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Incremental Online Learning of Robot Behaviors From
Selected Multiple Kinesthetic Teaching Trials

Sumin Cho and Sungho Jo, Member, IEEE

Abstract—This paper presents a new approach to the incremental online
learning of behaviors by a robot from multiple kinesthetic teaching trials.
The approach enables a robot to refine and reproduce a specific behavior
every time a new teaching trial is provided and to decide autonomously
whether to accept or reject each trial. The robot neglects bad teach-
ing trials and learns a behavior based on adequate teaching trials. The
framework of this approach consists of the projection of motion data to
a latent space and the description of motion data in a Gaussian mixture
model (GMM). To realize the incremental online learning, the latent space
and the GMM are refined incrementally after each proper teaching trial.
The trial data are discarded after being used. The number of Gaussian
components in the GMM is not initially fixed but is autonomously selected
by the robot over the trials. The proposed method is more suitable for
practical human–robot interaction. The experiments with a humanoid
robot show the feasibility of the approach. We demonstrate that the robot
can incrementally refine and reproduce learned behaviors that accurately
represent the essential characteristics of the teaching trials through our
learning algorithm and that it can reject erroneous teaching trials to
improve learning performance.

Index Terms—Gaussian mixture model, incremental learning, learning
by imitation, learning from demonstrations, robots.

I. INTRODUCTION

Teaching a robot using multiple demonstrations, also referred to as
learning by imitation, is a useful and convenient approach to teaching a
robot new behavioral skills [1]–[4]. Several advantages to the approach
are well summarized in the literature [5]. In learning by imitation,
a robot observes multiple demonstrations of a repeated behavior or
is taught kinesthetically over several trials. The robot responds by
reproducing the generalized motions.

Most of the previous approaches require full teaching information
at once [6]–[9]. However, to be more adequate and applicable in
real human–robot interactions, teaching methods for skillful behav-
iors should be dynamic and in real time. As if a human is taught
incrementally, teaching trials would be performed sequentially, and the
robot should start learning a behavior online from the first trial. The
robot should be able to further refine its behavior with repeated trials.
In addition, during the learning process, the robot should be able to
evaluate the data actively rather than accepting all of the data passively.
The robot can thus focus exclusively on good teaching information
to improve its performance. A teacher is also informed of his or her
teaching performance.
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The EPFL LASA group [8]–[12] has presented an approach to
behavioral learning from full demonstrations. Their approach is based
on principal component analysis (PCA) and a Gaussian mixture
model (GMM) to build a probabilistic representation of behaviors.
The approach can classify motion segments and reproduce smooth
generalized movements. They proposed an incremental version of the
batch-learning algorithm [10]. However, their version requires a fixed
number of components in the GMM and the latent space prior to the
learning procedure, and it does not take into account data alignment.

This paper describes an approach to the incremental online learning
of behaviors by a robot from properly selected kinesthetic teaching
trials. A robot encodes an expected behavior and projects it onto a
latent space of motion and a GMM. The robot modifies the latent
space evenly and progressively refines the number of Gaussian mixture
components in the GMM whenever a new teaching trial is provided.
Each trial data is not stored once used, and no preliminary assumption
is required for the GMM and the latent space. Furthermore, for
teaching sessions of the same motion, the teaching data are aligned
incrementally. The temporal alignment clarifies the coherence of the
data trajectories of the repeated behavior, and it normalizes the raw
data temporally. Our approach enables a robot to recognize and
reject bad teaching trials autonomously. The autonomous recognition
is made possible by comparing with a generalized behavior from
teaching trials in terms of spatial coherence and pattern similarity.
By rejecting bad teaching trials, the robot can learn a motion more
skillfully and proficiently. The robot will also be able to provide
feedback to a teacher on his/her teaching performance, thus adding
another dimension to the interactive learning scheme.

II. ALGORITHM

This paper proposes an incremental online learning of behaviors
from proper kinesthetic teaching trials, as described in Fig. 1. To
select proper teaching trials for learning, the data evaluation step is
employed. This work uses the GMM in the latent space as a motion
descriptor and aims to select model parameters in the GMM and to
construct the latent space properly soon after each proper teaching
trial is provided.

GMM has widely been used to modeling a probabilistic density
function and has been applied to various applications such as motion
pattern classification [8]–[12] and speech recognition [13]. GMM is
known to be good at describing the essential variations of complex and
nonlinear patterns even with noisy data, while its analysis can be done
easily [14]. The probabilistic density function can be represented as

p(xi) =

K∑
k=1

πkp(xi|k) (1)

where

p(xi|k) =N (xi;μk,Σk)

=
1√

(2π)d|Σk|
exp

(
−1

2
(xi − μk)

TΣ−1
k (xi − μk)

)
πk is the prior probability, and μk and Σk are the mean vector and the
covariance matrix of the kth Gaussian component, respectively.

2168-2216/$31.00 © 2012 IEEE



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 43, NO. 3, MAY 2013 731

Fig. 1. Overall learning algorithm procedure. “H. Data evaluation” step is
skipped when a robot does not evaluate the teaching trial.

