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Abstract - This paper presents a new algorithm of en-

coding dynamic movements through pattern-preserving

optimization by a physical robot. This research follows a

recent robot programming approach called learning from

demonstration in which the motion trajectory is learned

from human demonstrations. The motivation of this work

is to deal with major challenges in learning from demon-

stration such as embodiment mapping, generalization,

adaptation, robustness to perturbations, stability, pattern-

preserving, and parameter tuning. We propose a new

method that can deal with those problems and present

empirical results to support our insistence.

Keywords - learning from demonstration, motion imita-

tion, pattern-preserving optimization

1. Introduction
Realization of flexible and adaptive behaviors for a

robot in new situations is one of the most valuable fea-

tures in designing of service robots. Because it is hard

to preprogram for all possible tasks in robots and those

preprogrammed robots can not adapt in real world situ-

ations where the environments change rapidly. In addi-

tion, in order for robots to be widely used, the program-

ming process has to be easy and intuitive. Hence, re-

cent studies have been focused on learning from demon-

stration [1, 2]. After a human teacher’s demonstration is

recorded, the similar trajectory is reproduced by a robot.

Among those approaches, the dynamic movement primi-

tive (DMP) framework[3, 4] considers imitations that can

be generalized to new objectives, while other methods

has limited ability in terms of generalization.

There are many known issues that should be dealt with

to make this imitation learning practical. 1) Embodiment

mapping problem[5] occurs when joints and links of a

robot can not be directly matched with those of a demon-

strator. 2) Generalization is desirable because users can

not demonstrate all kinds of movements to make a robot

perform various tasks. Learning from demonstration is

not meaningful unless adapted reproductions are possi-

ble. For example, a demonstrated movement should be

appropriately modified according to different start and

goal positions. 3) Adaptation to unseen situations such

as obstacle avoidance is required since it is not possible

for a robot to predict all kind of situations when repro-

ducing trajectories. In addition to adaptation, 4) robust-

ness against perturbations is important because mere re-

production of the demonstrated trajectory would fail to

reach a target position when external force changes the

target position. 5) Stability should be taken into account

for controlling robots for the following reason. If the

robot does not stop at the goal position, the robot could

break target a targeted object or harm humans nearby. 6)

Parameter tuning process should not require engineering

knowledges in order for the framework to be popularly

used. If there is no parameter required to be tuned, robot

programming will be easier. Over the past few years, a

number of studies have been conducted on finding so-

lutions of those issues. One of the recent approaches

is the motion learning method based on Gaussian mix-

ture model (GMM) to ensure generalization, stability, pa-

rameter adaptation and robustness to perturbations [6, 7].

Their methods are able to generalize for unseen contexts.

However, the generalization can be assured only in the

limited region which is defined around the demonstrated

trajectory. The limited generalization is a critical problem

because learning from imitation is feasible only if replays

are generated not in specific contexts but in general con-

texts. Another recent research is based on DMP[8]. They

proposed the modified and extended version of DMP to

ameliorate conventional DMP’s undesired behaviors such

as overshoots. Although it ensures global stability and

generalization, it is hard to find the appropriate parame-

ter and stability and pattern-preserving property can not

be satisfied at the same time.

To master these problems, we present a new frame-

work of motion imitation that is based on the pattern-

preserving optimization. The motion optimization ap-

proach was proposed in the literature[9], and the opti-

mization variables are in joint space. Instead of joint

space trajectories we concern task space trajectories

which directly capture the patterns of a motion. In ad-

dition, we use the second derivatives of a trajectory curve

as a optimization variable, while most of past methods

optimize the position of a trajectory. This is because

the second derivatives can be seen as curvatures in one

dimension, which contain the shape of a trajectory and

are spatially invariant. In this paper, we consider a sim-

ple component of a motion, called the point-to-point mo-

tion, that can be combined to the complex motions. This

simple motion modeling is beneficial since learning from

demonstration concept can be easily applied. The pro-

posed method reproduces simple point-to-point motions

that preserve the demonstrated motions patterns, while

settling the problems mentioned above.

