ , .}j j N
iu i Q i
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Describing the whole body motions with respect to a 

latent space of reduced dimensionality instead of the 

joint space of high dimensionality is more convenient. 

The latent space changes every time that new teaching 

data is acquired. After the j-th kinesthetic teaching, 

1
{ , }( ) ( )j j N

iu i Q i
=

 is computed from (10) and the time and 

spatial components are separated: ( ) ( ) ( )[ ]
j j j T

t su i u i u i=  
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The eigenvectors and eigenvalues λi of the real 

symmetric covariance matrix 
j
ssR  are easily computed 

using PCA. The number of eigenvectors to construct the 

reduced dimensional latent space while representing the 

original dataset sufficiently is sought. A minimal integer 

q that satisfies 1
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Σ

 is selected to indicate that the 

projection to the latent space covers 100% of the data’s 

distribution. The first to the q-th eigenvectors construct a 

projection matrix W j of size d×q. Next, the projection 

matrix, including the temporal axis, is defined as 

0
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The new latent space L j is defined as , },{j j j
L v P=  

where [0 .]
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1
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 can be transformed 

onto the newly updated latent space L j and expressed by 
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2.5. Model parameter estimation 

Previous investigations proposed selecting an optimal 

number of components K by minimizing the Bayesian 

information criterion (BIC) score, which reflects both 

model performance and complexity [11,12], using: 
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where np denotes the total number of model free 

parameters, Ntot the total number of data points, and L  

is the log-likelihood of the model described in (1). 
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The number of model parameters is equal to 
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The first term indicates the total number of prior prob-

abilities, and the second term indicates the total number 

of means and elements in the symmetric covariance ma-

trices. 

The BIC score can be obtained after the full data are 

available. However, we want to know the number of 

Gaussian components K in the GMM during learning. 

Suppose that the j-th kinesthetic teaching is currently 

encoded, and a robot stores the whole data from the first 

to the j-th teachings in memory. Let total encoded data 

points so far in the latent space be expressed by 
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K groups as { }
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indicates the number of sample points in the group Yk. 

Each group represents data points governed dominantly 

by a Gaussian component in the GMM. 

Using the grouping, the GMM is set as follows. 
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Through the procedure from Section 2.3 to 2.4, the 

integrated trajectory parameters, 
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 are 

generated (see (13)). 

To assign an initial GMM, every two successive data 

points is grouped. The initial condition aims to avoid 
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Equation (18) does not require data points explicitly. By 

considering possible merges of sequential groups 

repeatedly, the correct number of K is found. Let 
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'

1k k k
N N N

+
= +  is the number of sample points in the 

new k-th component. 

The complexity term value also changes from (15), as 

much as  

1
( 1) 1.

2
p

n q q q∆ = + + +  (20) 

Among all possible combinations of two sequential 

groups, a combination resulting in the largest reduction 

of ∆SBIC = ∆− L +∆np, as well as a negative ∆SBIC, is 

selected. This process is repeated until the sign is no 

longer negative. After the termination, the number of 

remaining components is chosen as K. Furthermore, its 

corresponding model parameter set G is determined. 

As notably documented by (19-20), the computation 

of ∆SBIC relies on model parameters only. Therefore, no 

memorization of data points is required. 

 

2.6. Model parameter refinement 

Once K is selected, the expectation-maximization 

(EM) algorithm can be applied to refine the model 

parameters [18]. 
1

{ , }( ) ( )j j N
iw i T i
=

 generalizes the data 

information so far. An α number of random samples are 

stochastically generated from each distribution of 

( )( ; , ))(j j
z w i T iN  and represented by 

1
{ ( )}j j N

iz z i
α

=
=  

to run the EM. Using the samples, the EM is operated 

until convergence: 
 

0) The model parameters form Section 2.5. 
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   (t is the iteration number) 

Iterate 1 and 2 until convergence 
1

2
1 1

t

t
C

+

− < �
L

L
 

where C2 is a iteration escape threshold and =L  
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( )
1

log ) .( ( )
N

j

i

p z i

=

∑  

 

2.7. Motion generation 

A generalized motion 
1

{ ( ) }( )j N
it iµ
=

is obtained through 

(2) and (3) using the converged parameter values from 

the EM. To produce the generalized motion 
1

( ){ }j N
iiφ
=

 

in the joint space, the projection to the joint space is 

applied as 

( ) ( ( )) .j j j j
P t ii vφ µ +=  (21) 

The motion 
1

( ){ }j j N
iiφ φ
=

=  represents a learned motion 

from j kinesthetic teachings to date. 