Then, a sequence of states {xi}Ni=1 describes a motion, which
consists of N data points. Previous works [7], [8] have proposed that
a generalized motion which maximizes

∏N

i=1
p(xi) when the number

of Gaussian components is fixed can be computed by the Gaussian
mixture regression (GMR). The expected position μ̂ and the spatial
covariance matrix Σ̂ for representing the generalized motion in a
latent space can be expressed as functions of time t using the model
parameters, μk and Σk, of the GMM. μk = [μt,k, μs,k]

T consists of
a temporal component μt,k and a spatial vector μs,k. In this paper,
we let the subscripts t and s indicate the time component and the
posture vector, respectively. Σk can be partitioned according to the

two components as follows: Σk =

[
Σtt,k Σts,k

Σst,k Σss,k

]
.

Then, the following functions are given in [8], [10]:

μ̂s(t) =

K∑
k=1

πkN (t;μt,k,Σtt,k)∑K

i=1
πiN (t;μt,i,Σtt,i)

×
(
μs,k +Σst,kΣ

−1
tt,k(t− μt,k)

)
Σ̂ss(t) =

K∑
k=1

(
πkN (t;μt,k,Σtt,k)∑K

i=1
πiN (t;μt,i,Σtt,i)

)2

×
(
Σss,k − Σst,kΣ

−1
tt,kΣts,k

)
. (2)

Including the time value, the parameters are respectively set to

μ̂(t) = [ t μ̂s(t) ]
T

Σ̂(t) =

[
0 0
0 Σ̂ss(t)

]
. (3)

The regressed spatial trajectories in the latent space x̂s(t) are
retrieved from the probability distribution of N (xs(t); μ̂s(t), Σ̂ss(t)),
and then, the generalized motion in a latent space is x̂(t) = [t x̂s(t)]

T .
In fact, x̂(t) = μ̂(t).

The accumulated information after the jth teaching trial is com-

pactly expressed by M j = {Gj , Lj}, where Gj = {πj
k, μ

j
k,Σ

j
k}

K

k=1

is a collection of the GMM parameters in the latent space and
Lj = {mj , P j} represents parameters that describe the latent space
according to the procedure in Section II-D.

The procedural steps of the proposed framework are explained in
the following sections.

A. Teaching Trial Data Encoding

During each teaching trial, the motion is encoded in terms of joint
angle trajectories. The jth collected joint angle trajectory information

is represented by {ζji }
Nj

i=1 = {[ζjt,i ζ
j
s,i]

T }
Nj

i=1
, where N j represents

the total number of data points from the jth trial. Each ζji consists of
a time value ζjt,i ∈ R and a posture vector ζjs,i ∈ Rd, where d is the
dimensionality of the joint space.

B. Incremental Temporal Alignment

Each motion of the same task is similar, but not exactly identical.
The duration and speed of one trial may be different from previous
ones. Therefore, motions are sampled at different lengths by the
sensors. To make the motion data comparable, the robot must align
the motion trajectories temporally. We apply dynamic time warping
(DTW) which has been designed for aligning one curve with respect to
another [6], [8], [15], [16]. A slope constraint, as suggested in [16], is
selected to alleviate the problem of singularities. We use DTW to align
each newly encoded trial trajectory to a learned motion trajectory from
previous teaching session. In addition, time values are newly estimated
to be accordant with the alignment. To produce an aligned trajectory
with a constant time interval and a fixed number of data points
N , linear interpolations are applied. As a result, aligned teaching

data {ξji }
N

i=1 are obtained. Furthermore, the regression parameters

{μ̂j−1
i , Σ̂j−1

i }
N

i=1 in the latent space from (3) are adjusted by taking
into account the new time alignment.

C. Data Integration

The temporal alignment step generates the aligned data trajectory

{ξji }
N

i=1 and a parameter set {μ̂j−1
i , Σ̂j−1

i }Ni=1 for GMR, which repre-
sents the previous data inclusively. The parameter set is updated to in-

clude the most recent data {ξji }
N

i=1. The two are described in different

spaces. Therefore, the parameter set is converted to {m̂j−1
i , Ĉj−1

i }Ni=1

in the joint space as follows:

m̂j−1
i =P j−1μ̂j−1

i +mj−1

Ĉj−1
i =P j−1Σ̂j−1

i P j−1T (4)

where Lj−1 = {mj−1, P j−1}, the latent space parameters, is pro-
vided from the previous teaching trial by the procedure described in
Section II-D.
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Then, (5) shown at the bottom of the page yields the update of the

set in the joint space which results in {m̃j
i , C̃

j
i }

N

i=1.

D. Projection Onto Latent Space

It is inefficient to manage complicated whole-body motions in high-
dimensional joint angle space. The description of motions in a latent
space of reduced dimensionality with uncorrelated components has
been employed in many works due to its usefulness and simplicity.
PCA is a popular method for projecting the original joint space onto
a latent space of reduced dimensionality [17]–[19]. In this paper, the
latent space changes every time new teaching data are acquired. After

the jth kinesthetic teaching trial, {m̃j
i , C̃

j
i }

N

i=1 is computed from (5),
where the temporal and spatial components are separated such as m̃j

i =

[m̃j
t,i, m̃

j
s,i]

T
and C̃j

i =

[
C̃j

tt,i C̃j
ts,i

C̃j
st,i C̃j

ss,i

]
. Then, the mean mj

s and the

covariance matrix Cj
ss in the joint space are computed as follows:

mj
s =

∑N

i=1
m̃j

s,i

N

Cj
ss =

∑N

i=1
C̃j

ss,i +
(
m̃j

s,i −mj
s

) (
m̃j

s,i −mj
s

)T
N

. (6)

The eigenvectors and eigenvalues λi of the real symmetric covari-
ance matrix Cj

ss are computed: Cj
ssW

j = W jΛj , where Λj is a diag-
onal matrix whose elements are eigenvalues and W j is a matrix whose
columns are the corresponding eigenvectors. To construct the reduced
dimensional latent space, we selected q number of eigenvectors as
W j

d×q which satisfy the condition (
∑q

i=1
λi/

∑d

i=1
λi) > γ which

indicates that the projection to the latent space covers 100× γ% of the
data’s spread. The new latent space Lj is defined as Lj = {mj , P j},

where mj = [0 mj
s]

T and P j =

[
1 0
0 W j

d×q

]
.

