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Abstract - This paper presents a new algorithm of 
autonomously generating dynamically stable movements 
such as ball kicking through learning from demonstration 
by a humanoid robot. It is based on the framework of 
dynamic movement primitives (DMP) [1, 2] which 
represent a demonstrated movement with a set of different 
equations. By suggesting a modification to take into 
account the dynamic stability condition using the zero 
moment point (ZMP), the framework is extended to enable 
to provide dynamically stable movements which reach 
target positions accordingly. We validate the feasibility of 
our algorithm through the simulation study and 
experiment of ball kicking movements by a humanoid 
robot.  
 

Keywords - Dynamic movement generation, Learning 
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1. Introduction 
 

Methods for learning from demonstrations have been 
intensively investigated by researchers [3-5]. A robot 
reproduces a movement generated by a human. However, 
the cases considering the dynamic stability such as 
balancing are rare [6, 7], especially in highly dynamic 
movements. We address the problem by extending the 
DMP that has been successfully applied to movement 
generations of various robots [1, 2, 8, 9]. The DMP was 
developed by Ijspeert et al. [1, 2], and extended to apply to 
movements in task space and to consider obstacle 
avoidance [8, 9]. The DMP is represented by a set of 
differential equations. To evaluate the dynamic stability of 
a robot, especially in balancing, a popular concept, ZMP, 
is taken in account. Description of a robot’s postural 
movements such as walking based on the ZMP has 
rigorously been studied [10-13]. In this work, we propose 
an approach to embed the dynamic stability in terms of the 
ZMP into the DMP-based movement generation.  

Therefore, dynamically stable movement trajectory can 
be autonomously generated reaching a target position once 
after a principal movement trajectory is learned from 
demonstrations. Dynamically stable and goaled movement  
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generation will enrich robotic application tasks and 
facilitate robot control. 

To evaluate our algorithm, ball kicking movements by a 
Nao humanoid robot (Aldebaran robotics, Inc) are studied 
in both dynamic simulation and experiment. The results 
demonstrate the abilities of the approach. 

 
2. Movement generation 

 
2.1 Foot movement generation 

 
The improved DMP is represented [8, 9] by 
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where  x  and v are position and its velocity; 0x  and g
are the initial and target positions; K and D are gains; t
is a temporal scaling factor; a is a constant; and f is a 
nonlinear adaptive function to generate arbitrary complex 
movements. The nonlinear function is set to be 
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where 2exp( ( ) )i i ia s bf = - -  with parameters ia and

ib , and iw are adjustable weights. s is set to be 1 initially. 

Using demonstrated movements, ( )f s is computed 
from (1) by applying linear regression over the weights [8]. 
Then, the DMP provides movements with new initial and 
target positions or movement speed retaining the 
fundamental pattern of the demonstrate movement. We 
apply DMP to draw kicking foot (end-effecter) position 
trajectories which passes through various targeted ball 
positions accordingly. Given a targeted ball position, g , 
and an initial kicking foot position, (1) drives a desired 
trajectory of the foot position, [   ]T

E E E Ex x y z= . The 

desired trajectory reaches the targeted ball position Bg
while maintain the pattern principally similar to the 
demonstrated foot position trajectory. Furthermore, Ex&& is 

obtained simply through (1) from Ex . 
 

2.2 ZMP-based Pelvis movement generation 
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When a humanoid robot supports its body with a foot 

during movements, it is approximately interpreted as a 
simple inverted pendulum [11-13]. Then, ZMP can be 
described approximately with respect to the center of 
gravity (COG) as follows [12, 13].   

,ZMP COG COG ZMP COG COG
l lx x x y y y
g g

- -&& &&; ;  (3) 

This work assumes that the Pelvis joint movement has a 
major balancing effect in one leg balancing as in previous 
studies [11].  
 

 
Fig. 1. Model 

 
Fig. 1 illustrates our model, and, approximately, COG is 
described by two variables, the Pelvis position and the 
kicking foot position.  

1 2

3 4 5

COG P E

COG P E

x k x k x
y k y k y k

= +

= + +
                        (4) 

where ik  is constant ( 1,..., 4i = ). (4) is modeled under 
the assumption that the robot upper body remains upright 
during kicking a ball. The offset 5k  is added to take into 
account the bent knee posture. 
Plugging (4) into (3), 
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To guarantee stable movement generation, ZMP should 
be constrained to be within a feasible range.                                     
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where ZMPx-  and ZMPx+ ( ZMPy-  and ZMPy+ ) represent, 
respectively, the lower and upper ZMP boundary values 
which allow stable movements. 

