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Abstract
Objective. This study investigates the efficacy of electroencephalography (EEG) centered around the
user’s ears (ear-EEG) for a speech-imagery-based brain–computer interface (BCI) system.
Approach. A wearable ear-EEG acquisition tool was developed and its performance was directly
compared to that of a conventional 32-channel scalp-EEG setup in a multi-class speech imagery
classification task. Riemannian tangent space projections of EEG covariance matrices were used as
input features to a multi-layer extreme learning machine classifier. Ten subjects participated in an
experiment consisting of six sessions spanning three days. The experiment involves imagining
four speech commands (‘Left,’ ‘Right,’ ‘Forward,’ and ‘Go back’) and staying in a rest condition.
Main results. The classification accuracy of our system is significantly above the chance level (20%).
The classification result averaged across all ten subjects is 38.2% and 43.1% with a maximum (max)
of 43.8% and 55.0% for ear-EEG and scalp-EEG, respectively. According to an analysis of variance,
seven out of ten subjects show no significant difference between the performance of ear-EEG and
scalp-EEG. Significance. To our knowledge, this is the first study that investigates the performance
of ear-EEG in a speech-imagery-based BCI. The results indicate that ear-EEG has great potential as
an alternative to the scalp-EEG acquisition method for speech-imagery monitoring. We believe
that the merits and feasibility of both speech imagery and ear-EEG acquisition in the proposed
system will accelerate the development of the BCI system for daily-life use.

1. Introduction

Brain–computer interface (BCI) systems have been
widely researched as an alternative method of com-
munication and control for patients who have lost the
ability to talk or move, such as those who suffer from
locked-in syndrome (LIS) or amyotrophic lateral
sclerosis (ALS) [1]. BCI systems work by translating
the user’s brain activities into computer or machine
commands [1]. Many studies have proven that BCIs
can successfully help those patients to regain their
ability to live their normal life [2]. However, BCIs are
not yet suitable for daily-life use. Apart from its effic-
acy, a BCI for daily life should be convenient, easy,
fashionable, and harmonizedwith daily-life activities.
BCI paradigms reported in many studies are limited
by the mode of BCI. Reactive BCIs such as P300 [3]

and steady-state visually evoked potential (SSVEP)
[4] require stimuli from an external device (e.g. a
monitor). This affects the wearability of a BCI and
the visual stimuli might also induce user fatigue from
staring at a monitor, making the reactive BCIs not
optimal for daily-life use. While BCIs that use motor
imagery (MI) [5] do not require a stimulus, it is lim-
ited by the degree of freedom when used for control
of a computer or a machine. MI-based BCIs can also
be unintuitive to use depending on the circumstances
as users might find it difficult to relate MI tasks (e.g.
imagining left-handmovement) to the task they want
to be done (e.g. turning on the television).

To overcome these limitations, speech imagery
has been researched and proposed as an alternative
mode of BCI. Speech imagery is a type of mental task
that refers to when a person imagines speaking aloud
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without actually moving any articulators or speaking
[6]. Speech-imagery-based BCI can be more intuit-
ive compared to other types of BCI in that users can
simply think of the word associated with the output
command for the system to detect. Speech-imagery
tasks also require less training time since most people
are already naturally accustomed to it. It also, in the-
ory, supports as many commands as there are sounds
and combinations of sounds.

The majority of early speech-imagery research
was based on imagining vowels. Fujimaki et al [6] first
proposed the idea of speech imagery by examining
the evoked potential from imagining the vowel /a/. In
[7], DaSalla performed a classification of electroen-
cephalography (EEG) signals acquired when subjects
imagined the vowels: /a/ and /u/, or stay at rest using
common spatial patterns (CSPs) from the collected
EEG signals. Similarly, Matsumoto et al [8] used a
support vectormachine (SVM) and a relevance vector
machine (RVM) to classify the EEG from imagining
Japanese vowels. The study in [9] used Hilbert spec-
trum analysis to classify syllables: /ba/ and /ku/ ima-
gined in different rhythms.

Speech imagery has also been researched using
brain signals from electrocorticography (ECoG).
Leuthardt et al [10] decoded phonemes using ECoG
to control a one-dimensional cursor. The study in
[11] classified both vowels and consonants with a
Naïve Bayes classifier using ECoG signals for both
overt and covert speech. They achieved an average
accuracy of approximately 40% for both vowels and
consonants in both overt and covert speech tasks.
Martin et al [12] recorded ECoG responses for six
words in three conditions: listening, imagined speech,
and overt speech. They carried out pairwise classi-
fications on 15 word pairs using an SVM. Of the 15
pairs, 8 showed accuracy significantly higher than the
chance level for imagined speech.

Recently, speech imagery using words with
semantic meaning has been researched as well.
Nguyen et al [13] used Riemannian manifold fea-
tures for the classification of short words, long
words, and vowels imagined periodically at a fixed
rhythm. Qureshi et al [14] performed classification
using five imagined words (‘Go,’ ‘Back,’ ‘Left,’ ‘Right,’
and ‘Stop’) and achieved accuracy of up to 40.30%.
García-Salinas [15] conducted both speech and visual
imagery experiments for 13 words and images. They
reported an accuracy of 34.2% and 26.7% for the
speech and visual imagery experiments, respectively.

Most of these studies, however, were carried out
with the conventional EEG acquisition methods that
acquire EEG from the user’s scalp using electrodes
with electrolyte gel or electrical conductive paste (i.e.
wet electrodes) on a cap. This method provides a
high-quality EEG signal with a wide range of EEG
channels that covers all parts of the human brain,
which makes this EEG acquisition technique often
the best non-invasive technique when it comes to

the accuracy of BCI systems. Nevertheless, scalp-
based EEG acquisition methods are unsuitable for
BCIs that are intended to be used in everyday life
for three main reasons: (a) the equipment prepara-
tion takes time and requires extra training to learn
the procedure, (b) the cap and wet electrodes make
them uncomfortable, and (c) they are not fashion-
able and can be socially awkward. To solve these
problems, researchers have tried replacing the wet
electrodes with different types of electrodes and
changing the design of the EEG acquisition tool
to make it wearable. Examples of commercial-grade
wearable EEG acquisition devices include NeuroSky
(www.neurosky.com), which uses one active dry elec-
trode to acquire EEG from the user’s forehead, and
Emotiv (www.emotiv.com), which uses disposable
sponge electrodes with saline solution.

