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Abstract
This study addresses an image-matching problem in chal-
lenging cases, such as large scene variations or textureless
scenes. To gain robustness to such situations, most previous
studies have attempted to encode the global contexts of a
scene via graph neural networks or transformers. However,
these contexts do not explicitly represent high-level contex-
tual information, such as structural shapes or semantic in-
stances; therefore, the encoded features are still not suffi-
ciently discriminative in challenging scenes. We propose a
novel image-matching method that applies a topic-modeling
strategy to encode high-level contexts in images. The pro-
posed method trains latent semantic instances called topics.
It explicitly models an image as a multinomial distribution of
topics, and then performs probabilistic feature matching. This
approach improves the robustness of matching by focusing on
the same semantic areas between the images. In addition, the
inferred topics provide interpretability for matching the re-
sults, making our method explainable. Extensive experiments
on outdoor and indoor datasets show that our method outper-
forms other state-of-the-art methods, particularly in challeng-
ing cases.

Introduction
Image matching is a long-standing problem in computer vi-
sion. It aims to find pixel-to-pixel correspondences across
two or more images. Conventional image matching methods
(Lowe 2004; Bay et al. 2008; Sattler, Leibe, and Kobbelt
2012) usually involve the following steps: i) local feature de-
tection, ii) feature description, iii) matching, and iv) outlier
rejection. These methods usually involve extracting sparse
handcrafted local features (i.e., SIFT (Lowe 2004), SURF
(Bay et al. 2008), or ORB (Rublee et al. 2011)) and match-
ing them using a nearest neighbor search. Many recent stud-
ies have adopted convolutional neural networks (CNNs) to
extract local features, which significantly outperform the
conventional handcrafted features. However, such methods
sometimes fail in challenging cases, such as illumination
variations, repetitive structures, or low-texture conditions.

To address this issue, detector-free methods (Li et al.
2020; Rocco et al. 2018) have been proposed. These meth-
ods estimate dense feature maps without feature detection
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Figure 1: The main idea of our human-friendly topic-
assisted feature matching, TopicFM. This method represents
an image as a set of topics marked in different colors and
quickly recognizes the same structures between an image
pair. It then leverages the distinctive information of each
topic to augment the pixel-level representation. As shown in
the comparing illustrations above, TopicFM provides robust
and accurate matching results, even for challenging scenes
with large illumination and viewpoint variations.

and perform pixel-wise dense matching. Furthermore, a
coarse-to-fine strategy has been applied to improve the com-
putational efficiency. The strategy finds matches at a coarse
level, and then refines the matches at a finer level. Such
methods (Sun et al. 2021; Wang et al. 2022) produce a large
number of matches, even for repetitive patterns and texture-
less scenes, thus achieving state-of-the-art performance.

However, detector-free methods still have some factors
that degrade the matching performance. First, these meth-
ods cannot adequately incorporate the global context of a
scene for feature matching. Several methods have attempted
to implicitly capture global contextual information via trans-
formers (Sun et al. 2021; Jiang et al. 2021) or patch-level
matches (Zhou, Sattler, and Leal-Taixe 2021), but higher-
level contexts, such as semantic instances, should be effec-
tively exploited to learn robust representations. Second, they
exhaustively search for all features of the entire image area.
Therefore, their matching performance is considerably low
when there are limited covisible regions between images. Fi-
nally, these methods require intensive computation of dense
matching, which increases runtime. Therefore, a more ef-
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ficient model is needed for real-time applications such as
SLAM (Mur-Artal, Montiel, and Tardos 2015).

In this study, we propose a novel detector-free feature
matching method, TopicFM, that encodes high-level contex-
tual information on images based on a topic modeling strat-
egy in data mining (Blei, Ng, and Jordan 2003; Yan et al.
2013). TopicFM models an image as a multinomial distribu-
tion over topics, where a topic represents a latent semantic
instance such as an object or structural shape. TopicFM then
performs probabilistic feature matching based on the distri-
bution of the latent topics. It integrates topic information
into local visual features to enhance their distinctiveness.
Furthermore, it effectively matches features within overlap-
ping regions between an image pair by estimating the covisi-
ble topics. Therefore, TopicFM provides robust and accurate
feature-matching results, even for challenging scenes with
large scale and viewpoint variations.

The proposed method also provides interpretability for
matching results across topics. Fig. 1 illustrates the repre-
sentative topics inferred from the image matching results.
In Fig. 1, the image regions with the same object or struc-
ture are assigned to the same topic. Based on the sufficient
high-level context information in the topic, TopicFM can
learn discriminative features. Therefore, it is able to find the
accurate dense correspondences in the same topic regions.
This approach is similar to the human cognitive system, in
which humans quickly recognize covisible regions based on
semantic information and then search for matching points
in these regions. By applying this top-down approach, our
method successfully detected dense matching points in var-
ious challenging image conditions.

Going one step further, we designed an efficient end-
to-end network architecture to accelerate the computation.
We adopted a coarse-to-fine framework and constructed
lightweight networks for each stage. In particular, TopicFM
only focuses on the same semantic areas between the im-
ages for learning features. Therefore, our method requires
less computation compared to other methods (Sarlin et al.
2020; Sun et al. 2021; Wang et al. 2022) that apply the trans-
former to the whole domain.