 

3. MOTION PRODUCTION FROM LEARNED 

MOTIONS 

 

This section explains a method for a robot to produce 

a new motion through the of learned motions. Imagine 

that a human teaches a motion to a robot kinesthetically 

by moving the robot’s limb. In the case of a complicated 

motion, it is difficult for the human teacher to move all 

robotic limbs simultaneously. Instead, it may be better 

for the human teacher to move limbs partially by 

dividing the whole motion into pieces. Then, the robot 

can integrate the partial limb motions into one whole 

motion. A new motion is reproduced from learned 

motions without new kinesthetic teaching sessions 

through the spatial combination of two learned motions. 

Furthermore, the time-shifted spatial combination makes 

more complex motion generation possible.  

 

3.1. Spatial fusion of learned motions 

When two motions are learned kinesthetically, it is 

possible to produce a new motion through the fusion of 

the two motions in the joint space when the two motions 

have the same temporal duration. Certain joint motions 

are selected from the first motion, and the other motions 

are selected from the second motion by a teacher. The 

two learned motions are described by different motion 

models. To fuse them, a new motion model is computed 

as follows.  

A diagonal matrix D1 is introduced with a i-th 

diagonal element that is one if the i-th joint component is 

selected from the first motion and zero otherwise. 

Similarly, a diagonal matrix D2 can be assigned to 

indicate the joint selection from the second motion, and 

it should be true that D2 = I – D1. 

Assuming that the two motions are learned from the 

same number of teaching trials, their fused motion can be 

expected to be learned from virtual trials that are 

expressed by 

(3) (1) (2)
1 2( ) ( ) ( ),j j j

s s si D i D iξ ξ ξ= +  (22) 

where (1)
1({ })j N

s iiξ
=

 and (2)
1({ })j N

s iiξ
=

 are the aligned 

posture vector data from the first and second motion 

teachings, respectively, and (3)
1({ })j N

s iiξ
=

 is the posture 

vector data that represent the virtual teaching of the fused 

motion.  

However, the posture vector data are not available 

simultaneously. Furthermore, the robot does not store 

them but model parameters. The GMM of the first 

motion is in a different latent space from that of the 

second motion, and they generally have different 

numbers of Gaussian components. Therefore, they 

cannot be fused directly. Instead, the GMR in the joint 

space is computed from (3). Suppose the GMMs of the 

first and second motions in the latent spaces are 
(1) (1)

1( ) ( ){ , }N
i

m i C i
=

 and (2) (2)
1( ) ({ , }) ,N

i
m i C i

=
 respec-

tively. Thus, 

(1) (1) (1) (1)( )( ) ( ) ,m i P t i vµ= +  

(1) (1) (1) (1)( )( ) ( ) ,
T

C i P t i P= Σ  

and 

(2) (2) (2) (2)( ) ( ( )) ,m i P t i vµ= +  

(2) (2) (2) (2)( )( ) ( ) ,
T

C i P t i P= Σ  

where each latent space information is given. 
(1) (1)

1( ) ( ){ , }N
i

m i C i
=

 and (2) (2)
1( ) ( ){ , }N

i
m i C i

=
 represent 

parameters obtained through the GMR for the first and 

the second motions, respectively. Each expression 

includes temporal and spatial components, such as 

( ) ( ) ( )( ) ( ) ( )
T

j j j
t sm i m i m i =    and ( )

( )
( ) ,

)

0 0

0 (

j

j
ss

C i
C i

 
=  
  

 

3.1, 2,j =  The parameters are with respect to the joint 

space; therefore, the following fusion can be fulfilled and 

induced from (22): 

( )

(3) (1) (2)
1 2

(3) (1) (2)
1 1 2 2

(1) (2) (3)

( ) ( ) ( ),

( ) ( ) ,

( ) ( ) ( ).

s s s

T T

ss ss ss

t t t

m i D m i D m i

C i D C i D D C i D

m i m i m i

= +

= +

= =

 (23) 

Using a new set of parameters, (3) (3)
1( ) ({ , }) ,N

i
m i C i

=
 the 

learning procedure from Section 2.4 to 2.6 results in a 

new produced motion model. 

 

3.2. Spatial fusion of learned motions with time-shift 

In the previous section, a new motion is produced by 

combining different local limb motions spatially. This 

approach could be further extended by combining 

different local limb motions from different time intervals. 

For example, suppose that two motions exist: a left arm 

motion for the first 5 seconds from the first motion, and a 

low limb motion for the last 8 seconds from the second 

motion. A motion can begin with any time-shift relative 

to the other motion. It is more natural that the two 

motions have different time lengths and do not begin at 

the same time.  