The remaining sections are structured as follows. In

Section II, we propose our method, motion trajectory

morphing(MTM) for one dimensional trajectory, and
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Fig. 1 System Overview

added the obstacle avoidance module. Section III dis-

cuss robustness against spatial and temporal perturba-

tions. The stability and pattern-preserving problem are

considered in Section IV. We show feasibility of our

method empirically in Section V, before conclude this ap-

proach in Section VI.

2. Trajectory Morphing for General
Reproductions

We represent a motion trajectory in operational

space[10] to deal with embodiment mapping problem.

Usually a robot’s movement can be represented with six

dimensions in task space, three dimensions for a posi-

tion of the end effector in the Cartesian coordinate and

the other three for its orientation information. In our

robot experiments, we use inverse kinematics to calcu-

late the appropriate joint angles from the trajectories of

end-effector position and orientation. Since we develop

our method in operational space, we are free from the

embodiment mapping problem.

2.1 System Overview
A single MTM is applicable to a one-dimensional sys-

tem. When the six dimensional operational space is con-

cerned, each dimensional trajectory is morphed by each

MTM. The reproduction procedure of a generalized tra-

jectory is as follows. The human teacher demonstrate a

point-to-point motion kinesthetically, in other words the

teacher holds robot’s arm and move it to perform a spe-

cific motion. Recording the six dimensional trajectories

takes place simultaneously. This can be done either us-

ing a motion capture device or reading encoder values.

When a new start and goal positions are specified, the Al-

gorithm 1 calculates the new trajectory that starts from

the new starting points and ends at the new goal points

with having the similar shapes in the middle of the tra-

jectory. Then we convert the trajectory in task space into

the joint space trajectory using inverse kinematics. The

actual motor control inputs are calculated using PD con-

trollers. The whole procedure is shown in the Fig. 1.

2.2 Motion Trajectory Morphing
In this paper, we assume independence of each di-

mension of a trajectory, so we consider each dimen-

sion’s curve separately.1 We consider the teacher’s

demonstration trajectory which is represented as a

curve(parameterized by time t), dt , t = 0 · · ·T −1 (equiv-

alently d in vector notation). The problem is to find a

pattern preserved curve, xt , t = 0 · · ·T − 1 (equivalently

x in vector notation), for given starting and goal point

constraints, x
′
0 and x

′
T−1, respectively. We define dissim-

ilarity of two curves as a cost function and optimize it to

find a similar curve morphed from the straight line that

crosses from x
′
0 to x

′
T−1.

A. Similarity Metric

The essential feature of imitation learning is to pre-

serve the shape of the demonstrated trajectory. Therefore

an imitating trajectory should have the similar shape with

the demonstrated trajectory. To produce an similar gener-

alized trajectory, we need to measure the similarity of two

trajectories. The similarity of given two curves can be

measured by comparing their second derivatives for the

following reason. The shape of a curve can be captured

by the set of curvatures at each point. For a given curve,

the curvature at a specific point is defined by the rate of

change of the unit tangent vector. By assuming each tra-

jectory dimension is independent, the curvature becomes

effectively the rate of change of its velocity, which is its

second derivative.

B. Dissimilarity of curves

To formulate a form of the optimization problem, we

need to define a cost function. Since the objective is to

find the similar curve, the cost function is defined us-

ing the dissimilarity of curves, the difference of the sec-

ond derivatives. We define the dissimilarity, Dt(d,x), for

given any two curve, d and x by (1).

Dt(d,x) = κdt −κxt , (1)

where κdt and κxt are the second derivatives of the demo

and the objective trajectories at time t, respectively.

The objective is to minimize the cost function as fol-

lowing

min
x∈S

J(x) = min
x∈S

ΣT−2
t=1 Dt(d,x)2 (2)

The first and the last elements of each vector are not used

because the second derivatives can not be defined at the

first and the last points (Note that the summation in (2)

excludes those points).

The trajectories are defined in the specific task space,

and represented as S. It represents not only robot’s physi-

cal boundaries but environmental boundaries such as ob-

stacles. These boundaries can be recognized in advance

to be used as the lower bounds, l and the upper bounds,

u.