EEG centered around the user’s ears (ear-EEG)
is an alternative EEG acquisition method that has
been gaining popularity in the field of BCI research
due to its comfortability, mobility, and discreetness.
This EEG acquisitionmethodmeasures EEG centered
around the user’s ears. Ear-EEG does not require any
complicated equipment preparation and the sensors
do not have any contact with the user’s hair; thus,
it is easier and more comfortable for users to use
than the conventional scalp-EEG methods. The elec-
trode placement in ear-EEG methods also makes
them invisible to other people and does not attract
any unwanted attention to the user, making ear-
EEG methods very discreet and suitable for daily life.
Looney’s research [16] is one of the first to pro-
pose the concept of ear-EEG. They developed ortho-
plastic earpieces that acquire EEG from the inside of
users’ ear canals. Debener’s group [17] took a dif-
ferent approach that acquired ear-EEG from around
the ear. They developed an around-ear EEG acquis-
ition tool called cEEGrid that consists of ten elec-
trodes printed on a C-shape flexible sheet. Follow-
ing these works, many studies have developed their
own ear-EEG acquisition tools and shown that ear-
EEG is a reliable data acquisition method for BCI
systems. The BCI signal types that can be detected
by ear-EEG include alpha attenuation [18], auditory
steady-state response [18], concentration level [19],
auditory attention state [20, 21], sleep state assess-
ment [22], SSVEP [23], and auditory event-related
potential [18, 24, 25].

In order to accelerate the development of daily-
life BCIs, we propose a speech-imagery-based BCI
system using ear-EEG. In this study, we develop
a wearable and low-cost around-ear-EEG acquisi-
tion device and investigate the efficacy of the ear-
EEG acquisition method in speech-imagery-based
BCI systems. We measure EEG from the scalp and
ears simultaneously in a multi-class speech-imagery
experiment and directly compare the classification
results between the two EEG acquisition methods.
Furthermore, a model is also trained to map the
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ear-EEG features into the scalp-EEG feature space
in an attempt to improve the accuracy of the ear-
EEG-based system. Our feature extraction method is
based on the EEG covariancematrices in the Rieman-
nian framework. We use a multi-layer extreme learn-
ing machine (MLELM) classifier as the classification
method in our system. The methods used in our sys-
tem are described in detail in the following section. To
the best of our knowledge, this study is the first to use
ear-EEG as the data acquisition method for a speech-
imagery-based BCI.

2. Method

2.1. Data acquisition
2.1.1. Ear-EEG
Wemeasure ear-EEG signals from around both of the
subject’s ears in six channels, three from each side.
The channel names are L1, L2, and L3 for the elec-
trodes around the left ear and R1, R2, and R3 for the
ones around the right ear. The signals are referenced
and grounded to the electrodes at the bottom of the
right (REF) and left ear (GND), respectively. The elec-
trodes on each side are arranged in a C-shape 55 mm
in height and 20 mm in width. Figure 1(a) illustrates
the position of the ear-EEG channels.

Ear-EEG is acquired using low-cost wearable
equipment custom-made for this study. The wear-
able equipment is in the shape of a horizontal head-
band that covers the back of the user’s ears and wraps
around the back of the user’s head. The equipment
contains the C-shape earpieces made with flexible sil-
icone (Dragon Skin 30) that cover around the ears.
We use foam-type solid-gel snap electrodes (3 M Red
Dot) cut to 14 mm in diameter for our equipment.
The electrodes can be easily attached and detached
from the sockets embedded in the silicone earpieces.
The silicone earpieces and foam-type snap electrodes
give a soft touch to the user’s skin, which makes the
device comfortably wearable. The electrodes achieve
impedance below 15 kΩ, which is similar to that of
the cEEGrid [17] without applying any extra elec-
trical conductive substance. The electrodes do not dry
out and remain at the same impedance level for at
least 6 h.

The silicone earpieces are attached to a 3D-
printed frame made with ABS material. The wires
are connected to an EEG sensing board contained in
a 3D-printed case that can be hooked to the user’s
clothes. The case also contains a portable battery and
a charger. We use OpenBCI’s Cyton Biosensing Board
(www.OpenBCI.com) as the EEG sensing board. The
EEG-acquisition sampling rate is 250 Hz. The bat-
tery lasts for at least 10 h for continuous EEG record-
ing. Figure 2 shows pictures of our ear-EEG wearable
device.

The low-cost wearable ear-EEG equipment is dis-
creet and can be worn comfortably. The equipment is
well concealed compared to the EEG cap and other

scalp-based wearable tools. The equipment can be
constructed easily by hand with the help of a 3D
printer that makes the frame, and all materials are
available commercially. The design of our equip-
ment also allows for a wide range of applications. For
example, the headband frame could be modified to
attach a camera or other sensors that can be used to
target an object in the environment for control. The
equipment setup process includes peeling the sticker
out of the electrodes and attaching them to the sock-
ets in the silicone parts of the equipment. For para-
lysis patients, this process can be done easily with help
from an extra person without any special training.
The total equipment preparation time of our ear-EEG
acquisition tool is less than 3 min.

2.1.2. Scalp-EEG
Weacquire the scalp-EEG at a sampling rate of 500Hz
using BrainVision actiCHamp with an EEG cap con-
sisting of 32 Ag/AgCl electrodes placed around the left
hemisphere following the 10–20 international system
(figure 1(b)). Fpz and FCz are chosen as the ground
and reference channels, respectively. Broca’s area (F5,
FT7, FC5, and FC3) and Wernicke’s area (TP7, CP5,
CP3, and P5) are associated with language produc-
tion and comprehension, respectively [26, 27], and it
has been demonstrated in previous studies that the
brain activities in these areas are dominant during
speech-imagery tasks [13, 26, 28]. Thus, instead of
spanning the electrodes across the user’s scalp, we
place the electrodes densely on the left hemisphere so
that the chance of picking up meaningful data during
the speech imagery is maximized while maintaining
the number of electrodes as 32. This could shorten
the equipment preparation time by half when com-
pared to the 64-channel setup that densely covers all
areas of the user’s scalp. Electrodes are not placed on
channels T9, TP9, and P9 due to their proximity to the
ear-EEG device. Electrolyte gel is inserted to ensure
the connection between the electrodes and scalp and
keep the impedance level below 10 kΩ. The scalp-EEG
equipment preparation takes approximately 30 min
to complete.

2.2. Experimental setup
All experiments were carried out in a soundproofed
room to minimize external sound noise. Each sub-
ject performed the experiment for a total of six ses-
sions spanning over three different days, two sessions
a day, with 20min rest time between two sessions, and
each session of the experiment taking approximately
20min. Subjects were prepared for EEG acquisition in
a comfortable chair about a meter away from a large
monitor.

Experimental procedures were explained at the
start of the experiment with visual cues. We gave
the subjects ample time to practice and encouraged
them to ask questions to ensure that they completely
understood the tasks. We recorded both ear-EEG and
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Figure 1. Electrode placement of (a) ear-EEG and (b) scalp-EEG used in this study.