{m̃j
i , C̃

j
i }

N

i=1 can be transformed onto the newly updated latent

space Lj and expressed by {μ̃j
i , Σ̃

j
i}

N

i=1, where

μ̃j
i =P jT

(
m̃j

i −mj
)

Σ̃j
i =P jT C̃j

i P
j . (7)

E. Model Parameter Initialization for GMM Refinement

The number of Gaussian components K in the GMM is computed
during learning. Previous investigations have proposed the selection
of an optimal number of components K by minimizing the Bayesian
information criterion (BIC) score SBIC which evaluates both model
performance and complexity [8]–[12]

SBIC =(model fitting term) + (model complexity term)

= − L+
np

2
log(Ntot)

where np denotes the total number of free parameters required for a
mixture of Gaussian components and Ntot is the total number of data
points.

L =
∑Ntot

i=1
log(p(xi)) =

∑Ntot

i=1
log(

∑K

k=1
p(k)p(xj

i |k)) is the
log-likelihood of the model described in (1).

The number of the free parameters is equal to

np(K, q) = (K − 1) +K
(
q +

1

2
q(q + 1)

)
. (8)

The first term indicates the total number of prior probabilities, and the
second term indicates the total number of means and elements in the
symmetric covariance matrices.

Suppose that the jth kinesthetic teaching is currently encoded and
a robot stores all of the data from the first to the jth teachings in its

memory. Let {xj
i}

N

i=1 represent temporally aligned data points in the
latent space from the jth teaching trial. Then, the total encoded data

points in the latent space are expressed by {{xl
i}

j

l=1}
N

i=1
. A GMM is

set as G = {πj
k, μ

j
k,Σ

j
k}

K

k=1
from (1). Let {xj

k,i}
L

j
k

i=1
denote the data

points governed dominantly by the kth Gaussian component, where Lj
k

indicates the number of the governed data points. By assuming that
p(xj

k,i|k) � p(xj
k,i|/k), where /k ∈ {1, 2, . . . ,K} − {k} indicates

any number other than k, an approximated estimation of L is computed
by considering the expected value of L

E[L] =E

[
j∑

l=1

N∑
i=1

log

(
K∑

k=1

πj
kp

(
xl
i|k

))]

≈E

⎡⎣ K∑
k=1

L
j
k∑

i=1

log
(
πj
kp

(
xj
k,i|k

))⎤⎦ . (9)

The above approximation is taken based on the propensity of each
Gaussian density component to be dominant over partial data points
where the data points tend to be linearly spread in a local space.
Each xj

k,i is regarded as a random vector distributed according to

N (μj
k,Σ

j
k)

E

⎡⎣ K∑
k=1

L
j
k∑

i=1

log
(
πj
kp

(
xj
k,i|k

))⎤⎦

=

K∑
k=1

L
j
k∑

i=1

E
[
log

(
πj
kp

(
xj
k,i|k

))]

=

K∑
k=1

L
j
k∑

i=1

E
[(

−1

2

(
xj
k,i − μj

k

)T
Σj−1

k

(
xj
k,i − μj

k

))]

+

K∑
k=1

Lj
k

(
log

(
πj
k

)
− 1

2
log

(∣∣Σj
k

∣∣)− 1

2
q log(2π)

)
.

By assigning zi = Σj−(1/2)

k (xj
k,i − μj

k)

E
[(

−1

2

(
xj
k,i − μj

k

)T
Σj−1

k

(
xj
k,i − μj

k

))]
= −1

2
E[zi

T zi].

m̃j
i =

(j − 1)m̂j−1
i + ξji
j

C̃j
i =

(j − 1)
(
Ĉj−1

i +
(
m̂j−1

i − m̃j
i

) (
m̂j−1

i − m̃T
i

)T)
+
(
ξji − m̃j

i

) (
ξji − m̃j

i

)T
j

(5)
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Due to its definition, the random vector zi is distributed according
to N (0, Iq×q). Then

E[zi
T zi] = E

[
q∑

l=1

z2i,l

]
=

q∑
l=1

E
[
z2i,l

]
=

q∑
l=1

1 = q

where zi,l represents each element in the vector, l = 1, . . . , q.
Therefore

K∑
k=1

L
j
k∑

i=1

E
[(

−1

2

(
xj
k,i − μj

k

)T
Σj−1

k

(
xj
k,i − μj

k

))]

= −1

2

K∑
k=1

L
j
k∑

i=1

q = −1

2

K∑
k=1

qLj
k = −1

2
qjN

since it is true that
∑K

k=1
Lj

k = jN by definition. As a result, we have
the following assumption:

E[L]=
K∑

k=1

Lj
k

(
log

(
πj
k

)
− 1

2
log

(∣∣Σj
k

∣∣)− 1

2
q (1+log(2π))

)
. (10)

Equation (10) indicates that no explicit data point information is
required to compute the log-likelihood, which makes an incremental
approach more attractive. Through the procedure from Section II-B–D,

the integrated trajectory parameters {μ̃j
i , Σ̃

j
i}

N

i=1 are generated

[see (7)]. Using {μ̃j
i , Σ̃

j
i}

N

i=1, for k = 1, . . . , N/2, a set of parameters
in GMM, defined in (11) shown at the bottom of the page, is initially
declared by grouping two successive time steps to avoid zero variance
along the time axis.