With the computed Ex and Ex&& from section 2, and the 
backward difference acceleration approximation of 

2

1( ) ( ( ) 2 ( ) ( 2 ))P P P Px t x t x t t x t t
t

= - -D + - D
D

&& where tD is a 

sampling time,         

1 2 1 2

2

1( ) ( ) ( ( ( )

2 ( ) ( 2 )) ( ))

ZMP P E P

P P E ZMP

lx k x t k x t k x t
g t

x t t x t t k x t x

-

+

£ + - -
D

-D + - D + £&&
       (7) 

Then, 
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At time t , C is computed based on available information. 
To secure robust stability, we choose the targeted Pelvis 
position as an average of the lower and upper boundary 
values in (8). 
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( )Py t , the y component of the Pelvis trajectory, is also 
computed through the similar procedures from (5) to (9). 

( )Pz t , the z component of the Pelvis trajectory is 
computed through the MDP equations ((1), (2)) because 
the ZMP component is not considered. As a result, 

[   ]T
P P P Px x y z= is obtained. The overall procedure 

aims to draw the Pelvis trajectory which is similar to the 
pattern from demonstration, but secured to maintain 
postural stability for new ball positions. 
 

2.3 Movement control 
 

Once the foot and Pelvis position trajectories, Ex and Px , 
are provided , the inverse kinematics is applied to compute 
related joint trajectories which are control commands to 
robot’s joints. The erect upper body posture condition is 
taken into account while computing the reference joint 
trajectories. Appropriate feedforward and feedback 
controllers are required to generate robot movements 
which cope well with the reference trajectories [8, 9].  
 

3. Simulation  
 

We test our proposed method through simulation study 
using the Webots 6 simulator (Cyberbotics, Ltd.) with the 
Nao humanoid robot model. After computing the 
reference joint trajectories, this work uses the control 
system library provided in the simulator. 

Using the humanoid robot simulator, ball kicking 
movements are simulated. We evaluate the autnomous 
generation of dynamically stable kicking movements 
accordingly when different ball positions  are given once 
after a principal kicking movement is learned from 
demonstration. Three different ball positions are selected, 
each kicking movement is computed as in Fig. 2 (a) to (c) 
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respexctively. The demonstrated kicking movement (blue 
line) cannot remain in the stable region bounded by dotted 
lines. The proposed algorithm produces each new kicking 
movement (red line) which satisfies the stable condition.

 

Fig. 2. Generation of three kicking movements ((a),(b),(c)). 
The blue line indicates a principal kicking movement from 
demonstration, and the red line represents a new kicking 
movement to reach a new ball position. Each subplot 
shows the trajectories of , ,  E E Px y x
lines indicate the upper and lower bounds (as in (8)).

 
Fig. 3 illustrates the snapshots to show 

simulations of three kicking movements. Each alphabet (a) 
to (c) corresponds that in Fig. 2. Fig. 4 shows the 
movement trajectories in the x-y planes. The filled circles 
indicate ball positions. Each movement trajectory reaches 
the ball position while maintaining dynamic stability 
conditions.  

The produced trajectories through our algorithm are 
inputted into a Nao humanoid robot to see if stable motion 
generation is implemented. Fig. 5 demonstrates the results.
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Fig. 3. Simulation snapshots of three kicking motions
with different ball target positions.

 

Fig. 4. Three kicking motion trajectorie
 

Fig. 5. Snapshots of humanoid robot movements
 

4. Conclusion
 

(URAI 2010) 

 
Fig. 3. Simulation snapshots of three kicking motions 

with different ball target positions. 

 
. Three kicking motion trajectories in x-y plane. 

 
Fig. 5. Snapshots of humanoid robot movements 

Conclusion 
 



The 7th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI 2010) 
 

This paper addressed a new algorithm of dynamically 
stable movement generation from demonstration by a 
humanoid robot, and evaluated the algorithm through ball 
kicking movement generation. For different targeted ball 
positions, the algorithm generated the stable kicking 
movements of a humanoid robot while passing through the 
targeted posistions. Currently, the orientation information 
is not included. However, counting orientation primitives 
into our algorithm is straightward as in [8]. In this work, 
kicking direction is not restricted. To realize a desired  
kicking direction, further constraints on motion generation 
will be required. Extension of our algorithmn to other 
dynamic movement generations will be attempted in the 
future. 
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