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Voxelisation methods are extensively employed for efficiently proces-
sing large point clouds. However, it is possible to lose geometric in-
formation and extract inaccurate features through these voxelisation
methods. A novel, flexibly shaped ‘supervoxel’ algorithm, called
boundary-enhanced supervoxel segmentation, for sparse and
complex outdoor light detection and ranging (LiDAR) data is pro-
posed. The algorithm consists of two key components: (i) detecting
boundaries by analysing consecutive points and (ii) clustering the
points by first excluding the boundary points. The generated super-
voxels include spatial and geometric properties and maintain the
shape of the object’s boundary. The proposed algorithm is tested
using sparse LiDAR data obtained from outdoor urban environments.
Introduction: Correctly perceiving a three-dimensional (3D) outdoor
environment is still a challenging task for autonomous vehicles. For
this task, voxelisation methods are generally employed for efficiently
processing large amounts of data [1]. Voxelisation is a method that
divides the 3D terrain into fixed-length cubes and extracts their features.
When a point cloud is converted into voxels, it is possible to lose geo-
metric information about an unstructured outdoor object. Furthermore,
the density of Velodyne light detection and ranging (LiDAR) data
which is popularly used for 3D outdoor environments is low. In par-
ticular, point clouds distant from the sensor are much sparser. In this
sparse region, it is possible that more than one object can be overlapped
by the same voxel, and this voxel could contain inappropriate in-
formation about the objects. To overcome this problem, we propose a
novel, flexibly-shaped supervoxel for sparse outdoor Velodyne
LiDAR data. So far, there are no appropriate supervoxel algorithms
for the Velodyne data.

To achieve this goal, we have developed two key algorithms: (i) a
supervoxel algorithm that maintains the shape of the object’s boundary
and includes spatial and geometrical properties: we call it
boundary-enhanced supervoxel segmentation (BESS); (ii) a boundary
detection method that works well in sparse point clouds. We then evalu-
ate our algorithm against other algorithms using standard error metrics.
Fig. 1c shows the result of our supervoxel algorithm for 3D point clouds
in outdoor urban environments.
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Fig. 1 Example of supervoxels produced by our algorithm

a Ground truth point clouds
b Detected edge points (u̇i > 50° and ûi < 20°)
c BESS (R = 0.6 m and w = 0.5)

Boundary points detection: Our approach generates supervoxels by
detecting boundary points. Point discontinuity is checked based on the
angles formed by the lines connecting the point with its previous and
next points. We consider vertical and horizontal consecutive points sep-
arately. Assuming that points are sequentially ordered in one direction,
we define two vectors passing from a point pi = [xi, yi, zi] to its K (in our
positionLtd, Salisbury
setting K = 3) previous and next consecutive points as
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Then, the angle u̇i representing the discontinuity of pi is defined as

u̇i = cos−1 �v+i · �v−i
|�v+i | × |�v−i |
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Owing to point noise, analysing the consecutive points in a relatively
very dense and sparse point clouds region could extract an incorrect dis-
continuous point. Furthermore, since points in unstructured objects such
as foliage and grass are generally discontinuous, these points should be
excluded from the boundary point set. Therefore, we should measure the
variation among its K consecutive points and regard high variation
points as noise points or part of an unstructured object. The variation
angle ûi of a point pi is defined as
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The points of high u̇i and low ûi are determined according to a boundary
point acting as a threshold, and they are computed in both vertical and
horizontal directions. In this Letter, points with u̇i > 50° and ûi < 20° are
regarded as boundary points. We denote the discontinuity and variation
angle in the vertical direction as u̇

V

i and ûV
i , and in the horizontal direc-

tion as u̇
H

i and ûH
i . The extracted boundary points are shown in Fig. 1b.

Point feature and distance measure: The geometric features of a point
are extracted by analysing the local distribution of consecutive points
[2]. For point features, we consider the angle �ui between the vector
�v+i and the x–y-plane, defined as

�ui = sin−1 �v+i · z
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where z is a z-axis unit vector.
We denote the angle of the vertical direction as �u

V

i and the horizontal
direction as �u

H

i . In this Letter, the angles �u
V

i and �u
H

i and the variation
angles ûV

i and ûH
i are used as geometrical point features. For normalisa-

tion, the angle features are divided by 90°. The point feature fi used for
the supervoxel over-segmentation task is defined as
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By applying a weight w for point distances, the distance d of two point
features is computed as follows:
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where f si = {xi, yi, zi} and f
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. R is the resolution

of an initial rectangular grid.