Equation (11) does not require explicit data points. Therefore, the
robot does not need to save past data in its memory.

By considering the possible repeated merging of sequential groups,
a correct number of K is sought. Suppose that the two kth and
(k + 1)th components are merged into a single component (i.e., a new
kth component). The change of the fitting term value is then computed
as follows:

E[ΔL]=Lj′

k

(
log

(
πj′

k

)
− 1

2
log

(∣∣∣Σj′

k

∣∣∣)− 1

2
q (1+log(2π))

)
− Lj

k

(
log

(
πj
k

)
− 1

2
log

(∣∣Σj
k

∣∣)− 1

2
q (1+log(2π))

)
− Lj

k+1

(
log

(
πj
k+1

)
− 1

2
log

(∣∣Σj
k+1

∣∣)
−1

2
q (1+log(2π))

)
= log

πj′

k

L
j′
k

πj
k

L
j
kπj

k+1

L
j
k+1

− 1

2
log

|Σ′
k|

L
j′
k∣∣Σj

k

∣∣Lj
k
∣∣Σj

k+1

∣∣Lj
k+1

(12)

where G = {πj′
k , μj′

k ,Σ
j′
k }

K−1

k=1
after merging and Lj′

k = Lj
k + Lj

k+1.

Fig. 2. Algorithm of the model initialization for EM.

The change of the complexity term value is computed from (8)

Δnp = −1− q − 1

2
q(q + 1). (13)

All possible merges of two sequential groups are considered to com-
pute the largest reduction of ΔSBIC = −E[ΔL] + (Δnp/2) log jN .
For the case of a merge resulting in the largest reduction, the merge is
confirmed if the sign of ΔSBIC is negative. This process is repeated
until the sign is no longer negative. After the termination, the number
of remaining components becomes K. We note that using (12) and
(13) to compute ΔSBIC does not include explicit data point values,
but only model parameters. Therefore, no memorization of data points
is required. The procedure is summarized in Fig. 2.

F. GMM Refinement

Once K is selected, the expectation–maximization (EM) algorithm

can be applied to refine the model parameters [20]. From {μ̂j
i , Σ̂

j
i}

N

i=1

which generalizes the data information so far, data samples used to
run EM can be easily generated. Suppose that α random samples
are stochastically generated from each distribution of N (z; μ̂j

i , Σ̂
j
i )

and are represented by zj = {zji }
αN

i=1. Using the samples, EM can be
implemented:

0. Initialize the model parameters (see Section II-E)

1. E-Step:

p
(t+1)
k,i =

π
(t)
k N

(
zji ;μ

(t)
k ,Σ

(t)
k

)
∑K

l=1
π
(t)
l N

(
zji ;μ

(t)
l ,Σ

(t)
l

)

πj
k =

2

N

μj
k =

μ̃j
2k−1 + μ̃j

2k

2

Σj
k =

(
Σ̃j

2k−1 +
(
μ̃j
2k−1 − μj

k

) (
μ̃j
2k−1 − μj

k

)T)
+
(
Σ̃j

2k +
(
μ̃j
2k − μj

k

) (
μ̃j
2k − μj

k

)T)
2

(11)
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2. M-Step:

π
(t+1)
k =

∑αN

i=1
p
(t+1)
k,i

αN

μ
(t+1)
k =

∑αN

i=1
p
(t+1)
k,i zji

αNπ
(t+1)
k

Σ
(t+1)
k =

∑αN

i=1
p
(t+1)
k,i

(
zji − μ

(t+1)
k

)(
zji − μ

(t+1)
k

)T

αNπ
(t+1)
k

where t is the iteration number.
Repeat 1 and 2 until convergence |(L(t+1)/L(t))− 1| < ε � 1,

where L =
∑N

i=1
log(p(zji )).

G. Motion Generation

The GMR method mentioned earlier can reproduce a generalized
motion through (2) and (3) using the converged parameter values

from EM. The generalized motion in the latent space {x̂j
i}

N

i=1 after
the jth teaching trial is projected onto the joint space to produce the

generalized (learned) joint motion {ξ̂ji }
N

i=1 by

ξ̂ji = P j x̂j
i +mj . (14)

The motion {ξ̂ji }
N

i=1 represents a learned motion soon after the jth
kinesthetic teaching trial.

H. Teaching Trial Data Evaluation

So far, it is assumed in the algorithm that every teaching trial
is accepted. In this section, we explore the option of allowing the
robot to decide autonomously whether the most recent teaching trial
is suitable for learning or if it should be rejected. If the teaching trial
is inappropriate, it is neglected, and the learning procedure does not
proceed; otherwise, the remaining steps are taken for learning.