Figure 2. Low-cost wearable ear-EEG equipment (a).
Subject wearing the equipment in side-view (b). Ear-EEG
electrodes are wired to the case containing the sensing
board, which can be hooked to the user’s clothes (c).

scalp-EEG simultaneously during the experiments.
Due to the EEG cap, we removed the 3D-printed
frame from the ear-EEG device and used the silic-
one earpieces only. There were ten blocks of tasks in
each session of the experiment. Each block contained
four speech-imagery tasks for the speech commands
‘Right,’ ‘Left,’ ‘Forward,’ and ‘Go back,’ and a control
task in which the subjects were asked to relax with
eyes open (labeled as ‘Rest’), in a randomized order.
Each task contained five trials of the speech imagery
or resting state, comprising a total of 50 trials for
each task.

A speech-imagery task started with an audio cue,
where the corresponding word was read by a female
voice in an American accent. After 2 s, a crosshair
cue was shown for 1 s during which subjects were
instructed to relax. Then, a circle sign was given for
2 s, during which they were expected to pronounce
the speech command given before. Following this, 1 s
of crosshair was shown again for relaxation. Actual

articulated speech generally took less than a second,
so the subjects actually had more than 1 s to rest for
the next step. A loading bar was then shown for 2 s,
during which subjects were instructed to imagine the
speech command in a stretched-out manner accord-
ing to the progress of the loading bar. This was shown
five times in a row, with 1 s of crosshair shown in
between. Subjects were given 2.5 s to rest afterward
before the next task started. The control tasks were
carried out in a similarmanner to the speech-imagery
tasks but a beep sound was given instead of the aud-
ible word and there was no following step for the
articulated speech. In this task, subjects were instruc-
ted to look at the loading bar without imagining any
speech. The experimental procedures are illustrated
in figure 3.

2.3. Data pre-processing
We first apply a notch filter with 60 Hz cutoff fre-
quency to the raw scalp-EEG and ear-EEG data
from each session of the experiment to remove
the noise from the power line. The EEG data are
then segmented into multiple 2 s EEG epochs for
each trial starting from the onset of the visual
cue and labeled with their corresponding class.
Finally, we decompose the EEG epochs into five
different EEG frequency bands including delta
(0.5–4 Hz), theta (4–7 Hz), alpha (7–14 Hz), beta
(14–30 Hz), gamma (30–100 Hz) and ‘Board’ (0.5–
100 Hz) using a fourth-order Butterworth band-pass
filter. The first five frequency bands are common
EEG frequency bands that are categorized according
to their unique characteristics and functions, and the
purpose of the ‘Broad’ band is to capture and process
the EEG data as a whole. By decomposing the EEG
data into different bands and extracting the features,
we can analyze and use the results of the experiment
to investigate the relationship between the EEG and
cognitive mechanisms of speech-imagery tasks.
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Figure 3. Experimental procedure for (a) speech-imagery tasks (speech imagery of the commands: ‘Right,’ ‘Left,’ ‘Forward,’ and
‘Go back’) and (b) control (resting-state) task. Each task contains five trials of the speech imagery or resting state. This procedure
is repeated ten times for each task in a box-randomized manner, comprising a total of 50 trials per each task.

2.4. Feature extraction
2.4.1. Covariance matrix
From the data pre-processing step, the EEG data
epochs of each frequency band of the ith trial can
be represented as a matrix Xi = [x1, . . . ,xT] ∈ Rn×T

where n denotes the number of channels and T is the
number of data points in an epoch. The covariance
matrix Pi ∈ Rn×n is defined as:

Pi =
1

T− 1
XiX

T
i . (1)

The result covariance matrix Pi is a symmetric
positive-definite (SPD) matrix.

2.4.2. Tangent space projection of a covariance matrix
Since the spaces of SPD matrices lie in the Rieman-
nian manifold, we cannot effectively use covariance
matrices directly as the features for the classification
algorithms that are based on projections into hyper-
planes [29]. In this study, we project the covariance
matrices into their corresponding tangent space and
construct the tangent vectors tomake them effectively
usable as the features for the classification algorithms.
For each covariancematrix Pi, its tangent space vector

(si ϵRm, wherem= n(n+1)
2 ) is defined as:

si = upper
(
P
− 1

2
R logPR (Pi)P

− 1
2

R

)
(2)

where upper(X) is the operator to keep only the upper
triangular part of the matrix X and vectorize it by
applying the unity weight to the diagonal elements
and

√
2 weight to the others, PR is the Riemannian

mean of the N covariance matrices, and LogC (P) is

the logarithmic mapping of matrix P using the refer-
ence point C defined as:

LogC (P) = C
1
2 log

(
C

1
2 PC

1
2

)
C

1
2 . (3)

The detailed descriptions of the Riemann geo-
metry properties of the SPDmatrices and the tangent
space projection process can be found in [29].

In our system, the Riemannian tangent space
vectors of covariance matrices are calculated separ-
ately for each frequency band. The feature matrix is
then constructed by concatenating all tangent vectors
from each frequency band. For the sake of simpli-
city, we label this feature extraction method as TS.
The dimension of the feature matrix is (Ns × 126)
for ear-EEG and (Ns × 2976) for scalp-EEG, where
Ns is the number of samples. Finally, analysis of vari-
ance (ANOVA) F-values are calculated and used to
select the best k features for classification, making
the dimensions of the final feature matrix (Ns × k).
We run the algorithm using k= [1,10,20, . . . , 110]
for ear-EEG and k= [1,100,200, . . . , 2500] for scalp-
EEG. The feature selection method can help reduce
the computational cost for the system and might
improve the accuracy of the system. In section 3, we
show the effect of the feature selection method on the
classification result and discuss the features that are
most significant according to the F-test ANOVA.

2.5. Classificationmethod
2.5.1. Extreme learning machine
An extreme learning machine (ELM) is a single-layer
feed-forward neural network that consists of an input
layer, a single hidden layer, and an output layer [30].
The difference between ELM and common neural
networks is that the hidden layer does not need to be
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tuned. The weights of the input layer and the bias val-
ues of the hidden node are assigned randomly and are
not learned or updated throughout the process. ELM
is extremely fast in training due to its random initial-
ization for the input weights and bias values, which
makes it suitable for BCI in daily-life applications
where the classification model should be updated
regularly because of the non-stationary nature of
EEG. ELM also shows better performance in speech-
imagery-based BCI compared to other common clas-
sification methods in previous studies [13, 14].

