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a b s t r a c t

We present a novel regularization method for a multilayer perceptron (MLP) that learns a regression
function in the presence of noise regardless of how smooth the function is. Unlike general MLP
regularization methods assuming that a regression function is smooth, the proposed regularization
method is also valid when a regression function has discontinuities (non-smoothness). Since a true
regression function to be learned is unknown, we examine a training set with our Bayesian approach
that identifies non-smooth data, analyzing discontinuities in a regression function. The use of a Bayesian
probability distribution identifies the non-smooth data. These identified data is used in a proposed
objective function to fit an MLP response to the desired regression function regardless of its smoothness
and noise. Experimental simulations show that the MLP with our presented training method yields more
accurate fits to non-smooth functions than other MLP training methods. Further, we show that the
suggested training methodology can be incorporated with deep learning models.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

A multilayer perceptron (MLP) is a universal approximator
(Hornik, Stinchcombe, & White, 1989) that has the great abil-
ity to approximate any function. It has been widely used in
many applications such as phenomenological simulations (Ku-
cuk, Manohara, Hanagodimath, & Gerward, 2013; Piliougine,
Elizondo, Mora-López, & Sidrach-de-Cardona, 2013), biological
models (Chamjangali, Mohammadrezaei, Kalantar, & Amin, 2012)
as well as deep learning applications (Raiko, Valpola, & LeCun,
2012) and hybrid system identification (Rolla, Bemporadb, &
Ljunga, 2004; Yang, Wang, Wu, Lin, & Liu, 2015). In both learning
theory and application, training data is generally assumed to con-
tain noise,which implies that theMLP inevitably learns the noise as
well. This makes performances of the MLP undesirable when pre-
sented with unseen data. Analyzed in machine learning commu-
nities, this problem is considered as overfitting; in order to solve
this, various approaches have been proposed (Larsen & Hansen,
1994; Ludwig, Nunes, & Araujo, 2014). Especially, weight-decay or
regularization methods (Connor, 2015; Foresee & Hagan, 1997;
Pinzolas et al., 2006; Sum & Ho, 2009) successfully prevent con-
nectionist models from overfitting. However, these methods as-
sume that a regression function to be learned is smooth and expect
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that a learned MLP output response is smooth. In other words, this
is not appropriate for non-smooth regression functions. Although
researches aimed at overcoming the non-smoothness have been
reported, for example, experiments on noise-free data (Llanas, Lan-
tarón, & Sáinz, 2008), or noisy regression data (Bowman & Pope,
2008; Esposito, Marinaro, Oricchioa, & Scarpetta, 2000), these au-
thors experimented with low-dimensional or small scale datasets,
which is not applicable for generalizing data dimension and size in
most cases.

Our work aims to overcome fitting the MLP response to real-
world regression functions that contain discontinuities in noisy
training data. The proposed regularization method, Approximate
Bayesian Regularization, effectively distinguishes between non-
smoothness and noise in training data. Then, the MLP more
accurately approximates the non-smoothness by avoiding the
presence of noise (Fig. 1 shows an example of the non-smooth
data). Since estimating noise is very challenging, this paper
proposes an alternative estimation through a Bayesian approach.

Our method yields a good fit even to a non-smooth regression
function as well as a smooth function. The proposed regularization
establishes two steps. The first is to successfully find discontinu-
ities in a regression function by identifying non-smooth data in a
noisy training set with probability. Identifying non-smooth data is
based on a Bayesian probability distribution in which the evalu-
ation is computationally feasible. The second is to design the MLP
objective functionwith the identified data such that theMLP yields

http://dx.doi.org/10.1016/j.neunet.2016.07.010
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Fig. 1. Example of non-smooth data in the presence of noise. Training data and
non-smooth data are denoted by black circles and red dots, respectively. The true
regression function is denoted by the red line. Non-smooth data enable us to find
the discontinuities in the regression function. (For interpretation of the references
to color in this figure legend, the reader is referred to theweb version of this article.)

the desired fit to a regression function regardless of its smooth-
ness andnoise. Compared to general regularizationmethodswhich
use the penalized objective function E = Edata + λ1Epen1 where λ1
is a regularization coefficient, and Edata and Epen1 denote a train-
ing error and a smooth penalty error, respectively, we suggest the
novel MLP objective function which can be interpreted as E =

Edata + λ1Epen1 + λ2Epen2 where Epen2 and λ2 denote a non-smooth
penalty error and a non-smooth regularization coefficient, respec-
tively.

To evaluate the performance of the proposed method, we com-
pare its results with the results obtained by using Gauss–Newton
Bayes regularization (GNBR),which is used inOliver, Fuster-Garcia,
Cabello, Tortajada, and Rafecas (2013), the Levenberg–Marquardt
(LM) training (Hagan, Demuth, Beale, & Jess, 2014), and the
Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
training (Apostolopoulou, 2009). The LM training has been widely
used for training anMLP because of its ability of optimization (Wil-
amowski & Yu, 2010); GNBRhas a great regularization ability in the
presence of noise, and has been employed in recent applications
(Chamjangali et al., 2012). The experiments in this study are con-
ductedwith time series predictions, synthetic function approxima-
tions, and real-world regression datasets. Moreover, we show that
our regularization method can be applied to deep learning mod-
els. The remainder of this paper is organized as follows: Section 2
details the proposed learning method, Section 3 presents our ex-
perimental results. Finally, Section 4 concludes this paper.