Suppose that the aligned jth teaching trial {ξji }
N

i=1 is evaluated.
The evaluation proceeds in two steps: acceptability by latent space and
similarity with GMM, under the assumption that the teaching trials
should be similar to include the essential characteristics of a specific
behavior.

Suppose that the parameters of the latent space Lj−1 =
{mj−1, P j−1} and GMM with K Gaussian components Gj−1 =

{πj−1
k , μj−1

k ,Σj−1
k }K

k=1
are currently calculated from the previous

trial.
1) Acceptability by Latent Space: The projection matrix onto the

latent space W j−1
d×q , as explained in Section II-D, has been com-

puted after the (j − 1)th teaching trial. We check whether the jth
teaching trial can be represented sufficiently according to the most
recently updated latent space. Using the spatial posture vectors in
ξji , the information loss through the projection to the latent space is
defined as

Se =

∑N

i=1
ej

T

i eji∑N

i=1

(
ξjs,i −mj−1

s

)T (
ξjs,i −mj−1

s

) (15)

where eji = (ξjs,i −mj−1
s )−W j−1

d×qW
j−1T

d×q (ξjs,i −mj−1
s ).

If Se > δ, then {ξji }
N

i=1 is rejected, and this learning procedure
is terminated; otherwise, we proceed with the next step. Here, δ is
a constant that represents a permissible deviation. Since the latent
space is constructed to cover 100× γ% of data spread, Se ≤ 1− γ

Fig. 3. Algorithm of the characteristic point assignment.

Fig. 4. Example of characteristic point assignment and linear segments. Red
filled circles: Assigned characteristic points. Dashed lines: Linear segments.
Represented only in the first and the second principal (q1 and q2) in the latent
space for simplicity.

is expected if ξjs,i lies strictly on the current latent space. If δ = 1− γ,
no effective learning is experienced for future teaching trials. An
adequate δ in the range of 1− γ < δ � 1 is selected to balance data
acceptability and learning opportunity because the model is not a final
version.

2) Pattern Similarity Measure: This step examines the similarity
of the jth teaching trial to the reproduced trajectory obtained based on
the teaching trial information up to the (j − 1)th trial. First, charac-
teristic points of the teaching trial trajectory are selected through the
procedure shown in Fig. 3. The algorithm finds a list of characteristic
points (the red filled circles in Fig. 4 for example) from the teaching
trial trajectory (the blue line in Fig. 4). The characteristic points divide
the trajectory into a set of segments. Every data point between two
sequential characteristic points is placed in the range defined by a
threshold h, and it is regarded approximately as a linear segment.
The characteristic points of the reproduced trajectory are found using
the same procedure. For the two trajectories to be comparable, both
trajectories are linearly segmented via all of the selected characteristic
points (the red dotted line segments in Fig. 4). The corresponding
linear segments from both trajectories are compared to evaluate pattern
similarity. To enable the pattern similarity comparison, the velocity
expression is designated.

Suppose that {rc}Cc=1 represents the sample indexes of the total C
characteristic points. The (j − 1)th aligned teaching trajectory in the

latent space {xj
i}

N

i=1 is partitioned into a time value xj
t,i and a posture
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vector xj
s,i. Then, the velocity of the cth segment from the teaching

trajectory is approximated as

vjc =
xj
s,rc+1

− xj
s,rc

xj
t,rc+1

− xj
t,rc

, c = 1, 2, . . . , C − 1. (16)

The cth segment from the reproduced trajectory in the latent space
can be represented by {μ̂j−1(xj

t,i), Σ̂
j−1(xj

t,i)}
rc+1

i=rc
using GMR [see

(2) and (3)].
Let μ̄j−1

c =
∑rc+1

i=rc
μ̂j−1(xj

t,i)/(rc+1 − rc + 1) and Σ̄j−1
c be de-

fined as shown at the bottom of the page.

By partitioning Σ̄j−1
c =

[
Σ̄j−1

tt,c Σ̄j−1
ts,c

Σ̄j−1
st,c Σ̄j−1

ss,c

]
, the velocity of the cth

segment μj−1
v,c and its corresponding covariance Σj−1

v,c are stated as
follows:

μj−1
v,c =Σ̄j−1

st,c

(
Σ̄j−1

tt,c

)−1

Σj−1
v,c =

(
Σ̄j−1

ss,c − Σ̄j−1
st,c

(
Σ̄j−1

tt,c

)−1
Σ̄j−1

ts,c

)(
Σ̄j−1

tt,c

)−1
. (17)

A score of the pattern similarity between the cth segments is
defined as

Sc=

∑C−1

c=1
(rc+1−rc+1)

(
vjc−μj−1

v,c

)T (
Σj−1

v,c

)−1 (
vjc−μj−1

v,c

)
N−1

.

(18)

The aforementioned score measures how closely the two trajectories
travel. When each pair of segments points in the same direction, the
value of Sc is small.

Although the two motion trajectories are similar, it is possible that
the two motions are not coincident spatially. Therefore, a regressive
estimation score, defined in (19) shown at the bottom of the page,
is incorporated to check the coincidence using GMR, where ε is a
nonnegative number.

Covariance matrices are adjusted by adding a term εIq×q so as to
not strictly rely on the currently learned model in terms of spatial
uncertainty because the model is not a final version.