Let the two motions have different time lengths. With 

the same time step for sampling regression parameters, 
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they have different numbers of samples N(1) and N(2). For 

the two motions, suppose model parameters in the joint 

space are 
(1)(1) (1)
1{ , }( ) ( ) N

i
m i C i

=
 and 

(2)(2) (2)
1( ) ( ) ,{ , }

N

i
m i C i

=
 

respectively. To generate the second motion in td after 

the first motion begins, we merge the two motions 

spatially only during their overlapping period. Therefore, 

(1) (1) (2)

(3) (1) (2) (1) (2)
1 2

(2) (2) (1)
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( ) ( ) ( )
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s s s d

s d
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− ∈ −
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1 1 2 2

(2) (2) (1)
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( ) ( )
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T T

ss ss ss d

ss d

C i i Z Z

C i DC i D D C i i D i Z Z

C i i i Z Z

 ∈ −

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

− ∈

∩

−
(3) (1) (2)( ) ( ) ( ) ,
t t t d d

m i m i m i i t= = − +  

where (1) (1)
{0, , }Z N= …  and 

(2) (2){ , , },
d d

Z i N i= … +  

and id is the number of samples for the second motion 

after td. 

By using the parameter set, the learning procedure 

from Section 2.4 to 2.6 produces a motion model of the 

merged motion. 

 

4. EXPERIMENTS 

 

The experiments in this paper use a Nao humanoid ro-

bot (Aldebaran Inc.) with 25 degrees of freedom (DOFs) 

as a test-bed. Each robot motor is set passively. In each 

kinesthetic teaching session, joint angle values are se-

quentially encoded at a rate of 20 Hz.  

 

4.1. Incremental motion learning 

A human taught a martial art gesture (hand blade 

hitting) to the Nao robot by moving its limbs at each 

kinesthetic teaching session through the proposed 

learning algorithm. Fig. 2 illustrates the evolution of its 

learned motion in radians over teaching sessions. Fig. 

2(a)-(c) show reproduced trajectories of selected joints 

and major principal directional components of the latent 

 

Fig. 2. Incremental learning of a martial gesture over the ten teaching sessions. Selected joint trajectories in radians are

illustrated. l1 and l2 indicate two joints in the left arm and r1 and r2 in the right arm. (a)-(c) represent the 

learned joint trajectories after the first, the fifth, and the tenth teaching sessions, respectively, using the proposed 

learning algorithm; (d) represents the learned joint trajectories through the batch learning algorithm (see texts),

and (e) shows them together with ten teaching trajectories. In the bottom of (a)-(d), major principal directional 

components (eigenvectors) are plotted correspondingly. For clarity, only eight element values are shown: the 

first to the fourth principal direction (q=4) of the latent space in (a)-(c) and the fifth principal direction (q=5) in 

(d). (f) illustrates the covering portions of the principal components in (a)-(d). (g) shows the snapshots of the 

gesture generated by a robot using the learned trajectories in (c). 
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space after the first, the fifth, and the tenth teaching 

sessions, respectively. Fig. 2(d) shows the trajectories 

obtained through the batch learning algorithm proposed 

in [11] for comparison. In the batch case, the ten 

teaching data are used at once for learning. To make the 

batch algorithm comparable with ours, the DTW is 

applied to raw teaching data trajectories to align them 

temporally. The DTW requires a motion template. In this 

case, the first teaching trajectories are assigned as 

template trajectories. An optimal number of K is selected 

for the batch algorithm as explained in [11,12]. To build 

latent spaces, c=0.99 is chosen. The proposed learning 

algorithm results in four principal directions of latent 

spaces (q=4) over the teaching sessions, while the batch 

algorithm results in five principal directions of latent 

space (q=5). The proposed learning algorithm is 

incremental; therefore, lost information is not recovered. 

This loss of information may explain why the number of 

principal directions is different from the batch case. 

However, the first four principal directions are fairly 

similar between the two cases as seen in the bottom of 

(a)-(d) where the major principal directional components 

of each latent space are plotted. Only eight element 

values are shown for clarity. Elements from the first to 

the fifth principal directional components are red-, green-, 

blue-, orange-, and violet-colored, respectively. 

Furthermore, the influence of the fifth principal direction 

in the batch case is negligible, as shown in (f) where the 

ratios of principal directional motion spreads 

1

i

d

i i

λ

λ
=

 
 
Σ 

 

from (a)-(d) are illustrated. Motion spreads over the first 

to the fourth principal directions in (c)-(d) are fairly 

comparable. (e) overlaps the four reproduced trajectories 

from (a)-(d) for comparison. The blue, green, and red 

lines indicate the reproduced trajectories after the first, 

the fifth, and the tenth teaching sessions through the 

proposed learning algorithm, respectively. The orange 

line shows the reproduced trajectories through the batch 

learning algorithm. The gray lines represent encoded raw 

teaching data trajectories. Table 1 indicates that q does 

not change over teaching sessions, probably because the 

teaching motions are similar. Also, K converges quickly, 

which implies the learning was rapid. In fact, Fig. 2(b) 

shows almost the same joint trajectories and latent space 

components as in Fig. 2(c). Fig. 2(g) illustrates the 

sequential snapshots of the learned gesture performed by 

the robot after the tenth teaching. To further analyze the 

data, the batch learning algorithm is run repeatedly with 

different template trajectories. The first, fifth, and tenth 

teaching trajectories are selected as template trajectories.  