C. Algorithm

For a given demo trajectory, d, the optimization of the

cost function (2) finds the similar trajectory, x, starting

1The DMP also assumes the independence of each trajectory dimension,
because it is easier to integrate all dimensional trajectories.
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Algorithm 1 Motion Trajectory Morphing (MTM)

Input: d, x
′
0, x

′
T−1, l, u

1: Initialize x0:T−1 to be the straight line crossing from x
′
0 to x

′
T−1

2: Initialize ε with an appropriate small number
3: set lt and ut according to S

4: Jold(x)← 0
5: T ← trajectory length
6: repeat
7: J(x)← ∑T−2

t=1 Dt(d,x)2, using (1)

8: x← L-BFGS-B(J(x),Jold(x),x
′
0,x

′
T−1, l,u)

9: δ ← |J(x)−Jold(x)|
10: Jold(x)← J(x)
11: until δ ≥ ε
Output: x

from the new start point and heading toward the new goal

point. To fix the boundary points, the optimization runs

with those points excluded. The algorithm for one dimen-

sional MTM is shown in Algorithm 1.

Since the optimization problem is nonlinear and has

the boundary condition, it can be solved by the fa-

mous nonlinear optimization solver, the L-BFGS-B al-

gorithm[11].

Fig. 2 Iterations of the MTM algorithm. The demo trajectory(blue
dots) is the sine curve from 0 to 0. The optimization is done with
the new starting point, 0.8 and goal point, -0.3. The trajectory has
bound (-2,2) for the first half, and (-0.7,0.7) for the second half.
Note that the optimization result was straight line at the beginning
of the iteration (magenta x-marks), but it is morphed continuously
to the similar looking trajectory(red stars) as the iteration goes by,
with satisfying boundary constraints(black crosses).

Figure 2 shows the optimization process for each it-

eration. The demo trajectory is the sine wave. The new

trajectory is generated by MTM for the given new start-

ing point, 0.8 and the new goal point, -0.3. We can see

that the new trajectory meets the boundary constraints

and contains the similar shapes in the curve. This shows

that MTM is generalizable and preserves patterns as well.

However, GMM based approaches has generalization ca-

pability only in the small region that is not far from the

demonstrated area[7]. DMP based approaches can not

satisfy stable generalization and pattern preserving re-

quirement at the same time.2

2Section III discusses about stability of MTM, GMM, and DMP in de-
tail.

Fig. 3 New trajectory calculation

2.3 Obstacle Avoidance
We extend MTM to be capable of obstacle avoidance.

To consider the avoidance behavior, the boundary condi-

tions, L and U are modified as described bellow. (We use

matrix notations of L and U to represent 3D dimensional

boundaries)

If we assume an obstacle as a sphere, we can represent

the obstacle as a tuple (c(1),c(2),c(3),r). c(1), c(2) and c(3)

represent the 3D location of the center of the obstacle and

r is the radius that encloses the obstacle.

If the computed trajectory goes through the obstacle

(blue circles in the Fig. 3), we have two points that are

not collided and adjacent to the collided points. The far-

ther point, measured from the center of the obstacle, is

selected as safe boundary (red squares in the Fig. 3). This

boundary is updated using sphere rotation function (17th

line in the Algorithm 2). Then we call MTM(Algorithm

1) to recompute sub-trajectories(blue triangles in the Fig.

3) with the new boundaries.

Algorithm 2 Obstacle Avoidance (Avoid)

Input: X, D, L, U (c(1),c(2),c(3),r)

1: if X crosses the obstacle (c(1),c(2),c(3),r) then
2: to1

← the time index of the initial cross −1
3: to2

← the time index of the end of the cross +1
4: end if
5: v1← (X(1)

to1
− c(1),X(2)

to1
− c(2),X(3)

to1
− c(3))

6: v2← (X(1)
to2
− c(1),X(2)

to2
− c(2),X(3)

to2
− c(3))

7: n← v1×v2, r1← |v1|, r2← |v2|, rsel ←max(r1,r2)
8: if r1 ≥ r2 then
9: vsel← v1
10: else
11: vsel← v2
12: end if
13: N← to2

− to1

14: θ ← arccos( v1 ·v2
|v1 ||v2 | )