The good teaching trial trajectory tends to have both small Sc and
Sε values. Because both Sc and Sε are nonnegative, a teaching trial
evaluation rule is designed to be

Sc · Sε < ρ (20)

where ρ is a threshold value.
If the above condition is satisfied, the teaching trial is accepted for

learning; otherwise, it is rejected, and this learning session is termi-
nated. It is worth noting that the two evaluation steps aim to determine
whether a teaching trial includes the essential characteristics of a
specific behavior with respect to the latent space and the model. The

TABLE I
PARAMETER SETTINGS

evaluations do not imply that the teaching trial should be rigorously
close to the most likely generalized behavior.

III. EXPERIMENTS

A. Experimental Setup

We used an Aldebaran Nao humanoid robot with 25 degrees of
freedom (DOFs) [21] to test our approach. To learn specific behaviors,
the robot motors were set to passive mode. In this mode, during
kinesthetic teaching trials, the trajectories of the angle values of each
joint were recorded at a rate of 20 Hz through motor encoders. The
14 DOFs of the upper torso were used in the experiment, and the
DOFs of the lower body were set to a constant position, maintaining a
stable posture. Before the first teaching trial, no assumptions about any
parameters were prepared in the GMM. The learning procedure was
run in a computer equipped with an Intel Core2 Quad CPU Q6600 at
2.40 GHz with the Windows XP operating system.

Table I summarizes the parameter values used in the experiments.
Due to the incremental learning property, the coverage ratio of effec-
tive principal components over the whole data with a fixed γ tends
to decrease as further teaching trials are provided. Therefore, γ was
chosen as a function of the teaching session, which helps retain the
coverage ratio. For the first teaching session, γ was 0.99. ε is selected
to guarantee the EM convergence. As mentioned in Section II-H2, δ
is determined not to reject new data too tightly for learning while
checking their acceptability. δ = 0.05 implies that data trajectories
should be accepted at least 95% by the current latent space. ε relies
on the summation of total variances. It makes it possible to score the
pattern similarity independently of motion scales. For more widely
spread motions, the larger covariance matrices in (19) were considered.
We decided h and ρ empirically to be generally applicable regardless
of motion scales and patterns from the humanoid robot. The selection
of parameter values also affects how strictly a robot is to evaluate a
teaching trial. Every experiment in this work used the same parameter
setting in Table I.

Σ̄j−1
c =

∑rc+1

i=rc

(
Σ̂j−1

(
xj
t,i

)
+
(
μ̂j−1

(
xj
t,i

)
− μ̄j−1

c

) (
μ̂j−1

(
xj
t,i

)
− μ̄j−1

c

)T)
rc+1 − rc + 1

Sε =

∑N

i=1

(
xj
s,i − μ̂j−1

s

(
xj
t,i

))T (
Σ̂j−1

ss

(
xj
t,i

)
+ εIq×q

)−1 (
xj
s,i − μ̂j−1

s

(
xj
t,i

))
N

(19)
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Fig. 5. Incremental learning of “underneath blocking” behavior over the ten teaching trials. Only selected joint trajectories are illustrated. l1 and l2 indicate two
joints, shoulder roll and elbow roll, in the left arm, and r1 and r2 indicate those in the right arm. (a)–(c) represent the learned joint trajectories after the first, fifth,
and tenth teaching trials, respectively. (d) represents the learned joint trajectories through the batch-learning algorithm from [8], and (e) shows them together. In
the bottom of (a)–(d), major principal directional components (eigenvectors) are plotted correspondingly. For clarity, only eight element values are shown from
each principal direction. (f) illustrates the covering portions of principal components in (a)–(d).

B. Incremental Learning of Taekwondo Behaviors

This experiment aimed to verify the incremental online learning
capability (without rejection). Six behaviors of the Korean martial
art, Taekwondo, were selected as test examples of a rich behavior
vocabulary: underneath blocking, trunk blocking, face blocking, trunk
punching, fist back hitting, and hand blade neck hitting. A human
taught each martial art behavior to the Nao robot kinesthetically. Ten
teaching trials were provided for each behavior. As an example, Fig. 5
shows the evolution of the learned motions of underneath blocking
over the teaching sessions. To evaluate the performance of our algo-
rithm, it was compared with the performance of the batch algorithm
as proposed in [8]. In the batch case, the ten teaching trial data are
used simultaneously. It has been asserted that batch learning [8] can
reproduce the trajectories that preserve the essential characteristics of
the demo data set. To compare the batch algorithm performance with
ours, the DTW proposed in [8] was applied to the raw teaching data
trajectories to align them temporally.

In the batch case, the template for each behavior is obtained by an
iterative method that computes a structural average from the data as the
template and updates the average iteratively [16]. An optimal number
of K is selected for the batch algorithm, as explained in [8] and [10].
The batch-learning process employs a fixed γ, whose value is 0.99.
Fig. 5(a)–(c) shows the reproduced trajectories of the selected joints
and the major principal directional components of the latent space after
the first, fifth, and tenth teaching sessions, respectively; (d) shows them
obtained through batch learning. The grayed trajectories represent raw
teaching data in the joint space.

The orange, green, and blue lines indicate the reproduced tra-
jectories after the first, fifth, and tenth teaching sessions through
the proposed learning algorithm, respectively. Fig. 6(a) shows the
robot performances of the behaviors after the tenth teaching, re-
spectively. The red line shows the reproduced trajectories through
the batch-learning algorithm. The reproduced joint trajectories are
nearly identical to and temporally synchronous with those from
the batch learning in (e). The result including unshown rest cases

implies that our algorithm can perform the learning compara-
bly to the batch-learning algorithm even though it is incremental
online.