For N distinct samples(xi,yi), xi ∈ RN×j and yi ∈
RN×m where i= 1, . . . ,N, j is the number of input
nodes, andm is the number of output nodes, the hid-
den layer output is defined as:

h(xi) = g(axi + b) (4)

where g(x) is the activation function, a ∈ Rj×n is the
input weights and b ∈ Rn is the bias. The output layer
can then be expressed as:

h(xi)V= yi (5)

whereV ∈ Rn×m is thematrix of outputweights. Con-
sidering all N training samples, the ELM model with
n hidden nodes can be constructed as:

HV= Y (6)

where

H=

 h(x1)
...

h(xn)

=

 h1 (x1) · · ·hn (x1)
...
. . .

...
h1 (xn) · · ·hn (xn)


N×n

,

V=

 v1
...
vn


n×m

, and Y=

 y1
...
yn


N×N

.

There are three basic steps to learn the ELM
model. The first step is to assign a random value
(between 0 and 1) to the input weights a and bias b.
The second step is to calculate the matrix H. Finally,
the output weight can be calculated as V=H tY
whereH t is theMoore–Penrose generalized inverse of
matrix H.

Auto-encoding ELM (ELM-AE) is one variation
of the ELMmodel. ELM-AE is an unsupervised learn-
ing ELM that is constructed by having the output of
the ELM network the same as the input of the net-
works and trained in the same manner as a normal
ELM model.

2.5.2. MLELM
MLELM is a deep-learning variation of an ELM. It is
constructed by using multiple ELM-AEs [31] to train
the input for each hidden layer. Figure 4 depicts the
structure of an MLELM model with k hidden layers.
As seen from the figure, the l+ 1th hidden layer is
constructed by an ELM-AE that takes the lth hidden

layer (hl) as the input (figure 4(a)). The output weight
Vl learned from the ELM-AE is then used to transfer
the lth hidden layer to the higher level of feature space
(figure 4(b)). Mathematically, the lth hidden layer of
an MLELMmodel can be expressed as:

Hl = g
(
(Vl)

THl−1

)
. (7)

It should be noted that in the first hidden layer
(l= 1), H0 is the input layer x. The output weights
that connect the last hidden layer and the output layer
are then learned in the same way as the original ELM.

2.6. Ear-to-scalp feature mapping
We hypothesize that the scalp-EEG will give a better
result than the ear-EEG, so we attempt to improve the
result from ear-EEG by mapping the ear-EEG feature
matrix to the scalp-EEG feature space (labeled as the
EtoS method).

The mapping process is done using an ELM
model. The EtoS model is trained in the same way
as in the classification task but, instead of setting the
sample label y as the output layer, we use the scalp-
EEG features of the same sample as the output layer.
In this study, the number of hidden nodes is set to
2976, the same number as the scalp-EEG features. The
EtoS feature matrix is further processed and classi-
fied in the same way as the ear-EEG and scalp-EEG
feature matrix. Figure 5 summarizes the procedure of
our proposed BCI system.

2.7. Methods from previous studies
Other than using the TS feature extraction method
with theMLELMclassifier (labeled as TS+MLELM),
we also process and classify the EEG data from
speech-imagery tasks using methods presented in
previous BCI studies to compare and evaluate the
performance of our methodology. Several classifiers
including linear discriminant analysis, linear SVM,
ELM, and RVM are used as the classifier with the
TS feature extraction method. RVM is similar to
SVM but uses a Bayesian framework to obtain the
sparse solutions [32]. The study in [13] shows that
RVM is superior to other classifiers including ELM
in classifying speech-imagery tasks. We also per-
form different approaches that have been proven
to be effective in MI-based BCI systems, which
include using the filter bank CSP (FBCSP) as the
feature extraction method with an SVM classifier
(labeled as FBCSP + SVM) [33], and using pre-
processed EEG data directly as an input feature to
ShallowNet (labeled as EEG + ShallowNet) [34]. In
the FBCSP + SVM method, we band-pass filter the
EEG signal into five main frequency bands (delta,
theta, alpha, beta, and gamma) and extract six CSP
features from each frequency band. ShallowNet is a
convolution neural network with a shallow structure,
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Figure 4.Model structure of (a) an ELM-AE and (b) an MLELM.

Figure 5. Procedure of the proposed system for EEG data acquisition, feature extraction and classification.

which has previously been reported to increase accur-
acy compared to the FBCSP + SVM method in MI-
based BCIs [34]. We construct our ShallowNet in the
same way as described in [34].

In addition, we use the upper triangle of covari-
ance matrices directly as input features to anMLELM
classifier. This method is labeled as COV+MLELM.

2.8. Participants
In this study, tenmale subjects, 20–29 years of age and
fluent in English, were recruited. All of the subjects
were free from any neurological disorders and repor-
ted no visual and hearing impairments or significant
health problems. Four subjects had no prior experi-
ence in BCI while the other six subjects had previous
experience participating in BCI experiments but not
in one that is based on speech imagery. All subjects
gave written informed consent. The KAIST Institu-
tional Review Board approved the proposed experi-
mental protocol of this study.

2.9. EEG visualization
Tobetter understand the characteristic of EEG activit-
ies during speech-imagery tasks, we visualize the EEG

data obtained during all tasks in both spectral and
time-frequency domains. Spectral analysis is carried
out by acquiring the power spectrum density (PSD)
of each 2 s EEG epoch using the multitaper method.
Then, we perform an F-test on the acquired PSD val-
ues from each speech-imagery task in comparison to
the resting state to obtain the corresponding F-values,
which helps us gain more knowledge of what spec-
tral and spatial features are dominant during speech-
imagery tasks.

Time-frequency analysis is conducted using the
Morlet wavelet transform. In this analysis, we divide
the EEG channels into different groups to exam-
ine the characteristics of EEG during speech-imagery
tasks in each specific area of interest. Ear-EEG chan-
nels are divided into two groups: left-ear (L1, L2,
and L3) and right-ear (R1, R2, and R3), and scalp-
EEG channels are divided into four groups: Broca’s
area (F5, FT7, FC5, and FC3), Wernicke’s area (TP7,
CP5, CP3, and P5), midline sagittal plane (Fz, Cz,
CPz, Pz, POz, and Oz) and temporal channels (T7
and FT9). Broca’s and Wernicke’s areas are chosen
for their association with speech functions and the
temporal channels are chosen for their proximity to

7
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the ear-EEG channels. Time-frequency responses are
averaged across the channels in each group for three
conditions: speech imagery of short speech com-
mands (‘Left’ and ‘Right’), speech imagery of long
speech commands (‘Forward’ and ‘Go back’), and rest
condition.