Supervoxel over-segmentation algorithm: The supervoxel over-
segmentation algorithm is summarised in Algorithm 1. Our approach
clusters the points by expanding a cluster region following the neigh-
bourhood graph. The neighbourhood graph is constructed by connecting
consecutive vertical and horizontal points. We then remove the edges of
boundary points extracted from u̇i and ûi so that objects cannot be con-
nected to each other. Therefore, an expanding cluster is unable to grow
past the boundary point and into the region of another object. Each
cluster centre Ck is initialised to be the points of lowest discontinuity
from the rectangular grid with step R in a 3D point cloud. Each
cluster region changes by comparing the similarity and proximity of
points in range 2R with each cluster centre. At the end of this process,
the boundary points are assigned to the closest connected cluster.

Algorithm 1: Boundary-enhanced supervoxel segmentation

Construct a neighbourhood graph G.
Remove the edges of boundary points in G.
Place cluster centres Ck on a rectangular grid with step R.
Move each Ck to the lowest point of discontinuity in the range R/2.
Set minimum distance Dmin

i = 1 for each point i.
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for each cluster Ck do
Extract the neighbouring points P* in a 2R region around Ck.
Calculate distances D* between P* and Ck.
Remove points whose distance D* is higher than Dmin from P*.
Find the connected points P̂∗ of P* from Ck using breadth-first search
of G.
Assign each point of P̂∗ to clusterCk and updateD

min to its distanceD*.
end for
Assign each boundary point to the closest connected cluster centre Ck.

Experimental results: To generate supervoxels, we use publicly avail-
able Velodyne datasets [3], which were recorded from an HDL-64E
LiDAR sensor. To evaluate the performance of our algorithm, we com-
pared our BESS algorithm against the voxel cloud connectivity segmen-
tation (VCCS) algorithm [4]. It generates supervoxels by clustering
voxel-clouds extracted from indoor RGB-D images. Since the VCCS
generates supervoxels only in dense indoor RGB-D images, we modi-
fied it to be usable in Velodyne point clouds; it is denoted as point
cloud connectivity segmentation (PCCS). This algorithm clustered
point clouds instead of voxel-clouds using a neighbourhood graph con-
structed in the same way as ours. The distance in PCCS is defined as
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where fFPFH are the fast point feature histogram (FPFH) [5] features and
their distance is calculated using the histogram intersection kernel. Then,
the rest of the clustering algorithm is the same as [4].
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Fig. 2 Boundary recall and under-segmentation error of each algorithm

a Boundary recall
b Under-segmentation error

The boundary recall and under-segmentation error of the algorithms
with respect to different grid steps R are shown in Figs. 2a and b,
respectively. In these Figures, the number of segments is inversely pro-
portional to the grid step R. That is, when R is high, the number of seg-
ments is low. Each result is the average of processing 10 frames. For
supervoxel algorithms, we set the supervoxel parameter w of BESS
and VCCS to 0.5. The results show that the BESS always shows
better performance than the other algorithms. In particular, the boundary
recall of BESS does not fall below 0.77. This indicates that our algor-
ithm clustered point clouds by maintaining the object boundary even
with a high grid step R.
To verify the performance of the supervoxel algorithms under differ-
ent point cloud densities, relatively dense and sparse point clouds repre-
senting one object are extracted from two different frames. Since points
detected on objects closer the sensor are denser than those detected
farther away, we selected two frames that contained an object of con-
siderable depth.

Fig. 3 shows examples of supervoxels in relatively dense (Fig. 3a)
and sparse (Fig. 3b) point clouds. We set the supervoxel parameters w
and R to 0.5 and 0.6 m, respectively. In Fig. 3, the performance of
PCCS suffers in the case of sparse clouds when compared with dense
clouds. BESS, on the other hand, performed better with sparse clouds.
BESS can detect the correct boundary points even in sparse point
clouds since the change between consecutive points in a sparse cloud
is more obvious.
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recall = 0.830)
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recall = 0.740) 
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recall = 0.872)

Fig. 3 Supervoxels of relatively dense and sparse point clouds

a Dense point clouds (distance of object from LiDAR centre is 5 m)
b Sparse point clouds (distance of object from LiDAR centre is 20 m)

Conclusion: We have presented a novel supervoxel algorithm for sparse
outdoor LiDAR data. The algorithm detects boundary points and cluster
points by excluding these boundary points. Therefore, the generated
supervoxels maintain the shape of the object’s boundary.
Experimental results show that our algorithm performs better than
other algorithms and the boundary detection is successful even for
sparse point clouds.
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