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A new method for detecting drivable regions in an unrehearsed and
unstructured outdoor environment using multi-sensor information is
presented. To achieve this goal, two key methods are developed: (i)
robust and effective feature definition using colour and geometry and
(ii) online learning algorithm using positive samples for detecting dri-
vable regions. With real data sets, the effect of sensor modality is eval-
uated and is compared the performance of the algorithm to a cluster-
based approach.
Introduction: Navigation in a complex outdoor environment that
includes foliage, surfaces covered with leaves and dense vegetation is a
difficult and challenging problem for autonomous robots. The primary
concern of much of the previous research has been the identification of
the kind of paved roads such as country roads and urban roads. Such
roads are typically characterised by their road colour, lane markings or
end boundary features. However, if a robot is placed in an unknown
and unstructured outdoor environment without any prior information
and goes to a goal location without human intervention, the robot
should be able to identify drivable regions online.

In this Letter, we propose a new drivable region detection method in
an unrehearsed and unstructured outdoor environment using a set of fea-
tures derived from three-dimensional (3D) light detection and ranging
(LIDAR) and a camera. The approach uses online positive learning to
identify whether unknown regions in front of the vehicle are drivable
or not while in motion and without prior manual labelling. Our contri-
bution in this Letter is twofold. First, we define the robust and effective
visual and geometric features used for drivable region detection in an
unstructured environment. Secondly, we develop an online positive
learning algorithm to identify a drivable region in an unknown environ-
ment without a pre-computed model. Our approach achieves robustness
by combining multi-sensor information from a 3D-LIDAR and a
camera. The extrinsic parameters between both sensors were estimated
by Kwak et al. [1].

Features selection: The feature set used for our drivable region detec-
tion consists of an image and the corresponding geometry information
derived from a camera and a 3D-LIDAR. We obtain superpixels from
the over-segmentation of the image and the corresponding 3D-LIDAR
points. Each feature set is defined as a histogram H = [h1, …, hB] with
B bins. The histogram represents a normalised distribution of colour
and geometric information in a superpixel.

For an image feature, we use CIE-LAB colour space [2] which is
known to be more perceptually uniform and robust against outdoor
lighting condition than the RGB (red, blue, green) and HSV (hue, satur-
ation, value) colour spaces. To compensate for errors from the sensor
calibration and to correctly estimate the boundaries of complex
objects, we segment the image into superpixels. Superpixels are the
result of a perceptual grouping of pixels and align better with image
edges than rectangular image patches [3]. The image feature is measured
by the colour histogram of a superpixel. Let hcb be the b index of the
colour histogram value in superpixel I. It is defined as
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where yci is a pixel in I, N is the total number of pixels and and I is the
indicator function. This normalised colour histogram Hc gives the prob-
ability that the colour of the superpixel is in quantised colour bin(b).

The LIDAR features are defined as four normalised geometric distri-
butions considering the shape, size and distance of LIDAR points in a
superpixel. Among the four distributions, three of them represent the
3D geometrical shape of the region such as eigenvectors [4].
However, we focus on the distribution of points relative to the eigenvec-
tors of the covariance matrix of 3D points. Thus it is invariant to trans-
lation and rotation. Let f kj denote a shape feature for the geometry
histogram where k = {1, 2, 3}. It is defined as
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ygj = {xj, yj, zj} and ek is the eigenvector. From this equation, we
characterise the distribution of the 3D points in each superpixel with
regard to shape. The feature f kj ,where k = {4}, represents the size and
scaling characteristics. The size and scaling factors are captured by
the product of eigenvalues and distance from the sensor. The size and
scaling feature is defined as

f kj = l1l2l3 × mg
Y
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where λ1, λ2 and λ3 are eigenvalues corresponding, respectively, to
eigenvectors e1, e2 and e3, D is the maximum distance in the scene
and V is the volume of the largest superpixel.

Since the four features are normalised with their value between [0, 1],
we use it as a variable for a histogram. Similar to the colour histogram,
hgb is the geometry histogram value and it is defined as
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whereM is the total number of 3D points in the superpixel. Given a nor-
malised geometry histogram Hg for any superpixel I, it represents the
statistical characteristics of 3D points with respect to shape, size and
scale of the superpixel region from the LIDAR sensor.

Online positive learning: We use only positive samples to detect a dri-
vable region in an unrehearsed and unstructured environment. Much of
the standard research poses the drivable region detection as a binary
classification problem. However, it is difficult to define negative
samples in an unknown and unstructured outdoor environment. For
example, if we trained dense vegetation samples as a negative, the
vehicle may not detect the drivable region in an environment consisting
of dense vegetation. We develop a drivable region detection approach
using only positive samples. Our sample labelling system is inspired
by Wellington and Stentz [5].