2. Probabilistic analysis of discontinuities in regression func-
tion

The proposed method first analyzes discontinuities in a
regression function through evaluating a distribution of the change
in a regression function1 by using training set to identify non-
smooth data.2 We find the more striking changes in a function
(i.e., those that largely deviate from the other changes) using
the distribution. To identify the non-smooth data, we model a
probability density function of the change in a regression function,
which provides an analytic form. The next section describes
identifying the non-smooth data that comprise its dataset D̂, and

1 In this paper, the change in a regression function is defined as 1f = f (x+ h)−

f (x) where f is a true regression function.
2 A regression input x∗ and its output data pair (x∗, f (x∗)) are called non-smooth

data if the function slope around f (x∗) is relatively steeper than others.
presents how our approach uses D̂ for fitting the MLP response
to non-smooth data through a proposed objective function and a
Bayesian framework.

2.1. Identifying non-smooth data in training set

We first assume that response data in a training set contains
additive Gaussian noise:

t(i) = f (i)
+ e(i) (1)

where f (i)
= f (x(i)) could be either a linear or nonlinear true re-

gression function. t(i) represents the noisy output data correspond-
ing to an input x(i)

∈ R in a training dataset.3 In the following state-
ment in this subsection, note that t(i) is scaled between zero and
one. i denotes the training data index, 1 ≤ i ≤ N , andN is the num-
ber of training data. The value e(i) denotes Gaussian noise taken
from a random variable4 e(i) that is identically and independently
drawn from a normal distributionN (0, σ 2)with the unknown pa-
rameter σ 2.

As the regression function f is unknown, calculating the exact
change in a regression function is infeasible. Instead, we propose a
novel method to approximate the change in a regression function.
For 1 ≤ i, j ≤ N , let f (i) and f (j) denote a pair of regression function
data with input data x(i) and x(j), respectively. Here, x(i) is the inter-
ested input data for identifying whether the around of f (i) is non-
smooth or not. x(j) is the nearest neighbor point of x(i) among the
training data such that j ≠ i. Since the change in a regression func-
tion between the two points f (i) and f (j) is proportional to the finite
difference approximation df /dx|x=x(i) ≈


f (x(i)

+ h) − f (x(i))

/h,

the change in a regression function has information about the slope
of the true regression function around x(i). The nearest neighbor x(j)

is chosen in the same manner as choosing h being as minimum as
possible.

Observing these principles, we model a probability distribution
and identify non-smooth data. Let 1f(i) be a random variable that
takes the value, 1f(i) = 1f (i), as follows

1f (i) ,


f (i)

− f (j) if x(i) > x(j)

f (j)
− f (i) otherwise

(2)

in which the first case of the definition satisfies the backward
difference and the second case does the forward difference to
ensure the valid approximation without knowledge of h. Further,
we assume that 1f (i) is the population data and that the random
variable 1f(i) is independently and identically drawn from the
normal distribution. Then, for 1 ≤ i ≤ N ,

1f(i) ∼ N (1f̄ , σ 2
1f ) (3)

where the distribution has the mean 1f̄ =

N
i=1 1f (i)


/N , and

variance σ 2
1f =

N
i=1(1f (i)

− 1f̄ )2


/N . With our model in (1),
we consider the noisy change in a regression function random
variable 1t(i) that takes the value

1t(i) = t(i) − t(j) = (f (i)
+ e(i)) − (f (j)

+ e(j))

= 1f (i)
+ e(i)

− e(j) (4)

which is a linear combination of the three random variables: 1f(i)
in Eq. (3), e(i)

∼ N (0, σ 2), and e(j)
∼ N (0, σ 2). Therefore, its

distribution is given as

1t(i) ∼ N (1t̄, σ 2
1t) (5)

3 We first describe our one-dimensional model and explain the multivariate
model later.
4 This paper writes a random variable in roman type and its value in italic.
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where 1t̄ = 1f̄ and σ 2
1t = σ 2

1f + 2σ 2. Because the parameters
1f̄ , σ 2 and σ 2

1f are unknown, we should infer 1t̄ and σ 2
1t using

the training data. By applying the maximum likelihood (ML) es-
timation that asymptotically achieves the Cramėr–Rao bound, the
parameters in (5) are estimated as σ̂ 2

1t =

N
i=1(1t(i) − 1ˆ̄t)2


/N

and 1ˆ̄t =

N
i=1 1t(i)


/N . However, the mean squared error

(MSE) of the variance estimator σ̂ 2
1t is given as

E


σ̂ 2
1t − σ 2

1t

2
= E


σ̂ 2

1t − E[σ̂ 2
1t ]
2

+

E[σ̂ 2

1t ] − σ 2
1t

2
=

2(N − 1)(σ 2
1t)

2

N2
+


(N − 1)σ 2

1t

N
− σ 2

1t

2

(6)

where E[.] denotes the expectation, which is proportional to the
unknown and intrinsic noise variance σ 2 (recall that σ 2

1t = σ 2
1f +

2σ 2). Therefore, theML estimator is not reliable for estimating σ 2
1f .