15: Δθ ← θ/N
16: for all 0≤ i≤ N−1 do
17: vrot← Rotaten(vsel,�θi)
18: for all 1≤ j ≤ 3 do
19: if X ( j)

to1
+i ≥ c( j) then

20: L(j)
to1+i← v(j)rot

21: else
22: U(j)

to1+i← v(j)rot
23: end if
24: end for
25: end for
26: Set w to include 2w more points for optimization
27: to1

← to1
−w, to2

← to2
+w

28: for all 1≤ j ≤ 3 do
29: X(j)

to1 :to2
←MTM (D(j)

to1 :to2
, X(j)

to1
, X(j)

to2
, L(j)

to1 :to2
, U(j)

to1 :to2
)

30: end for
Output: X
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Algorithm 3 Remedy for Perturbations (SP)

Input: s, ts, d

1: T
′ ← T − ts

2: x
′
0← xts , x

′
T ′ −1

← x
′
T−1+ s

3: for all 0≤ t ≤ T
′ −1 do

4: d
′
t ← dts+t

5: l
′
t ← lts+t , u

′
t ← uts+t

6: end for
7: x′ ←MTM (d′ , x

′
0, x

′
T ′ −1

, l′ , u′ )

Output: x′

3. Robustness to Perturbations
Perturbations can be classified into spatial perturba-

tions and temporal perturbations[6]. Spatial perturbations

affect the position of the robot in task space and temporal

perturbations are related to the planned motion duration.

Both GMM and DMP based methods are robust to per-

turbations, In this section, we present the algorithm for

robustness to perturbations.

3.1 Spatial Perturbations
Spatial perturbations occur when goal position is

changed after the onset of a motion and yet the trajectory

changes do not require a delay in time. The MTM can be

adapted to spatial perturbations with a minor correction

as follows. Once the spatial perturbations occur after the

onset of a motion, the new MTM is executed with mod-

ified inputs. For example, the perturbation occurred at

the goal in t = ts with the displacement, s. For the new

MTM, we use the new demonstration as dts ,dts+1, · · · ,dT ,

and the new goal position as x
′
T−1+ s. This procedure is

summarized in Algorithm 3.

3.2 Temporal Perturbations
Temporal perturbations occur when the goal position

is changed after the onset of a motion and this results in

a delay to approach the target point. This is almost the

same with spatial perturbations except that the temporal

perturbations require more execution time to finish the

trajectory. The new goal constraint can be met by using

Algorithm 3, but if the generated trajectory requires more

time to reach the target(temporally Perturbed), it might

produce jerky motions. To cope with this problem, the

delay(Δt in Algorithm 4) is calculated so that it is used

in the adaptive PD controller. Algorithm 4 integrates all

modifications mentioned above and designed for actual

robot systems(Fig. 1). (Note that trajectories are repre-

sented as matrices due to multidimensionality.)

4. Stability versus Characteristic
Preserving

Here, we consider stability/pattern-preserving dilemma.

One of the important purposes of the learning from

demonstration is imitation of the demonstrated patterns.

Because if it fails to preserve the essential patterns of the

demonstrated motion, then the reproduced motion is dis-

Algorithm 4 MTM for Robot Movements

Input: D, X0, XT, L, U, tdesired

1: for all 1≤ j ≤ N do
2: X(j) ←MTM (D(j), X(j)

0 , X(j)
T , L(j), U(j))

3: end for
4: if An obstacle exists with position (a,b,c) and radius r then
5: X← Avoid( X, D, L, U, (a,b,c,r) )
6: end if
7: E← InversKinematics(X)
8: Δt← tdesired/T
9: for all 0≤ t ≤ T do
10: if Perturbations then
11: distold ← max1≤ j≤N(E

( j)
t −E( j)

t )
12: s← Perturbation displacement
13: for all 1≤ j ≤ N do
14: X(j)

t:T← SP(s(j), t, D(j))
15: end for
16: Et:T ← InversKinematics(X(j)

t:T)

17: distnew← max1≤ j≤N(E
(j)
t −E(j)

T )
18: Δt← Δt ·distnew/distold
19: end if
20: PDController(Es(t), Δt)
21: end for
Output: Xnew

torted or misrepresented so it can not be regarded as the

imitation. In addition, motion reproducing systems have

to be stable. To represent a complex motion, the sys-

tem synthesizes it from a set of simple point-to point mo-

tions. Each point-to-point motion should approach and

stop at the exact goal position, in order to perform a task

smoothly when combined together. Therefore stability is

also inevitable property of the motion reproducing sys-

tems. Previous methods can not satisfy both of these two

requirements at the same time, and we name this prob-

lem as the stability/pattern-preserving dilemma. In this

section, we describe why our method are free from the

stability/pattern-preserving dilemma.