In Fig. 3, for the three cases, mean square errors be-

tween reproduced and teaching trajectories are expressed 

over teaching sessions with different figures (◊: using the 

first teaching, △: using the fifth teaching, □ : using the 

tenth teaching). Each batch learning is implemented with 

teaching data up to the most recent teaching session. The 

mean square errors (represented by ○) of the proposed 

learning algorithm are plotted together. The temporal 

alignment of the proposed learning algorithm is incre-

mentally modified to best fit the most recent data. There-

fore, its errors are lower compared to the batch case. The 

experimental results demonstrate that the Nao robot 

learns motion well using the proposed incremental learn-

ing algorithm and available teaching data, and its learned 

motion includes essential characteristics of the gesture. 

 

4.2. Motion production from learned motions 

The Nao robot has learned three motions (left arm 

raising, right arm raising, and sit-down) as shown in Figs. 

4(a, b, c), respectively, through the motion learning algo-

rithm. Figs. 5(a, b, c) illustrate the motions performed by 

the robot. During the left arm motion execution, the ro-

bot does not move the right arm, and vice versa. Each of 

the learned motions in (a), (b), and (c) has 9, 10, and 7 

Gaussian components (K) in the model, respectively. The 

dimensionality of the latent space (q) for (a), (b), and (c) 

are 3, 4, and 5, respectively. It is not easy for a human to 

move all the robot’s limbs simultaneously during teach-

ing. It is easier for, the human to teach the robot partial 

limb motions and subsequently let the robot integrate 

them spatially together. Fig. 4(d) shows the spatially 

fused motion of selected right and left arm motions 

through the proposed motion production method. In ad-

dition, an example of the spatial fusion with time-shift is 

demonstrated in Fig. 4(e). Arm motions are shifted 1.3 

sec relative to leg motions during spatial integration. In 

Fig. 4(d), K is 12 and q is 5 for the fused motion. In Fig. 

4(e), K is 13 and q is 6. Both K and q are scaled up com-

pared to the K and q of the base motion. In aggregate, 

however, the space for the incremental algorithm is much 

smaller than the space for the base motion. Sequential 

snapshots in Figs. 5(d, e) verify the new motions per- 

 

Table 1. The number of Gaussian components and the 

dimensionality of the latent space over teaching 

sessions during the learning of a martial gesture 

in Fig. 3 (c=0.99). 

session 1 2 3 4 5 6 7 8 9 10

K 13 10 9 9 9 9 9 9 9 9

q 4 4 4 4 4 4 4 4 4 4

 

Fig. 3. Comparison of mean square errors between the 

reproduced and the teaching trajectories from 

each teaching session. The circle represents the 

case using the proposed learning algorithm and 

the others using the batch algorithms with 

different template trajectories for time align-

ment. 
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   (a) (b) (c) (d) (e) 

Fig. 4. New motion productions from pre-learned motions. Plots j1 and j2 indicate selected joints in the left arm, j3 and 

j4 in the right arm, j5 and j6 in the left leg, and j7 and j8 in the right leg. Plot series (a), (b), and (c) represent the 

motions prepared through the learning process. Plot series (d) and (e) represent newly produced motions from 

the motion production methods in Section 3.1 and 3.2, respectively. See the detail in the text. The unit for the y 

axis is radians. 

 

(a) 

 

(b) 

(c) 

(d) 

(e) 

Fig. 5. Snapshots of motions generated by the robot. Each motion indicated by an alphabet from (a) to (g) corresponds 

to each plot indicated by the same letter in Fig. 4. 
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formed by the robot. The experimental results demon-

strate the feasible performance of the proposed produc-

tion algorithm. 

 

5. CONCLUSIONS 

 

This paper presented a learning approach for motions 

to produce a learned motion at any time. With further 

kinesthetic teachings, the learned motion becomes more 

refined. The approach is generally applicable for any 

learning by imitation scheme. From data encoding to 

motion generation, the overall procedure for the pro-

posed approach is incremental. No preliminary informa-

tion is required to learn a motion. During the process, 

information loss, especially due to dimensional reduction, 

is inevitable. However, experimental evaluations verify 

that the proposed approach can produce a generalized 

motion that reflects the essential characteristics of the 

teaching motions. In addition, a new motion production 

approach from learned motions without extra teaching 

sessions was proposed. A new motion can be generated 

by spatially combining learned motions without full 

learning. Time-shifted fusion is also implementable. 

Combining the two learning and production methods, a 

robot becomes able to produce a range of complex mo-

tions through accessible human interaction. 
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