Our incremental time alignment can achieve temporal coherence
with DTW for batch learning even without a full data set. Our learning
algorithm results in nearly the same dimensionality q of the latent
space over the teaching sessions as the batch algorithm, as shown in
Table II. The major principal directions are fairly similar between the
two cases, as shown at the bottom of Fig. 5(a)–(d), where the major
principal directional components of each latent space are plotted. For
clarity, only eight element values are shown. The influence of the other
principal directions is negligible, as shown in (f), where the ratios
of principal directional motion spreads (λi/

∑d

i=1
λi) from (a)–(d)

are illustrated. The motion spreads over the major principal directions
in (c)–(d) are fairly comparable. For the learning of all six behaviors,
the incrementally updated latent spaces cover about 98% of the full
original teaching data set after three teaching trials. After the final
teaching, the latent spaces represent 99% of the full original teaching
data set.

Table II shows the changing number of Gaussian components K
in GMM during incremental learning. K tends to converge almost
immediately after the first teaching trial. The final K obtained through
our algorithm is generally less than that obtained through the batch
algorithm, which implies that our algorithm prefers a simpler model.
Table II also indicates that, on the whole, the joint space of 14 DOFs is
reduced to the latent space of four to six dimensions. Occasionally,
q increases over the teaching trials. The increasing q is possible
because of varying γ. A principal direction that was less significant ini-
tially could become more influential in later teaching trials. The experi-
mental results demonstrate that behaviors can be incrementally learned
after each teaching trial without significant loss of reproducibility
and that the motion model can successfully represent the teaching
data set.

Fig. 6 shows sequential snapshots of the robotic behavior reproduc-
tions after the final teaching trial using our algorithm.
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Fig. 6. Sequential snapshots of the six Taekwondo behaviors reproduced by
the robot after final teaching: (a) Underneath blocking, (b) trunk blocking,
(c) face blocking, (d) trunk punching, (e) fist back hitting, and (f) hand blade
neck hitting.

TABLE II
CHANGE OF THE NUMBER OF GAUSSIAN COMPONENTS (K) AND THE

DIMENSIONALITY OF THE LATENT SPACE (q) OVER TRIALS DURING

LEARNING OF THE SIX TAEKWONDO BEHAVIORS (K/q), WITH “BT”
INDICATING DATA OBTAINED THROUGH BATCH LEARNING:

(a) UNDERNEATH BLOCKING, (b) TRUNK BLOCKING,
(c) FACE BLOCKING, (d) TRUNK PUNCHING, (e) FIST

BACK HITTING, AND (f) HAND BLADE NECK HITTING

Fig. 7. Raw teaching data and reproduction of the selected Taekwondo be-
haviors using the learning with and without rejection: (a) Underneath blocking,
(b) trunk punching, and (c) hand blade neck hitting. Raw teaching data in
terms of some selected joints are drawn. Reproduced hand end point trajectories
(R: right hand; L: left hand) are shown in the Cartesian coordinate (x, y, z).

C. Comparison of Learning With/Without Rejection

Another experiment was undertaken to evaluate the robot’s ability
to judge the quality of the teaching trials. If a teaching trial is judged
to be inconsistent with others, neglecting the trial may help secure
a stable learning process and enhance the generalized representation
of a learned behavior over the accepted teaching trials. Again, a
human teacher taught the six Taekwondo behaviors incrementally
through 12 kinesthetic teaching trials. The learning algorithms with
and without data evaluation (see Section II-H) were compared for
the same sequence of teaching trials. For the learning with rejection,
the robot accepts the first three teaching trials without judgment to
establish its knowledge on a behavior. Then, it starts evaluating the
next teaching trials.

Fig. 7 shows the unaligned teaching trials used for learning. The
blue and red trajectories indicate the accepted and rejected teaching
trials through the data evaluation algorithm, respectively. The learn-
ing without rejection is incrementally implemented using all of the
teaching data, and the learning with rejection uses the blue-colored
data alone. The reproduced joint trajectories are commanded to the
robot. Fig. 7 also shows the robot’s behaviors in terms of the left
and right hand end position trajectories in the Cartesian coordinate
to clarify different behaviors. The reproduced behaviors from the
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Fig. 8. Comparison between reproductions by the robot through the learning
with and without rejection: (a) Face blocking, (b) trunk punching, and (c) hand
blade neck hitting.

two cases are differently colored (blue: with rejection; red: without
rejection). The trajectories from the two cases are distinct in terms of
phase and amplitude. Even a little gap is of significant difference in
behavior pattern. The essential differences between the two reproduced
trajectories are more clearly recognized in Fig. 8 which shows the
snapshots of reproduced behaviors by the robot. In Fig. 8, the selected
reproduced behaviors with and without rejection are overlapped syn-
chronously (blue: with rejection; red: without rejection). The improved
performance resulting from learning with rejection can be demon-
strated upon closer examination. For example, while performing face
blocking [see Fig. 8(a)], the robot blocks the face more rapidly after
learning with rejection. During trunk punching [see Fig. 8(b)], the
straightforward punching is executed after learning with rejection, but
the punching is upward after learning without rejection. During hand
blade neck hitting [see Fig. 8(c)], the robot does not raise its right
hand backward enough before hitting in the case of learning without
rejection.