4.1 Stability at Target
Stability condition at the goal position is considered as

one of the desiderata of the motion generation system[7].

To deal with stability issue in GMM based methods, BM

algorithm[7] is proposed. They provided the conditions

that guarantee asymptotic stability of the generated tra-

jectory, but DMP provides the better solution. If we use

big τ , then the effect of pattern-preserving term is sup-

pressed that ensures to reach the goal position(stability).

However, for MTM, since the optimization process is ex-

ecuted with fixed start and goal position, the reproduced

trajectory is always stable, as long as the demonstrator

provides a stable demonstration.

4.2 Characteristic Preserving
BM[7] satisfies stability requirement, but it provides

stability at the sacrifice of pattern preserving. Outside of

the specific region, its pattern is ignored to satisfy the sta-

bility. DMP is devised to consider both of these features

by coupling two terms, a stable linear dynamic system

and an estimator of the demonstrated trajectory. The ef-

fects of these two terms are controllable by changing a
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parameter, τ . Big τ produces a pattern preserved trajec-

tory but falls short of satisfying stability. Small τ guar-

antees the stability of the trajectory while demonstration

patterns are disappeared around the goal position. So it

is hard to find a good τ and sometimes there is no τ that

satisfies both of those features at the same time(Fig. 4).

However, when we use MTM, pattern information is pre-

served well because the cost function of the optimization

is based on the second derivatives of trajectories. There-

fore the MTM based motion reproducing systems satisfy

stability and pattern preserving without having a param-

eter tuning task. The comparison result is shown in the

Fig. 4.

(a)1D Trajectory, x(t) (b) 1D Trajectory, y(t)

(c) 3D Trajectory, (x(t),y(t),z(t)) (d) 2D Trajectory, (x(t),y(t))

Fig. 4 The demo trajectory(blue circles) was kinesthetically given by
human using Katana arm. For the given new constraints(black dots
and stars), the comparison results are shown. The trajectory gen-
erated by MTM(red crosses) satisfies both the pattern-preserving
property and the stability at the target, while DMP curves put more
weights on only one of them according to the τ values.

5. Experiment Results

For the first part of the experiments, we investigate the

proposed framework through 2D data created by a Tablet

PC, and this experiment is firstly proposed by Khansari-

Zede’s[7] to examine the pattern preserving property. The

demonstration data was created by a normal person with

a Tablet PC, and he chose the new start and goal posi-

tions, obstacle position, and perturbed target positions.

This experiment shows generalization, stability, obstacle

avoidance, and robustness to perturbations of the pro-

posed framework through the computer simulation. We

further describe how we applied the proposed framework

on the physical robot, the Katana arm to validate our

method. Katana arm has six DOF, and the demonstra-

tion was given to the system kinesthetically. Obstacle

positions and perturbed target positions are tracked by a

(a)Demo ’I’ (b)Output1 ’I’ (c)Output2 ’I’ (d)Output3 ’I’

Fig. 5 Generalization Test on Tablet PC. 4 examples are shown.

Blue graphs represent demonstration and the red graphs are repro-

duction results with various start/goal positions.

single camera for simplicity.3 From this physical robot

experiment, we also ensure that our framework has ob-

stacle avoidance and robustness to perturbations in real

robot situations.

The first part of the tablet PC experiment is aimed to

see pattern preserving generalization to new start and tar-

get points (Fig. 5) The demonstration trajectories (Fig.

5(a)) are recorded using the tablet PC by a human, and

that person is asked to select start and end points. Using

these information, our algorithm found generalized tra-

jectories successfully (the three red figures in the Fig. 5).