As an alternative approach to properly deal with the problem
of the effect of the noise variance σ 2, we model the probability
distribution with a Bayes sense. To derive the probability
distribution, let the mean parameter µ = 1t̄ , the precision λ =

(σ 2
1t)

−1, and the likelihood be

p(1t|u, λ) =

 √
λ

√
2π

N

exp


−

λ

2

N
i=1


1t(i) − µ


(7)

where 1t = {1t(1), 1t(2), . . . 1t(N)
}. Further, in terms of

conjugate priors, the prior is given as

p(u, λ) = p(µ|λ)p(λ)

= N (u|u0, (k0λ)−1)Ga(λ|α0, β0)

=

√
k0β

a0
0

√
2πΓ (a0)

λa0−
1
2 exp


−

λ

2
[k0(µ − µ0)

2
+ 2β0]


= N G(u, λ|u0, k0, α0, β0) (8)

in which the distribution for the mean parameter p(µ|λ) is as-
sumed to be the normal distribution N (µ|µ0, (k0λ)−1). The hy-
perprior for precision distribution p(λ) is the Gamma distribution
with a rate parameter, Ga(λ|α0, β0). Γ (x) =


∞

0 sx−1e−sds is the
Gamma function. α0 and β0 are hyperparameters of the precision.
u0 and k0 are those of the mean. As p(u, λ) is the normal-Gamma
distribution, the posterior distribution is evaluated using (8) as

p(u, λ|1t) =
p(1t|u, λ)p(u, λ)

p(1t|u, λ)p(u, λ)dµdλ

∝ λ
1
2 (α0−1) exp


−

1
2
k0λ(µ − µ0)

2
− β0λ


× λ

1
2 exp


−

1
2
λ

N
i=1

(1t(i) − µ)2



∝ N


u
k0µ0 + (N1t̄)

(k0 + N)
,

1
λ(k0 + N)


Ga

×


λ|α0 + N/2, β0 +

N
i=1

(t(i) − 1t̄)2/2

+ [k0N(1t̄ − µ0)
2
]/(2k0 + 2N)


. (9)

Thus, substituting βn = β0+
N

i=1(1t(i)−1t̄)2/2+[k0N(1t̄−
µ0)

2
]/(2k0 + 2N), kn = k0 + N , αn = α0 + N/2 , and un =

[k0µ0 + (N1t̄)]/(k0 + N) into (9), the posterior distribution is a
closed-form expression given as

p(u, λ|1t) = N G(u, λ|un, kn, αn, βn). (10)
To predict whether a new data 1t is non-smooth or not, we
evaluate the posterior predictive distribution

p(1t|1t) = p2an


1t|µn,

βn(kn + 1)
αnkn


(11)

where the derivation comes from p(1t|1t) = p(1t, 1t)/p(1t),
which is T -distribution with 2an degrees of freedom. The
derivations of (10) and (11) are detailed in Murphy (2007). We
decompose the target dataset into two different sets in order to
infer the posterior predictive distribution and a singleton (a unit
set) to be predicted. We make a set 1ti− = 1t − {1t(i)} for
evaluating the distribution in (11) with 1t̄ =

N
i=1 1t(i)


/N .

The singleton {1t(i)} is predicted either to be non-smooth or not.
Finally, training data (x(i), t(i)) and (x(j), t(j)) are contained in the
non-smooth dataset D̂ if 1t(i) is not in the interval [−k, k] where k
is given by k

−k
p2an


1t|µn,

βn(kn + 1)
αnkn


= 0.95. (12)

In a multivariate input case, x = (x1, x2, x3 . . . , xM), we can
approximate the partial derivative

∂t
∂xd


x(i)d

≈
(t(i) − t(j))
∥x(i)

d − x(j)
d ∥

≈ (t(i) − t(j)) = 1t(i) (13)

where i is our interest to identify the non-smooth data and j =

argminq ∥x(i)
−x(q)

∥(∥.∥ denotes Euclidean norm). The1t(i) in the
partial derivative approximation also is the same in (2).

2.2. Non-smooth dataset for training

This section describes how the non-smooth dataset D̂ derived in
the Section 2.1 is used to train anMLP. The proposedMLP objective
function with D̂ is based on a Bayesian assumption, similar to the
model in MacKay (1992),

p(t|x,w, β) =
1
Zβ

exp

−β (t − y(x;w))2


(14)

wherew is an MLP weight vector, Zβ =

exp


−β(t − y(x;w))2


dt , and y(x;w) denotes an MLP scalar output. x = (x1, . . . .xM)
and t denote an input vector and the corresponding target variable,
respectively. The MLP output is given as

y(x;w) =

H
j=1

w
(2)
j g


M
i=1


w

(1)
i,j xi


+ w

(1)
0,j


+ w

(2)
0 (15)

where H and M are the number of the hidden nodes and
the input nodes of the MLP, respectively. g(x) is the sigmoid
function g(x) = 1/(1 + exp(−x)). xi is the ith element of
an input data vector, w

(1)
i,j denotes the weight connecting be-

tween ith input data and jth hidden node, and w
(2)
j denotes the

weight connected to the output node from the jth hidden node.
w

(1)
0,j and w

(2)
0 are bias terms in the input-hidden and hidden-

output layer, respectively. Therefore, the weight vector is en-
coded as w = (w

(1)
0 , w

(1)
1,1, w

(1)
1,2 . . . w

(1)
1,H, . . . w

(1)
M,1, w

(1)
M,2 . . . w

(1)
M,H,

w
(2)
0 , w

(2)
1 , . . . , w

(2)
H ).