Table III shows the changes of the number of Gaussian components
K and the dimensionality of the latent space q over the trials. For
each behavior, the upper row indicates learning with rejection, and the
bottom row indicates learning without rejection. In the case of learning
with rejection, “r” indicates the rejected trial sessions. On the whole,
the q of the learned model tends to be smaller when learning with
rejection is implemented, which may be because the accepted trial
trajectories are more spatially coherent. The results demonstrate that
the inconsistent teaching trajectories that violated the general pattern
characteristics were rejected.

Figs. 9 and 10 show examples of the rejected teaching trajectories.
Fig. 9 shows an “acceptability by latent space” evaluation. A blue
dotted trajectory is projected to the most recently updated latent space,
and the projected trajectory is then reprojected onto the joint space.
The reprojection produces the red trajectory. The red trajectory fails
to exhibit the influential pattern characteristics (see l3 in Fig. 9)
in comparison with the original blue dotted trajectory. This result
indicates that the teaching trajectory requires another principle com-
ponent, which the current latent space does not incorporate. In Fig. 10,
the rejected trajectory is red, and the accepted trajectory is blue. The
arrows illustrate the velocity directions. The ellipsoids represent the

TABLE III
CHANGE OF THE NUMBER OF GAUSSIAN COMPONENTS (K) AND THE

DIMENSIONALITY OF THE LATENT SPACE (q) OVER TRIALS DURING

LEARNING OF THE TAEKWONDO BEHAVIORS (K/q) (UPPER ROW)
WITH AND (BOTTOM ROW) WITHOUT REJECTION: (a) UNDERNEATH

BLOCKING, (b) TRUNK BLOCKING, (c) FACE BLOCKING,
(d) TRUNK PUNCHING, (e) FIST BACK HITTING, AND

(f) HAND BLADE NECK HITTING

Fig. 9. Example of trajectory rejected by “acceptability by latent space.”
Blue dotted line: Teaching trajectory. Red line: Rejected trajectory which is
recontructed through projections.

Fig. 10. Example of trajectory rejected by (a) and (b) pattern similarity and
(c) and (d) spatial inconsistency. (Blue) Accepted and (red) rejected trajectories
with arrows representing velocity directions. (Ellipsoids) Gaussian components
in GMM.
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Fig. 11. Reproduction of drawing gestures: (a) triangular shape, (b) rectangular shape, and (c) cross-shape.

Fig. 12. Comparison of the RMSDs between the learning with and without
rejection for the three drawing gestures.

Gaussian components in the most recently learned motion model. In
Fig. 10(a) and (b), the velocity directions of the segments from the
rejected trajectory differ from the accepted case. Fig. 10(c) and (d)
shows an example of trajectory rejection by spatial inconsistency. The
rejected trajectory has a similar pattern to the accepted trajectory, but
it is discordantly located in the dotted circle region.

D. Learning Drawing Motions With/Without Rejection

To evaluate the effectiveness of the data evaluation procedure, we
tested drawing gestures to focus on end point motions. The robot
learned three drawing gestures: triangular, rectangular, and cross-
shaped. Each motion was learned with and without rejection. For
each drawing task, 12 kinesthetic teaching sessions were provided.
Fig. 11 shows the three reproduced drawing behaviors. Insets 1, 2,
and 3 illustrate sequential snapshots taken during each drawing task.
In each inset, the robot’s hand position produced from the learning
with no rejection is overlapped with that from the learning with
rejection (blue line: with rejection; red line: without rejection; dotted
line: desired trajectory). It is visually evident that the blue trajectories
tend to draw the shapes more accurately in all three cases. Fig. 12
verifies it by computing the root-mean-square deviation (RMSD)
between the desired and the drawn trajectories. Even without the
data evaluation procedure, the proposed learning algorithm can extract
the desired behaviors to some extent even from teachings including
unsatisfactory motions due to the probabilistic model’s properties [8].
However, the explicit removal of bad teaching examples helps enhance
motion accuracy.

IV. CONCLUSION

This paper has presented an incremental online learning algorithm
for a robot to learn a behavior from teaching data. The learned
behavior is expected to include the essential characteristics that the
teaching data intended to express. A motion model is constructed,
and the robot stores the model parameters to produce the behavior
at any time necessary. Our algorithm requires no presumption on its
model parameters and can construct the model incrementally through
teaching trials. Our algorithm allows a robot to judge the properness
of a teaching trial by itself and therefore is better suited for interactive
scenarios between a teacher and a robot. A robot evaluates whether a
newly encoded teaching trial can be well covered by the constructed
latent space. Then, the robot scores the similarity of the teaching
trial to its current learned motion model through a proposed metric.
The similarity measure aims to detect if the teaching trial includes
the critical characteristics of a targeted behavior but not to examine
trajectory fitting. The experimental results verify the feasibility and
power of our algorithm.

Recently, the learning by imitation schemes have been extended to
include interactions with users under consideration on environments
[22]–[24] and to refine or reuse policies by teacher feedback [25],
[26]. They focus on interactive learning. Our work also bears similarity
since learning is implemented interactively through adequate teaching
trial selection by a robot. Our current learning algorithm does not
consider constraints such as joint torque limit, robot dynamics, and
contact task. The constraints may be taken care of by a controller if
we regard our algorithm as a desired motion generator. However, a
more intelligent motion command generation would take into account
the issues. Hence, a natural extension would be to consider the
underlying dynamics.
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