2.10. System evaluation
The system is evaluated using a ten-fold cross-
validation for each session of the experiment. This
gives 225 training samples and 25 testing samples
for each iteration of cross-validation. The cross-
validation is performed in such away that the samples
from the same block stay in the same fold. The tangent
space projector and feature selector are computed
using only the data from the training samples. We use
the grid search method to find the optimized number
of hidden nodes from [50, 60,… , 200] in each layer of
the ELM andMLELMmodel for the cross-validation.
Since the ELM model and its variations use random-
ized values as their weight and bias values, the ran-
dom seed is specified so that each run of the model
training gives the same output. The accuracy results
from all ten iterations of the cross-validation are aver-
aged to represent the accuracy result of each session
of the experiment. Moreover, confusion matrices are
calculated for each session to examine the prediction
accuracy of each class as well.

In addition to the comparisons between results
from the ear-EEG, scalp-EEG, and EtoS methods,
and a comparison between our method and methods
from previous studies, we also examine our system
in other aspects. First, we compute and compare the
classification results obtained from the ear-EEG data
from all subjects in three channel-settings: using both
left and right channels, using only the left channels,
and using only the right channels. This helps us gain
more knowledge of the performance of the ear-EEG
in different channel settings in the speech-imagery-
based BCI. Finally, we investigate the effect of train-
ing on a user’s performance in the speech-imagery
task by comparing the classification results between
each session of the experiment to see if there is any
improvement in the performance as the subjects gain
more experience with the experiment. All result com-
parisons are carried out using t-tests to find out their
statistical significance. In multiple comparisons (i.e.
comparison between the results of ear-EEG and scalp-
EEG from each subject), the Bonferroni method is
used to correct the confidence level of the p-value.
The performance of the proposed system and the data
analysis are shown and discussed in the next sections.

3. Results

3.1. Data analysis
3.1.1. Data visualization
Our data visualizations show that each participant
has different patterns of brain activities during the

speech-imagery tasks, yet there are some underlying
similarities between some subjects. Figures 6 and 7
show the spectral analysis and time-frequency ana-
lysis of both ear-EEG and scalp-EEG for subject S04,
respectively. The EEG data of subject S04 are chosen
to be presented here due to their high classification
results in both ear-EEG and scalp-EEG (shown in
section 3.2). Data visualizations for other subjects are
provided in the supplementary data (available online
at stacks.iop.org/JNE/18/016023/mmedia). It should
be noted that the following observations described
in this section are specific to the data from subject
S04 and may not be applicable to the data from other
participants.

In the spectral analysis of ear-EEG (figure 6(a)),
we see relevant activity from 20 Hz onward. Of the
four classes, the ‘Right’ class shows the lowest F-
values. This is also shown in the data from sub-
jects S02, S03, S04, S08, and S10 (supplementary
data A). The ‘Left’ and ‘Forward’ classes show higher
F-values especially from the left ear when compared
to the other classes. The ‘Go back’ class displays high
F-values only in the R1 channel. The R3 channel
shows little to no difference across all classes, possibly
due to its proximity to the reference electrode. This
can be seen inmost of the subjects except for S01, S07,
and S10 (supplementary data A). For scalp-EEG, dif-
ferent trends can be seen for each speech command
in the spectral analysis (figure 6(b)). The ‘Left’ class
shows high F-scores in the channels around Broca’s
area, Wernicke’s area, and the temporal channels (T7
and FT9) from 30 Hz onwards. This applies to sub-
jects S03, S06, S07, and S10 as well (supplementary
data B). The ‘Right’ class showsmore similarity to the
rest condition in PSD when compared to the ‘Left’
class, except in subjects S01, S02, S05, and S09. The
‘Forward’ and ‘Go back’ classes show similar F-scores
to each other. These long speech commands show
activity focused in Broca’s area, but less so in Wer-
nicke’s area.

In the time-frequency analysis (figure 7(a)), we
can see that the ear-EEG from the left ear shows
higher activations compared to the right ear in
speech-imagery tasks. While the response for short
speech appears from 0.25 s onset, long speech shows
lower andmore delayed responses. Delayed responses
can also be observed from the data of subjects S01,
S03, S08, S09, and S10 (supplementary data C). Activ-
ities above 30Hz can be seen fromboth short and long
speech imagery in most of the subjects except for S01,
S02, and S06. In figure 7(b), Wernicke’s area shows
the highest activity during both short and long speech
imagery compared to other areas at above 30 Hz:
0.3 s from the onset of the loading bar for short com-
mands, and 0.5 s for long commands. The delayed
activities for long commands are also shown in sub-
jects S03, S07, S08, and S10 (supplementary data D).
Broca’s area and the temporal channels also show a
similar pattern toWernicke’s area for short words, but
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Figure 6. F-scores of power spectrum density calculated from each speech-imagery class vs ‘Rest’ class of (a) ear-EEG and
(b) scalp-EEG for subject S04. The dotted box indicates the channels in Broca’s area and the solid box indicates the channels in
Wernicke’s area. The ‘Left’ class shows the highest F-value in both methods. All speech-imagery tasks are most dominant in
Broca’s area. A higher value of F-score is shown in hot color (red) as indicated on the color scale.

at a lower amplitude. Broca’s area also shows activity
in the frequency below 10 Hz and the temporal chan-
nels display some activities during the control task.

3.1.2. Feature analysis
We further investigate the characteristics of EEG dur-
ing the speech-imagery tasks by analyzing the input
features. In this analysis, we perform the ANOVA
F-test separately for each session of the experiment
without dividing the data into training and testing
sets as we have done for the actual feature selection
process.

Figure 8 shows the averaged F-score (y-axis) of
each feature (x-axis) across all sessions for ear-EEG
data (a) and scalp-EEG (b). We also calculate the
mean F-score for the features from each frequency
band. From ear-EEG data, we can see that the fea-
tures from the gamma band have the highest mean
scores followed by the ‘Broad’ and delta band, while
the theta band has the lowestmean F-score. For scalp-
EEG, gamma features again have the highest mean
F-score and the theta band has the lowest F-score.

3.2. Classification result
3.2.1. Comparison between ear-EEG and scalp-EEG
results
Table 1 shows the classification results of our system.
The mean accuracies and standard deviations (std)
are derived using the results of all six sessions for

each subject. The average accuracy for ear-EEG and
scalp-EEG when using all features is 37.3± 3.2% and
41.9 ± 6.4%, respectively. Table 1(b) shows classi-
fication results and the best k number for each sub-
ject when the feature selection method is applied.
The average accuracy for ear-EEG and scalp-EEG
across all subjects, in this case, is 38.2 ± 3.3% and
43.1± 6.5%, respectively.When the k number is fixed
for all subjects, the result shows a very small improve-
ment in the average accuracy across all subjects (best
result: 37.6%, k= 50 for ear-EEGand 42.8%, k= 1000
for scalp-EEG). The feature selection method does
not significantly improve the accuracy of the system
(p > 0.5 for both ear-EEG and scalp-EEG).