The training data are assumed to be independent of each others,
and so their joint probability is given as

p(D|w, β) =

N
i=1

p(t(i)|x(i),w, β) (16)
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where D denotes the training set {(x(i), t(i))}Ni=1. The prior
distribution of w is given as

p(w|α) =
1
Zα

exp


−α


H
j=0

M
i=0

w
(1)
i,j +

H
j=0

w
(2)
j


(17)

where Zα =

exp


−α

H
j=0
M

i=0 w
(1)
i,j +

H
j=0 w

(2)
j


dw.

The proposed objective function is designed with these
distributions and is represented as

E = αEW + βED + ζED̂ (18)

in which ED =
N

i=1(t
(i)

− y(x(i)
;w))2, EW =

H
j=0
M

i=0 w
(1)
i,j +H

j=0 w
(2)
j , and ED̂ =

N ′

i=1(t
(i)

−y(x(i)
;w))2. Here, {(x(i), t(i))}N

′

i=1 =

D̂ andN ′ is the size of D̂. We suggest a probabilistic framework that
evaluates a posterior distribution of the weight

p(w|D, D̂) =


p(w, α, β, ζ |D, D̂)dαdβdζ (19)

where the distribution is assumed to be peaked around αMP , βMP ,
and ζMP . Thus, p(w|D, D̂) is approximated to p(w|αMP , βMP , ζMP ,

D, D̂)

p(α, β, ζ |D, D̂)dαdβdζ . By using Bayes’ rule, the distribu-

tion in the integral is evaluated as

p(α, β, ζ |D, D̂) ∝ p(D, D̂|α, β, ζ )p(α, β, ζ ) (20)

with a flat prior. Taking the integral over the weights of neural
networks w on the proposed distribution, we evaluate the
likelihood in (20),

p(D, D̂|α, β, ζ ) =


p(D|w, β)p(D̂|w, ζ )p(w|α)dw (21)

where p(D̂|w, ζ ) = Z−1
ζ exp


−ζ

N ′

i=1(t
(i)

− y(x(i)
;w))2


, Zζ is a

normalization factor. p(D|w, β) and p(w|α) are as in (16) and (17),
respectively. The distribution in (21) is approximated by Laplace’s
method as

p(D, D̂|α, β, ζ ) ≈ (2π)W/2 det(A)−1/2 exp

−EMP

= πW/2 det(ζHD̂ + βHD + αI)−1/2

× exp

−EMP (22)

in which EMP
= αEMP

W + βEMP
D + ζEMP

D̂
. EMP

W , EMP
D , and EMP

D̂
are computed at the updated MLP weight vector wMP with
Levenberg–Marquardtmethod (the calculation ofwMP is presented
in Appendix A). A = 2(ζHD̂ + βHD + αI) where HD ≈ JTDJD.
JD is the Jacobian matrix of ED whose elements are JD(i,j) =

∂y(x(i∈G)
;w)/∂wj where G = {i|x(i)

∈ D} and wj is one of all W
MLP weights, 1 ≤ j ≤ W . HD̂ ≈ JT

D̂
JD̂ and JD̂ is the Jacobian matrix

of ED̂. Its elements are JD̂(i,j)
= ∂y(x(i∈L)

;w)/∂wj where L = {i|x(i)
∈

D̂}. I and det(A) denote an identity matrix and the determinant
of the matrix A, respectively. We take the partial derivative of the
approximated distribution in (22) to update α in (18) as follows

α =


W −

W
i=1

α

λD
i + λD̂

i + α


2EMP

W (23)

where λD
i and λD̂

i denote eigenvalues of HD and HD̂, respectively. β
is updated by according to

β =


N −

W
i=1

λD
i

λD
i + λD̂

i + α


2EMP

D . (24)
Table 1
Pseudo code for ABR for training MLP.

The weight parameter ζ with respect to ED̂ is updated as

ζ =


N ′

−

W
i=1

λD̂
i

λD
i + λD̂

i + α


2EMP

D̂
. (25)

In (23)–(25), the eigenvalues can be negative since HD and
HD̂ are not computed at the minimum of ED and ED̂. Thus, an
Approximate Bayesian Regularization (ABR) approximates the
solution by setting the negative eigenvalues to zero. The ABR
pseudo-code is summarized in Table 1. The convergence of the
training error with the proposed objective function is proved in
Appendix A.

3. Experimental results

The experimental simulations consist of time series predictions,
synthetic datasets, and real-world regression problems. The
proposedmethod is comparedwith the othermethods, GNBR used
in Oliver et al. (2013), LM in Hagan, Demuth, Beale, and Jess (2014),
and L-BFGS5 employed in Apostolopoulou (2009). The initial MLP
weights are randomly selected from the range [−1, 1] and each
method is evaluated five times with given training data and the
number of the MLP hidden nodes. We provide the same initial
weights for each training method. The MLP architecture given in
(15) is trained with a maximum of 500 epochs. We conduct all
experiments onMatlab 2014. We assume that there is no evidence

5 We implement the L-BFGS training by using the code available at
https://www.cs.ubc.ca/~schmidtm/Software/minFunc.html.

https://www.cs.ubc.ca/%7Eschmidtm/Software/minFunc.html
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for the hyperparameters in (8). Therefore, the prior distribution
of the hyperparameter u0 is zero. α0 is set to be small in order
to ensure that the prior precision is very vague. We also set k0
to a very small value, 10−5, which sufficiently supports the large
uncertainty in u0. Setting β0 is suggested as

β0 = v1 exp


−

v0

N

N
i=1


1t(i)

2
(26)

which is proportional to the degree of the smoothness in training
output data. We empirically found that v1 = 104 and v0 =

170 (note that only synthetic function1 and synthetic function3
in Section 3.2 were used to choose the value of v0, v1. Also, the
hyperparameter β0 could be tuned by either an expert knowledge
or nested cross-validation).