The classifier decides that a new region is drivable by comparing the
region to previous drivable regions; if the similarity factor is greater than
a parameter θ, then it is a drivable region. The threshold-based approach
is a computationally efficient and simple prediction method for online
region classification. The classifier is defined as
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where Hi is the target feature histogram to predict, H ′ = H ′
1, ..., H

′
S
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is the set of labelled feature histograms,D(H, H′) is the distance function
to compare the similarity, θ′ is the threshold for distance function and S
is the number of histograms in H′. We define the distance function as χ2

which is powerful for comparing the similarity of the histogram:
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where wc and wg are weighted factors of each histogram distance.

Experimental results: Using the framework described above, we per-
formed a series of experiments to evaluate the effectiveness of our pro-
posed algorithm. The experiments include: (i) a comparison of our
algorithm using LIDAR features, image features and a combination of
LIDAR and image features and (ii) a comparison of our algorithm with
a state-of-the-art method. We divide the data set used in our experiments
into two classes: (i) an easy data set consisting of a surface covered with
leaves and vegetation under 15 cm high and (ii) a challenging data set
including foliage and dense vegetation of more than 40 cm high.

Fig. 1 provides the threshold averaging receiver operator character-
istic (ROC) curves with respect to the two different data sets. As can
be seen in both cases, the colour feature is more discriminative than
the LIDAR-based features. In the challenging case, the LIDAR-based
features are more affected by the shape variation of the dense vegetation
than the case of the light terrain surface set. However, the combination
of LIDAR and image-based features performs better than features from
either modality individually. This result suggests that the information in
the LIDAR and image features produced by our method is not entirely
redundant.
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Fig. 1 Effect of sensor modality

a Easy sample case
b Challenging sample case
Fig. 2 shows the comparison results with the state-of-the-art method.
Each image is selected from the easy and challenging data sets.
a

c

b

Fig. 2 Estimated drivable regions (left: easy case, and right: challenging
case)

a Original image
b Result of cluster-based approach [6] (k = 5)
c Result of our approach (wc = 0.7)
From our experiment, the algorithm of [6] is very strong with respect
to assigning similar colour image patches into the same cluster.
However, it is less accurate than our approach for geometry features.

Fig. 3 describes the performance comparison of the existing method
and our approach. The results, in both ROC curves, show that our algor-
ithm outperforms the existing approach for all cluster values. It has an
improvement of nearly 5–7% in accuracy. In this experiment, the per-
formance of the existing algorithm is affected by the data set signifi-
cantly, but our algorithm shows a consistent pattern.
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Fig. 3 Performance comparison with existing approach

a Easy sample case
b Challenging sample case

Conclusion: We have presented a novel method for detecting drivable
regions in an unrehearsed and unstructured outdoor environment. To
achieve this goal, we first defined robust and effective features as histo-
grams that describe the colour and geometric characteristics of each
superpixel region. Secondly, we developed an online positive learning
algorithm. The approach is achieved by tightly combining information
from a 3D-LIDAR and a camera. Through experimentation, we
proved the performance of our method.

Acknowledgment: This project was funded by the Agency for Defense
Development (ADD) under grant UD110111ID.

© The Institution of Engineering and Technology 2014
29 May 2014
doi: 10.1049/el.2014.1302
One or more of the Figures in this Letter are available in colour online.

H. Lee and S. Jo (Department of Computer Science, KAIST, 291
Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea)

E-mail: shjo@kaist.ac.kr

K. Kwak (Agency for Defense Development, Bukyuseongdaero 488gil,
Yuseong, Daejeon 305-152, Republic of Korea)

References

1 Kwak, K., Huber, D., Badino, H., and Kanade, T.: ‘Extrinsic calibration
of a single line scanning LIDAR and a camera’. IEEE Conf. on
Intelligent Robots and Systems, San Francisco, CA, USA, September
2011, pp. 3283–3289, doi: 10.1109/IROS.2011.6094490

2 Commision Internationale de l’Eclairage (CIE): ‘Recommendations on
uniform color spaces, color difference equations and psychometric
color terms’, CIE Publ., 1978, (15), pp. 9–12

3 Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and Susstrunk, S.:
‘SLIC superpixels compared to state-of-the-art superpixel methods’,
IEEE Trans. Pattern Anal. Mach. Intell., 2012, 34, (11),
pp. 2274–2282, doi: 10.1109/TPAMI.2012.120

4 Vandapel, N., Huber, D., Kapuria, A., and Hebert, M.: ‘Natural terrain
classification using 3-d LIDAR data’. IEEE Conf. on Robotics and
Automation, New Orleans, LA, USA, April 2004, 5, pp. 5117–5122,
doi: 10.1109/ROBOT.2004.1302529

5 Wellington, C., and Stentz, A.: ‘Online adaptive rough-terrain navigation
vegetation’. IEEE Conf. on Robotics and Automation, May 2004, Vol. 1,
pp. 96–101

6 Ott, L., and Ramos, F.: ‘Unsupervised incremental learning for long-term
autonomy’. IEEE Conf. on Robotics and Automation, Saint Paul, MN,
May 2012, pp. 4022–4029, doi: 10.1109/ICRA.2012.6224605


	Introduction
	Features selection
	Online positive learning
	Experimental results
	Conclusion
	Acknowledgment
	References