The second part of of the tablet PC experiment is to vali-

date the Algorithm 2. We followed the similar procedure

with the previous part of the experiment except that the

person is asked to select the position of the obstacle in-

stead of start and end position. The algorithm 2 shows

the capability of obstacle avoidance (Fig. 6(a)). Since

the tablet screen is two dimensional, an obstacle is mod-

eled as a circle instead of a sphere and the Algorithm 2

was modified appropriatly. For three dimensional case,

we can just use the Algorithm 2.

The adaptation algorithm to perturbation is also tested

using the tablet PC (Fig. 6(b)). The perturbation occur-

ring time is set to T/2, and this assumption is released in

the physical robot test.4 At time T/2, the goal point is

changed, and the Algorithm 3 recalculate the rest of the

trajectories (marked as the red triangles in the Fig. 6(b)).

Even if the end point is changed the shape of the trajec-

tories are well preserved.

The simulation results tell us that the proposed algo-

rithms produce the expected results. We further carried

out physical robot experiments to validate our method

in the real world situations. The tasks was the drawing

a letter task which is the same with the tablet PC ex-

periment. But the actual robot experiments consider not

only 3D space movements, but also orientations of the

end-effector. That means that we can reproduce learned

skills in other areas.5 Similar to the tablet PC experi-

ment, we carried out three kinds of experiment with the

Katana arm. The demonstration was given to the robot

by a person’s hand (Fig. 7(a)). If we let the robot know

the start and goal points, then it was able to reproduce

the demo adapted to that situation (Fig. 7(b)). The repro-

3Note that we used a 2D obstacle to simplify the vision system, but the
robot was ran in the 3D space actually.
4The physical robot system uses vision that tracks when perturbation
occurs.
5The drawing a letter task should consider robot hand’s orientation, be-
cause the robot write with a marker on the white board.
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(a)’Obstacle avoidance’ (b)’Adaptation to perturbations’

Fig. 6 6(a): The green crosses represent original trajectories and
the small red circles are the results of obstacle avoidance. Obsta-
cles are represented by the big inner circle(red) and the big outer
circle(cyan) shows the new boundary for optimizations. 6(b): The
perturbation is caused by the change of the goal position. To clarify
the time when the perturbation occurs the graph uses different col-
ors for the trajectories before the perturbation (blue triangles) and
after the perturbation. One can see that the adapted trajectories(red
triangles) are successful in that they preserve demonstration(cyan
bottom-up triangle) pattern and keep following the goal positions.

ductions were successful even if the obstacle was existed

(Fig. 8(a)) and a perturbation is applied to the target (Fig.

8(b)).

(a)Teaching the robot (demonstration)

(b)Imitation with the new start and goal points

Fig. 7 Generalization Test on Robot

(a)Reproduction with obstacle avoidance. The yellow square was placed in
the middle of the new trajectory. The robot successfully avoided the obstacle
and preserved shapes of the demonstrated trajectory

(b)Reproduction with adaptation to the perturbation. The target point is the
yellow square in this experiment. The target point was changed after the
robot had started the reproduction of the demo motion. The robot success-
fully recalculated the adapted trajectory and reached the new target.

Fig. 8 Robustness to Environment Changes

6. Conclusions and Future Works
In this paper, we proposed the new framework for re-

producing generalized motion using the pattern preserv-

ing optimization. We presented several algorithms that

each of them is a submodule of the proposed framework.

The proposed method was shown to be able to deal with

major challenges in learning from demonstration. It can

generalize to new situations without parameter tuning,

and it has adaptation capability to changed environments

such as obstacles and perturbations of a target position.

Our framework was tested through the simulation and

then applied to the physical robot.

We demonstrated generalization of one point-to-point

motion, writing a letter ’I’. Once the robot learns how to

write all the alphabets as a set of separate point-to-point

motions, then the robot can write any combinations of

alphabets in any place.

The proposed framework can be further extended

when we use multi-dimensional curvatures. Since we

assume each trajectory dimension is independent, some-

times the proposed method shows distorted shapes in

terms of orientation If we use multi-dimensional curva-

tures, those effect will be disappeared.
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