3.1. Time series prediction

The regression functions used in most hybrid system identi-
fication problems (Lauera, Blochb, & Vidalc, 2011) are discontin-
uous. Thus, some of these problems provide a good example of
discontinuous (or non-smooth) regression function. Note that our
experiments focus on time series prediction rather than on hybrid
system identification (i.e., finding submodels in a hybrid system).
The functions used in this experiment are used in the earlier works
(Paoletti, Roll, Garulli, & Vicino, 2010; Yang et al., 2015). Time se-
ries functions in this section either contain a small amount of noise
or are entirely noise-free. These input–output data are modeled by

y(k) = F(y(k − 1), y(k − 2), . . . , u(k), u(k − 1), . . .) + ϵ(k) (27)

where F denotes an MLP, k and ϵ(k) denote the time step and
the noise term, respectively. y and u are time series data and
extra input data, respectively. Time series prediction function1 (TS-
Func1) is obtained by

y(k) = 0.8y(k − 1) + 0.4u(k − 1) − 0.1
+ max{−0.3y(k − 1) + 0.6u(k − 1) + 0.3, 0}. (28)

Time series prediction function2 (TS-Func2) is modeled as

w(k + 1) =




0 sin(w(k)1)
0 λ1


w(k), y(k) = [1 0] × 10

× sin(w(k)) if hTw(k) + v < 0 0 sin(w(k)1)

λ2
h1
h2

λ2 −
h1

h2

w(k)

+


a ∗ e(k)

−0.1 + a ∗ e(k)


,

y(k) = [κ1 − 10] × 10 cos(w(k)) otherwise.

(29)

TS-Func1 and TS-Func2 are obtained from Eqs. (22) and (29) in
the article by Yang et al. (2015) in which details of the variables
are also explained. Other time series prediction functions are
TS-Func3

y(k) =



0.8y(k − 1) − 0.64y(k − 2) − 0.4
√
3u(k − 2)

if y(k − 1) ≥ 0, y(k − 2) ≥ 0
0.64y(k − 2) + 0.4

√
3u(k − 2)

if y(k − 1) < 0, y(k − 2) ≥ 0
0.8y(k − 1) − 0.64y(k − 2) + 0.4

√
3u(k − 2)

if y(k − 1) < 0, y(k − 2) < 0
0.64y(k − 2) − 0.4

√
3u(k − 2)

if y(k − 1) ≥ 0, y(k − 2) < 0.

(30)
TS-Func4

x(k + 1) =




0 1
0 γ1


x(k), y(k) = [1 0]x(k)

if hTx(k) + w < 0 0 1

γ2
h1

h2
γ2 −

h1

h2

 x(k) +


0
0.1


y(k) = [γ1 − 1]x(k) otherwise,

(31)

and TS-Func5

y(k) =



0.4y(k − 1) if 0.72y(k − 1) + 1 < 0,
2y(k − 1) + y(k − 2) + 1 < 0

0 if 0.72y(k − 1) + 1 ≥ 0, 1.8y(k − 1) + 1 < 0,
2y(k − 1) + y(k − 2) + 1 < 0

−0.1 if y(k − 1) = 0, y(k − 2) −
1
9

≤ 0
−0.5y(k − 1) − 0.1
if 2y(k − 1) + y(k − 2) + 0.2 = 0.

(32)

Details of the variables are presented in Eqs. (44)–(46) in
Paoletti et al. (2010). All of these datasets contain non-smooth
data. Fig. 2 shows plots of the regression functions in TS-Func1
and TS-Func2. It also presents a comparison of the performance
of LM, GNBR, L-BFGS, and ABR with 10-fold cross-validation. The
training and validation errors are evaluated by the mean square
error (MSE),

N
i=1(t

(i)
−y(x(i)

;wMP))2/N , where y andwMP denote
the MLP output and the trained MLP weight vector, respectively.

Fig. 3 shows plots of the regression functions in TS-Func3,
TS-Func4, and TS-Func5. It compares the performance of LM, L-
BFGS, GNBR, andABRwith 10-fold cross-validation. Since TS-Func3
includes four-dimensional data, we use principal components to
plot the regression surface. In Figs. 2 and 3, GNBR produces under-
fitted MLP responses of the regression functions because GNBR
yields a smooth output of the MLP. The performance of L-BFGS
is not good to optimize the training error as well as the test
error. ABR yields a best fit to each dataset. In cases with a small
amount of non-smooth data (e.g., in Figs. 2(a) and 3(a) and (b)), the
performance of LM is similar to that of ABR.