The results show that the classification accuracies
of all sessions are significantly higher than the chance
level (20%) in both ear-EEG and scalp-EEG meth-
ods (one-tailed t-test, p<0.01). Themaximum (max)
and minimum (min) results are 43.0% (subject S01)
and 32.9% (subject S09) for ear-EEG, and 55.0%
(subject S03) and 36.1% (subject S09) for scalp-EEG.
When comparing the results of scalp-EEG and ear-
EEG for each subject, only the scalp-EEG results of
subjects S02, S03, and S07 are significantly better than
the ear-EEG result (p < 0.001), while the other seven
subjects show no significant increase in classifica-
tion result from scalp-EEG. The difference between
ear- and scalp-EEG results is higher than 10% only
in subjects S02 and S03. Furthermore, subject S05
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Figure 7. Time-frequency analysis of (a) ear-EEG and (b) scalp-EEG data in different channel groups for subject S04 averaged
across all sessions. Time-frequency analysis was carried out using the Morlet wavelet transform. Channels were divided into two
groups for ear-EEG: left-ear (L1, L2, and L3) and right-ear (R1, R2, and R3), and four groups for scalp-EEG: Broca’s area (F5,
FT7, FC5, and FC3), Wernicke’s area (TP7, CP5, CP3, and P5), midline sagittal plane (Fz, Cz, CPz, Pz, POz, and Oz) and
temporal channels (T7 and FT9). Greater power is shown in hot color (red) as indicated on the color scale.

even shows a slightly higher result from ear-EEG than
scalp-EEG (ear-EEG result= 38.2± 3.3%, scalp-EEG
result= 37.9± 3.8%, p= 0.78).

3.2.2. Mapping ear-EEG features into the scalp-EEG
feature space
The classification result of the EtoS method is also
shown in table 1. At the beginning of the experiment,
we hypothesized that scalp-EEG would produce a
much better classification result than the ear-EEG;

thus, mapping the ear-EEG feature to scalp-EEG
feature space might improve the performance of the
ear-EEG. However, we can see from the results that
both ear-EEG and EtoS methods have the same clas-
sification accuracy averaged across all subjects when
using the feature selection method, and the EtoS
method has an average accuracy 0.4% higher without
using the feature selection method. Of the ten sub-
jects, only subjects S02, S03, and S07, whose scalp-
EEG results are significantly better than their ear-EEG
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Figure 8. F-value of all (a) ear-EEG and (b) scalp-EEG features in each frequency band averaged across all sessions. Gamma band
features show the highest significant level in both cases.

results, show a small increment in mean accuracy
from the EtoS method. Nevertheless, the increments
are not statistically significant in any of these subjects
(p > 0.05).

3.2.3. Ear-EEG: left vs right channels
To further explore the setup of the ear-EEG acquis-
ition methods, we compare the classification results
obtained from the ear-EEG data from all subjects in
three channel-settings. The classification process for
this comparison is performed without using the fea-
ture selection method. The classification accuracies
(mean ± std) are 37.3 ± 3.2%, 36.38 ± 3.6%, and
34.4 ± 2.9% for using both left and right channels,
using only left channels, and using only right chan-
nels, respectively. Using t-tests, we found two inter-
esting observations. First, the classification results
from using only the right channels are significantly
lower than when using only the left channels (p<
0.05) and when using both the left and right chan-
nels (p< 0.01). Second, the classification results from
using all the left and right channels are not signific-
antly different fromwhen using only the left channels
(p> 0.05).

3.2.4. Confusion matrix
From the data analysis, we observe that different kinds
of speech commands have different patterns in brain
activity in EEG acquired during the speech-imagery
task. To further investigate this matter, we obtain the
confusion matrix from the classification result of the
TS + MLELM method averaged across all sessions
(figure 9). The ‘Rest’ class shows the highest true pos-
itive rate in both the ear-EEG (52.0%) and scalp-EEG
(62.6%) methods. Among the four speech-imagery
classes, the ‘Left’ class has the highest true positive
rate in both EEG types (36.5% and 42.1% for ear-
EEG and scalp-EEG, respectively). The ‘Right’ class
trials are misclassified as the ‘Rest’ class most fre-
quently. Another interesting observation from both

confusion matrices is that the samples from the long-
speech commands are most frequently misclassified
as each other. We can also see that the same applies
to the short-speech classes for the ear-EEG, but the
‘Right’ class ismisclassifiedmost frequently as the ‘Go
back’ class in scalp-EEG samples.

3.3. Comparison with methods from previous
studies
To further evaluate the effectiveness of our system,
we compare the classification results of our method
(TS +MLELM) with several methods used in previ-
ous BCI studies (table 2). The mean, std, max, and
min values are taken from the classification results of
all sessions from all subjects. The results show that the
MLELM classifier significantly outperforms all other
classifiers in both ear-EEG and scalp-EEG (p < 0.05),
except for the SVMclassifier in the scalp-EEGmethod
(p = 0.12). When comparing our method with the
FBCSP+ SVM and EEG+ ShallowNet methods, the
results show that both approaches are significantly
inferior to the TS+MLELMmethod (p < 0.01).

In the comparison of the TS + MLELM and
COV + MLELM methods, the result shows that the
TS feature extraction method gives a higher mean
classification accuracy than the COVmethod in both
ear-EEG and scalp-EEG. However, this is not statist-
ically significant (p = 0.15 for ear-EEG and p = 0.13
for scalp-EEG).

3.4. Comparison of classification results between
each session of the experiment
To investigate the effect of training on a user’s per-
formance in the speech-imagery task, we compare
the classification results from all six sessions of all
subjects (figure 10). The results of the statistical test
show that there is no notable improvement in results
between the first and sixth sessions; in fact, there is
no significant change in the results of any pair of ses-
sions (p > 0.2). Furthermore, the result also shows no
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Figure 9. Confusion matrix of the results from the TS+MLELMmethod using (a) ear-EEG and (b) scalp-EEG averaged across
all subjects. The color scale indicates the percentage of samples predicted as each class.

significant change between the first and second ses-
sions of the experiment in a day.

4. Discussion

4.1. Result discussion
The main objective of this study is to examine the
performance of ear-EEG in a speech-imagery-based
BCI system, and the results from this study show that
the performance of the ear-EEG is not inferior to that
of the scalp-EEG in most of the subjects. This sug-
gests that ear-EEG has great potential as an alternat-
ive EEG acquisitionmethod in speech-imagery-based
BCIs.