3.2. Synthetic datasets

Synthetic datasets are used to evaluate the regularization
process in the MLP architecture. The first simulation denoted by
SF-1 (synthetic function1) considers a regression function given by

f1(x) = 0.5 + 0.4 sin(x) (33)

for which the test dataset is {(x(i), f1(x(i)))}Ni=1, N = 100, and x(i) is
randomly queried within [−3, 3). The training set is {(x(i), t(t))}Ni=1
where t(i) = f1(x(i)) + e(i) and the additive random noise e(i) is
drawn from the normal distributionN (0, 0.22). Fig. 4(a) shows the
test and training set for SF-1. The second simulation denoted by SF-
2 (synthetic function2) is

f2(x) = sin(x)/x (34)

in which case the test dataset is {(x(i), f2(x(i)))}Ni=1, N = 50, x(i) is
randomly queried within [−10, 10]. The training set {(x(i), t(i))}Ni=1
is obtained where t(i) = f2(x(i)) + e(i) with e(i)

∼ N (0, 0.022).
Fig. 4(b) illustrates the test and training set of SF-2. The third
simulation denoted by SF-3 (synthetic function3) is the step-
function

f3(x) =


2 if x < 0
1 otherwise (35)

where the test dataset is generated from x(i)
∈ [−50, 50], 1 ≤ i ≤

100. The training set is acquired by using the test data with the
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Fig. 2. Regression data for time-series functions. (a) TS-Func 1. (b) TS-Func 2. Non-smooth data identified by ABR are denoted by dots. The second and third columns present
the average training mean squared error (MSE) and cross-validated MSE, respectively.
Fig. 3. Regression data for time-series functions. (a) TS-Func 3. (b) TS-Func 4. (c) TS-Func 5. Non-smooth data identified by ABR are denoted by dots. The second and third
columns contain the average training mean squared error (MSE) and cross-validated MSE, respectively.
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Fig. 4. Regression data for synthetic functions. (a) SF-1. (b) SF-2. (c) SF-3.
Fig. 5. Graphical representation of SF-4. (a) Surface of the true regression function. (b) Training data and identified non-smooth data are indicated by blue circles and red
dots, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. SF-3 approximation. MLP response trained by LM, L-BFGS, GNBR and ABR. (a) LM. (b) L-BFGS. (c) GNBR. (d) ABR.
same amount of random noise as in SF-1, as shown in Fig. 4(c). The
synthetic multivariate function4 (SF-4) is

f4(x, y) = 5f4(x)f4(y) − 2, (36)

where f4(x) = 1 if x ≥ 0, f4(x) = 0 if x < 0, f4(y) = 1 if y ≥ 0,
f4(y) = 0 if y < 0. The range of x and y is −10 ≤ x, y ≤ 10.
A total of 441 data points are generated in order to comprise the
test dataset. Gaussian noise e(i)

∼ N (0, 1) is applied to the test
output data {((x(i), y(i)), (f4(x(i), y(i))))}Ni=1 to give the training set
{((x(i), y(i)), f4(x(i), y(i)) + e(i))}Ni=1. Fig. 5(a) shows the test data of
SF-4 and Fig. 5(b) illustrates the training data and non-smooth plot
of SF-4 identified by ABR. Fig. 6 shows the average response and
standard deviation 3σ of the MLP responses of SF-3 trained by LM,
L-BFGS, GNBR, and ABR in Table 3.

For SF-1 and SF-2 experiments, Fig. 7(a) and (b) compare the
MSE of ABR with those of GNBR, LM, and L-BFGS, respectively. As
the number of hidden nodes in the MLP increases, the test error
produced by LM and L-BFGS increases. For both SF-1 and SF-2,
the performance of ABR is equivalent to that of GNBR, as there
is no non-smooth data. (c) Shows a performance comparison for
SF-3. Here, ABR produces the lowest error among the four training
schemes since ABR reflects the error term of the non-smooth data
shown in Fig. 4(c). Fig. 7(d) plots the training and test MSEs of
the four training methods for SF-4. ABR produces the lowest error
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Fig. 7. Synthetic function approximations. Performance comparison of LM, GNBR,
L-BFGS, and ABR. The first and second columns contain the average training mean
squared error (MSE) and test MSE, respectively.

with the identified non-smooth data shown in Fig. 5(b). Table 3
presents the results for the MLP as the lowest training MSE among
the different hidden node settings for each training method. ABR
gives the best generalization error (i.e., the performance for unseen
data) by using the training error. Its error is reportedwith themean
and standard deviation.

3.3. Real-world datasets

We performed experiments on real-world data by selecting
five datasets from the UCI repository (Belsley, Kuh, & Welsch,
2007; Graf, Kriegel, Schubert, Poelsterl, & Cavallaro, 2011; Little,
Table 2
Specification of real-world regression datasets.

Datasets Size Input dimension

Elec (Tüfekci, 2014) 9568 4
Parkinsons (Little et al., 2009) 5875 16
Cooling load (Tsanas & Xifara, 2012) 768 8
Housing (Belsley et al., 2007) 506 13
CT-SLICE (Graf et al., 2011) 53500 385

McSharry, Hunter, & Ramig, 2009; Tsanas & Xifara, 2012; Tüfekci,
2014).

Table 2 summarizes the specifications of the real-world
datasets, ELEC, PARKINSONS, COOLING LOAD, HOUSING and
CT-SLICE. The performance of ABR is compared with that of LM,
L-BFGS, and GNBR by using a 10-fold cross-validation.

Fig. 8 shows the MLP performances trained by LM, L-BFGS,
GNBR and ABR. The results, presented in Fig. 8, show that ABR
generally produces the lowest cross-validated MSE. Even though
L-BFGS often delivers a good training performance in terms of
both the training MSE and cross-validated MSE in small hidden
MLP node settings, it does not guarantee a lower cross-validated
MSE when the larger number of hidden MLP nodes is specified.
In addition, L-BFGS also sometimes yields under-fitting in the
training sets or the unstable performance in the test datasets.
Table 4 lists theMLPs selected on the basis of generating the lowest
training MSE among their hidden nodes setting. The results show
that ABR yields the lowest cross-validation error among the other
training methods for unseen data.

In CT-SLICE which comprises relatively high-dimensional input
data than the other datasets, firstwe train the deepnetwork of 385-
100-50-100-385 layered stacked autoencoder by using L-BFGS.
Then, the first three layers are used as the pre-trained model. The
next 50-10-1 layered architecture are trained by LM, GBNR, L-
BFGS and ABR. Randomly selected 5350 data in CT-SLICE are used.
The output data of CT-SLICE are scaled to a range of 0–100. The
performance of the four training methods is evaluated by using
5-fold cross-validation. Table 5 lists the MLPs trained by the four
methods.

Overall on three kinds of experiments (time series predictions,
synthetic function approximations, and real-world datasets), LM
yields a quite good fit to non-smooth data with no noise presented
in Section 3.1. However, even though it would learn the desired
response, it also includes noise when learning with the synthetic
functions and real-world data. Hence, it causes overfitting as
explained in Sections 3.2 and3.3. On the other hand, GNBR is robust
against the effect of noise so that it reduces overfitting, but it can
result in under-fitting when approximating the non-smooth data,
as explained in Sections 3.1 and 3.3. In general, the performance
of L-BFGS is worse than the performances of LM, GNBR, and ABR,
which is reported in the experiment sections. In contrast, ABR
produces a good fit to both the smooth and non-smooth data
regardless of the effect of noise.

4. Conclusions

This paper introduced ABR as a novel regularization method
designed for non-smooth regression functions. The performance
of ABR was compared to that of LM, GNBR, and L-BFGS with
the various datasets. The proposed method is computationally
efficient; therefore, it can be used in practical applications. The
posterior predictive distribution of our method was analytically
evaluated and shown to be valid in the real-world datasets as
well as synthetic datasets. Our simulation results showed that the
probabilistic assumptions of ABR are suitable for the identification
of non-smooth data and for training the MLP.
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Table 3
Performance comparison of LM, GNBR, L-BFGS and ABR on synthetic datasets.

Training method Model and error Dataset
SF-1 SF-2 SF-3 SF-4

LM
# Hidden nodes 21 17 15 27
Training MSE 0.0248 ± 0.0017 0.0039 ± 9.6310e−004 0.0245 ± 0.0025 0.6239± 0.0194
Test MSE 0.0134 ± 0.0018 0.0126 ± 9.0932e−004 0.0176 ± 0.0025 0.3625± 0.0316

GNBR
# Hidden nodes 21 7 17 27
Training MSE 0.0347 ± 3.7992e−005 0.0087 ± 5.8052e−004 0.0443 ± 2.717e−004 0.9218± 0.0120
Test MSE 0.0037 ± 1.7249e−005 0.0081 ± 0.0012 0.0075 ± 2.8249e−004 0.2041± 0.0118

L-BFGS
# Hidden nodes 15 14 19 29
Training MSE 0.02898 ± 0.0022 0.00671 ± 0.000976 0.0306 ± 0.0014 0.7123± 0.0469
Test MSE 0.0096 ± 0.00227 0.01068 ± 0.00159 0.0114 ± 0.0014 0.2906± 0.0456

ABR
# Hidden nodes 21 7 1 27
Training MSE 0.0347 ± 3.7992e−005 0.0087 ± 5.8052e−004 0.042 ± 7.0617e−009 0.8942± 0.0131
Test MSE 0.0037 ± 1.7249e−005 0.0081 ± 0.0012 0.00071 ± 3.0752e−009 0.1947±0.0062

a MSE is represented as average and standard deviation. The best performance for test dataset is indicated in bold.
Table 4
Performance comparison of LM, GNBR, L-BFGS and ABR on real-world datasets (ELEC, PARKINSONS, COOLING LOAD, and HOUSING).

Training method Model and error Dataset
Elec Parkinsons Cooling load Housing

LM
# Hidden nodes 21 11 25 27
Training MSE 15.8986 ± 0.3248 74.4861 ± 5.0689 0.6261 ± 0.5408 4.9867 ± 6.6989
Cross-validated MSE 16.6746 ± 1.2613 84.7613 ± 5.6860 1.5068 ± 0.7206 0 30.66 ± 10.8380

GNBR
# Hidden nodes 21 11 25 29
Training MSE 15.9743 ± 0.3960 74.8636 ± 5.3027 0.3806 ± 0.1750 0.7073 ± 0.2535
Cross-validated MSE 16.7909 ± 1.3099 84.7818 ± 5.6093 1.0912 ± 0.5795 28.6857 ± 11.2753