In an attempt to improve the performance of the
ear-EEG, we have performed the EtoS method. How-
ever, the results indicate that the current approach
to ear-to-scalp feature mapping does not significantly
improve the performance of the ear-EEG. Perhaps, a
better feature-mapping model has to be developed or
more data are needed to properly train the model to
make this method work. More studies are needed to
address this issue.

When examining the confusionmatrix from both
ear-EEG and scalp-EEG, we first find that the ‘Rest’
class has the highest true positive rate. This might be
explained by its distinct patterns in the neural activit-
ies when compared to the other four speech-imagery
tasks. The results also suggest that the ‘Right’ speech
command has the weakest activity in EEG compared
to the other speech commands, which causes it to
be misclassified as the ‘Rest’ class most frequently.
Finally, we find that words with the same number
of syllables are misclassified as each other most fre-
quently. This supports the idea that the number of
syllables in a speech command affects the pattern in
EEG during the speech-imagery process. However,
more extensive experiments are needed to confirm
this hypothesis.

One interesting thing that should also be dis-
cussed is the poor performance of the ShallowNet
method in our data. A possible explanation is that
the features that are based on signal amplitude might
be dominant in speech-imagery tasks. As previously
pointed out in [35], ShallowNet extracts log band-
power as features, which might make it less robust
for such BCI paradigms. Furthermore, the number of
training samples used to evaluate the system in this
study (225 samples, 45 samples for each class) is pos-
sibly too low for the ShallowNet model to be appro-
priately trained.

Finally, the comparisons between the classifica-
tion results from each session indicate that training
does not affect a user’s performance in the speech-
imagery-based BCI system, which supports the idea
that the speech-imagery task is an intuitive men-
tal task that users can perform without any excess-
ive training. This makes the speech-imagery-based
BCI system suitable for daily-life use. In addition, the
insignificant change between the results of the first
and second sessions of each day implies that there is
no sign of user fatigue from the experiment.

4.2. Neural activity in EEG during speech imagery
The data visualization shows that neural activities
in EEG during speech-imagery tasks can be mainly
observed in the brain areas that are associated with
speech and language. The results from both data visu-
alization and feature analysis indicate that these activ-
ities are dominant at high frequency such as in the
gamma band, and show the least activity in the theta
band.

Previous studies have attributed Broca’s area to
language production andWernicke’s area to language
comprehension. This explains our time-frequency
plot for scalp-EEG, where Broca’s area shows activ-
ity at the onset of trials (i.e. subjects start to ima-
gine a speech in their head). It is also understandable
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Figure 10. Comparison of the classification results (% accuracy) between each session of (a) ear-EEG and (b) scalp-EEG setting.
On each box plot, the red central mark is the median, the blue edges are the 25th and 75th percentiles, the black whiskers
represent the most extreme data points and the red crosses are outliers. According to the t-tests, there are no significant
differences between the results from any pair of sessions.

that Broca’s area shows high spectral activity for all
speech-imagery tasks.

Our spectral analysis of subject S04 suggests that
the functions of Wernicke’s area may not be exclus-
ive to the semantic aspects of speech in language pro-
cessing. If Wernicke’s area primarily contributes to
the semantic comprehension of speech, we expect the
single words: ‘Left,’ ‘Right’ and ‘Forward’ to elicit sim-
ilar responses in this region. In contrast, our analysis
shows more similarity between ‘Forward’ and ‘Go
back,’ where ‘Go back,’ a phrase made of two words
with discrete meanings, should have shown some dif-
ferences in the activities inWernicke’s area. The study
in [36] proposes that Wernicke’s area contributes to
phoneme perception. This might explain why speech
imagery of long speeches that contain a greater num-
ber of phonemes and have an interval between two
syllables (or words, in the case of ‘Go back’) displays
similar activities in Wernicke’s area.

In addition to phoneme perception, the rela-
tion between Wernicke’s area and cognitive predic-
tion might also contribute to the neural activity in
Wernicke’s area observed in this study. According to
[37], Wernicke’s area shows activity in response when
making predictions. In our experiment, subjects were
aware of what speech to imagine. Activations in Wer-
nicke’s area might have been the result of subjects
making predictions on what speech to imagine. Thus,
it would be interesting to observe the neural activ-
ity in Wernicke’s area during speech-imagery tasks in
an experimental setting that does not give any prior
knowledge to the subjects on the corpus of speech-
imagery tasks and compare it with the data from this
current study.

Another interesting observation from figure 7 is
that the time-frequency response of the left chan-
nels in ear-EEG and the temporal channels closely
resembles the response in Wernicke’s area. This

suggests that ear-EEG obtained during the speech-
imagery tasks in this study is mainly influenced by the
activity fromWernicke’s area.

We also observe delayed responses in Wernicke’s
area from long speech imagery in the time-frequency
analysis in comparison to short speech. We believe
there are two possible explanations for this obser-
vation. One reason might be due to our experi-
mental protocol. Subjects were given a loading bar
during which they were to pronounce the word in
a stretched-out way. While subjects had no problem
in this experiment protocol for the short speech, the
same might not be said for the long speech. Because
the commands used in long speech-imagery tasks
are bisyllabic, subjects might have stressed one syl-
lable over the other (in the same way as overt speech
production). When we questioned subjects regard-
ing this issue, we found that most of the subjects
indeed focused more on the imagery of the second
syllable. This might have caused higher activation in
EEG from the second syllable compared to the first
syllable, which is shown as a delayed response in
the time-frequency analysis in Wernicke’s area from
long-speech-imagery tasks. Another possible explan-
ation is the unclear division between the two syllables.
With a single loading bar, subjects might have experi-
enced difficulty in maintaining a consistent rhythm
in long speech imagery between trials. Due to dif-
ferent timings between each trial, the slight pause in
between the syllables may have been different each
time. This might have caused lower activity in earlier
parts of speech imagery when we average the trials for
the analysis, which in turn results in delayed activ-
ity. Furthermore, we believe that the increased period
of low neural activity at the beginning of the epoch
from the delayed response inWernicke’s area for long
speech commands causes the PSD values in this area
to be lower when taking the whole EEG epoch into
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the calculation, which consequently results in low
F-values when compared to the ‘Rest’ class as shown
in figure 6.

Additionally, in data visualization, the ‘Right’
class appears to have the weakest response to speech
imagery. One possible explanation is that although
the subjects are fluent in English, the pronunciation
of the letter ‘R’ does not exist in the subjects’ native
language. Therefore, the speech imagery of the word
‘Right’ might not be executed as well as the other
commands, hence the low level of neural activity. We
believe that to properly examine the cognitive mech-
anisms of speech imagery, more extensive studies are
required to examine the differences in the pattern in
neural activity during speech-imagery tasks between
different speech commands, preferably by using bet-
ter brain-monitoring methods such as fMRI.