L-BFGS
# Hidden nodes 21 11 25 29
Training MSE 5.5877 ± 0.91699 5.4767 ± 0.7181 0.5164 ± 0.9109 0.00018364± 0.00042428
Cross-validated MSE 41.804 ± 23.774 85.0216 ± 296.8121 174.76 ± 1030.3635 20.095 ± 7.2461

ABR
# Hidden nodes 21 11 23 21
Training MSE 15.8733 ± 0.3612 73.2864 ± 4.7014 0.3975 ± 0.1285 5.6021 ± 6.3053
Cross-validated MSE 16.5136 ± 1.2881 81.9557 ± 5.9263 1.1175 ± 0.6042 19.0972 ± 11.3319

a MSE is represented as average and standard deviation. Each MSE is evaluated by 10-fold cross-validation. The best performance for cross-validation is indicated in bold.
Table 5
Performance comparison of LM, GNBR, L-BFGS and ABR with stacked autoencoder
on CT-SLICE.

Training method Training MSE Cross-validated MSE

LM 0.0221 ± 0.00124 0.047 ± 0.01027
GNBR 0.02347 ± 0.00264 0.04021 ± 0.00219
L-BFGS 0.04642 ± 0.00427 0.05302 ± 0.00336
ABR 0.02418 ± 0.00261 0.03742 ± 0.00172

a MSE is represented as average and standard deviation. Each MSE is evaluated by
5-fold cross-validation. The best performance for cross-validation is indicated in
bold.

The proposed method finds the regularization coefficients
without the need of using a validation dataset. The notable
characteristic of ABR is that it fits the MLP response to the desired
response (true regression function) regardless of the effect of noise
for both smooth and non-smooth data points. Moreover, ABR is
able to be used for training a deep learning model and to provide
more accurate regression performances.

The weakness of ABR is that it sometimes converges to a local
optimum of its objective function as shown by the training MSE
for 19 hidden nodes in Fig. 7(c). This is challenging in non-convex
optimization communities. In futurework, properly initializing the
MLP weights or designing a robust optimization method for the
non-convex objective function can be more analyzed.
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Appendix A. Proof of training error convergence in (18)

Let E = E(w) be the objective function in (18),w(k) be a weight
vector of the MLP in kth epoch (0 ≤ k ≤ l) and H(k) be the Hessian
matrix of E at w(k). Then, with Taylor expansion, the objective
function can be approximated as E(w) ≈ Q (w) where

Q (w) = αEW (w(k)) + βED(w(k)) + ζED̂(w(k))

+ (w − w(k))T

α∇EW (w(k)) + β∇ED(w(k))

+ ζ∇ED̂(w(k))


+
1
2
(w − w(k))TH(k)(w − w(k)). (A.1)

To find the minimum of Q , ∇Q (w) = 0 and

∇Q (w) = α∇EW (w(k)) + β∇ED(w(k)) + ζ∇ED̂(w(k))

+H(k)(w − w(k)). (A.2)

In the first epoch, k = 0, β = 1, α = 0, and ζ = 0
according to Step 3 in Table 1. The MLP weight vector is up-
dated as w(k+1)

= w(k)
−

H(k)

−1 
∇EW (w(k))


where H(k)

≈

J(k)TD J(k)D , J(k)D = ∇ED · J(k)D is N byW Jacobianmatrix whose elements
are J(k)D (i,j) = ∂y(xi∈G;w(k))/∂wj and G = {i|xi ∈ D}. By the Lev-
enberg–Marquardt (LM) method (Hagan & Menhaj, 1994), it finds
the LM parameter µ(k) such that H(k)

= J(k)TD J(k)D + µ(k)I is positive-
definite. Thus, w(1) must satisfy E(w(1)) < E(w(0)) if there exists
µ(1) returned by the LM method. In Step 5 in Table 1, the parame-
tersα, β, and ζ are updated as the approximated solution through
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Fig. 8. Real-world datasets (ELEC, PARKINSONS, COOLING LOAD, andHOUSING). Performance comparison of LM, GNBR, L-BFGS, and ABR. The first and third columns contain
the average training mean squared error (MSE). The second and fourth columns present the cross-validated MSE.
(23)–(25). In the following epochs, for k > 0,

wMP
= w(k+1)

= w(k)
−

H(k)−1

×

α∇EW (w(k)) + β∇ED(w(k)) + ζ∇ED̂(w(k))


(A.3)

where H(k)
= α∇

2EW (w(k)) + β∇
2ED(w(k))

+ ζ∇
2ED̂(w(k)) + µ(k)I

= α∇
2EW (w(k)) + β∇

2HD + ζ∇
2HD̂ + µ(k)I

≈ αI + βJ(k)TD J(k)D + ζ J(k)T
D̂

J(k)
D̂

+ µ(k)I

where JD = ∇ED̂ is N ′ by W Jacobian matrix and its elements are
J(k)
D̂(i,j)

= ∂y(xi∈L;w(k))/∂wj where L = {i|xi ∈ D̂}. y(x;w) is ex-

plained in (15). If µ(k) exists such that H(k) is positive-definite sat-
isfying ED(w(k+1)) < ED(w(k)), then w(k+1) is an approximated so-
lution that minimizes (18) with ED(w(k+1)) < ED(w(k)). �
Appendix B. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.neunet.2016.07.010.
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