It should be emphasized that the above discus-
sions on specific features in the brain patterns during
speech-imagery tasks are based on the data visualiz-
ations of subject S04 and more studies are needed to
make general conclusions on the brain activity during
speech imagery.

4.3. Choosing the right speech commands
From the results, we can see that choosing the speech
commands for speech-imagery tasks is one of the
most important things that could affect the perform-
ance of the BCI system. In this work, our choices
are associated with directions, which could be used
in a wide range of applications, such as controlling
a wheelchair or a drone. However, it would not be
wise to select the words based only on their mean-
ing. Words chosen for the speech-imagery-based BCI
should be easily distinguishable in terms of EEG fea-
tures while retaining their meaning to the specific
commands. We believe that more studies are needed
to address this matter to find a set of speech com-
mands that optimizes the performance of speech-
imagery-based BCI.

We previously discussed and hypothesized that
the reason the ‘Right’ speech-imagery task shows the
weakest activity in EEG might be that the pronun-
ciation of the letter ‘R’ does not exist in the sub-
jects’ native language. Following up on this, it would
be interesting to see an experiment comparing the
performance of speech-imagery-based BCI systems
using words from different languages with the same
meaning.

4.4. Remarks on the ear-EEG acquisition tool
The wearable ear-EEG acquisition tool developed in
this study is proven to be successful in acquiring
a meaningful signal from the speech-imagery tasks.
However, some issues need to be discussed to fur-
ther improve the equipment. The results from section
3.2.3 show that using only the left channels is enough
to obtain meaningful EEG data during the speech-
imagery tasks and using the EEG acquired from the

right channels does not significantly improve the
classification accuracy of the system. This supports
the hypothesis that the speech-imagery-related brain
activities are dominant in the left hemisphere and that
the left channels of the ear-EEG can pick up those
signals. However, the reference channel is located on
the right side of the equipment, which might cause
the signal from the right channels to be weaker due
to their proximity. More experiments on the differ-
ent channel setups on the ear-EEG are needed to con-
firm the hypothesis. If the system shows a feasible res-
ult even when all channels, including the ground and
reference channels, are located around the left ear, the
equipment could be redesigned to cover only the area
around the left ear. This may make the equipment
more discreet and comfortable compared to the cur-
rent design.

Furthermore, we found a problemwith the design
of the equipment for participants who wear glasses.
Since the equipment covers the area around the user’s
ears, it is uncomfortable to wear glasses together with
the ear-EEG device. This problem could be solved by
adding a slot on the equipment frame that can be used
to attach the glasses’ temples to the equipment, or
by redesigning the equipment itself in the shape of
glasses with sensors located on the temples.

4.5. Future work
The next step of this work is to test the system
in an online experiment. Here, we only conducted
the experiment in an offline manner and evaluated
the system by using cross-validation on the entire
data to compare the performance between two EEG-
acquisition methods. Because of the process of the
cross-validation method, the models, including the
classifier, the feature selector, and the Riemannian
tangent space projector, were different in each iter-
ation of the cross-validation. We also treated the
data from each session of a subject separately. In a
real-world setting, the cross-validation method will
be performed on the data acquired from an offline
experiment to find the optimized hyperparameters.
The final models will then be trained using the entire
data with the optimized hyperparameters before they
are used (or tested) in a real-world setting.

Despite the fact that the speech-imagery-based
BCI has advantages over other types of BCI, espe-
cially in a daily-life setting, it is not yet ready to
be used in real-life applications, primarily because
of the classification accuracy. According to a sur-
vey conducted on 61 people with ALS in [38], the
majority of participants preferred command classific-
ation accuracy of at least 90%, which unfortunately
could not be achieved by the current development of
speech-imagery-based BCI. Further improvements in
the classification accuracy could be achieved by devel-
oping a more powerful algorithm in the data pro-
cessing, feature extraction method, and classification
model.
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The system also requires improvements in other
aspects. First, most of the current speech-imagery-
based BCI studies, including ours, were conducted in
laboratories that minimize noises from the environ-
ment and the data were acquired while subjects were
sitting still. In a real-life setting, there are a lot more
noises and EEG artifacts from the constant changes
in the environment and the movements of the user.
Therefore, noise-canceling and EEG artifact removal
methods are required to make the system work effi-
ciently. Second, because EEGs are non-stationary
biosignals that could vary over time, environment,
and the condition of the human body, the system
models require calibration every time before each
usage. This issue can be alleviated by using a generic
model [39] or transfer learning (TL) techniques. TL
is a method that improves generalizability inmachine
learningmodels by utilizing knowledge from a source
domain to improve the learning performance of a tar-
get domain [40]. Recent studies showed that TL tech-
niques can improve the performance of models in
speech-imagery-based BCI systems on both a within-
subject and inter-subject basis [40, 41].

In addition, since this study was conducted only
on healthy subjects, it is necessary to repeat the
experiment to confirm that the same results hold for
patients who suffer from LIS or ALS. Furthermore,
it has been shown in MI research that brain signals
from an attempted movement are more similar to
signals from the actual movement than those from
imagined movement [42], possibly due to motor-
inhibitorymechanisms that occur during theMI tasks
[43]. MI-based BCI systems that use the attempted
movement task also outperform systems that use the
MI task [44]. Hence, it would be interesting to con-
duct a study to see a comparison between the brain
signals obtained from the actual, attempted, and ima-
gined speech and their respective performances when
they are used in a BCI system.

5. Conclusion

In this study, we propose a speech-imagery-based BCI
system using ear-EEG as the data acquisition method
with the ultimate goal to construct a good frame-
work for daily-life BCI. The proposed system uses the
Riemannian tangent space projections of EEG covari-
ance matrices as input features with an MLELM to
classify the data. From the data analysis, we find some
evidence indicating that the brain activities in Broca’s
and Wernicke’s areas in the gamma frequency band
are dominant during the speech-imagery tasks. The
results from the multi-class speech imagery experi-
ment show that although scalp-EEG gives a slightly
higher accuracy averaged across all subjects, the clas-
sification result from ear-EEG is not significantly dif-
ferent from scalp-EEG in seven out of ten subjects.
Moreover, mapping the ear-EEG features into the
scalp-EEG feature space using an ELM model does

not significantly improve the classification accuracy
of the system.

Overall, the results from this study show that the
ear-EEG acquisition method has great potential to be
used as a more convenient and discreet alternative
to conventional scalp-EEG for speech-imagery-based
BCI systems. It is recommended that future studies
on speech-imagery-based BCIs should develop more
powerful data processing and machine learning tech-
niques to increase the classification accuracy before
using them in real-life applications.
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