The contributions of this study are as follows:

• We present a novel feature-matching method that fuses
local context and high-level semantic information into
latent features using a topic modeling strategy. This
method produces accurate dense matches in challenging
scenes by inferring covisible topics.

• We formulate the topic inference process as a learnable
transformer module. These inferred topics can provide
interpretability for matching results with humans.

• We design an efficient end-to-end network model to
achieve real-time performance. This model processes im-
age frames much faster than state-of-the-art methods
such as Patch2Pix (Zhou, Sattler, and Leal-Taixe 2021)
and LoFTR (Sun et al. 2021).

• We empirically evaluate the proposed method through
extensive experiments. We also provide results on the in-
terpretability of our topic models. Source code for the
proposed method is publicly available.

Related Works
Image Matching The standard pipeline for image match-
ing (Ma et al. 2021) consists of four steps: feature detec-
tion, description, and matching, and outlier rejection. Tra-
ditional feature detection-and-description methods such as
SIFT (Lowe 2004), SURF (Bay et al. 2008), and BRIEF
(Calonder et al. 2010), although widely used in many ap-
plications, require a complicated selection of hyperparame-
ters to achieve reliable performance (Efe, Ince, and Alatan
2021). Twelve years after SIFT, a fully learning-based archi-
tecture, LIFT (Yi et al. 2016), was proposed to address the
hand-crafting issue of traditional approaches. Many stud-
ies (DeTone, Malisiewicz, and Rabinovich 2018; Ono et al.
2018; Dusmanu et al. 2019; Revaud et al. 2019; Bhowmik
et al. 2020; Tyszkiewicz, Fua, and Trulls 2020) also pro-
posed learning-based approaches, which have become dom-
inant in feature detection and description. However, their
methods mainly adopt standard CNNs to learn features from
local context information, which is less effective when pro-
cessing low-textured images.

To address this issue, some studies (Sun et al. 2021; Wang
et al. 2022; Luo et al. 2019, 2020) have additionally con-
sidered global context information. ContextDesc (Luo et al.
2019) and ALSFeat (Luo et al. 2020) proposed a geometric
context encoder using a large patch sampler and deformable
CNN, respectively. LoFTR (Sun et al. 2021) applies trans-
formers with self- and cross-attentions to extract dense fea-
ture maps. Although these methods are technically sound,
they are unable to encode high-level contexts such as objects
or structural shapes. They cannot explicitly represent hid-
den semantic structures in an image and lack interpretability.
However, our method can capture latent semantic informa-
tion via a topic modeling strategy; therefore, our matching
results would be fairly interpretable.

Given two sets of features produced by the detection-and-
description methods, a basic feature-matching algorithm ap-
plies the nearest neighbor search (Muja and Lowe 2014)
or ratio test (Lowe 2004) to find potential correspondences.
Next, the matching outliers are rejected by RANSAC (Fis-
chler and Bolles 1981), consensus- or motion-based heuris-
tics (Lin et al. 2017b; Bian et al. 2017), or learning-based
methods (Yi et al. 2018; Zhang et al. 2019). The outlier re-
jection performance relies heavily on the accuracy of the
trained features. Recently, several studies (Sarlin et al. 2020;
Chen et al. 2021; Shi et al. 2022) employed an attentional
graph neural network (GNN) to enhance the quality of ex-
tracted features. These features were matched with an op-
timal transport layer (Cuturi 2013). As the performance of
these methods depends on the features of the detector, these
methods cannot guarantee robust and reliable performance.

Motivated by the above observation, several studies
(Zhou, Sattler, and Leal-Taixe 2021; Sun et al. 2021; Wang
et al. 2022; Jiang et al. 2021) have proposed an end-to-
end network architecture that performs image matching in a
single forward pass instead of dividing separate steps. The
network directly processed dense feature maps instead of
extracting sparse feature points. Several studies applied a
coarse-to-fine strategy to process the dense features of a
high-resolution image efficiently. Patch2Pix detects coarse
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matches in low-resolution images and gradually refines them
at higher resolutions. Similarly, other coarse-to-fine meth-
ods (Sun et al. 2021; Jiang et al. 2021; Wang et al. 2022)
learn robust and distinctive features using transformers and
achieve state-of-the-art performance. However, these meth-
ods remain inefficient when propagating global context in-
formation to the entire image region. We argue that the invis-
ible regions between an image pair are redundant and may
cause noise when learning the features with transformers.
Therefore, we propose a topic modeling approach to utilize
adequate context cues for learning representations.

Interpretable Image Matching The interpretability of vi-
sion models has recently been actively researched (Zhou
et al. 2016; Selvaraju et al. 2017; Bau et al. 2018; Chefer,
Gur, and Wolf 2021). It aims to explain a certain decision or
prediction in image recognition (Williford, May, and Byrne
2020; Wang et al. 2021), or deep metric learning (Zhao
et al. 2021). In image matching, the detector-based meth-
ods (Förstner, Dickscheid, and Schindler 2009; Lowe 2004)
can estimate interpretable feature keypoints such as corners,
blobs, or ridges. However, detected features do not represent
spatial or semantic structures. Otherwise, existing end-to-
end methods only extract dense feature maps using the local
context via CNNs (Zhou, Sattler, and Leal-Taixe 2021) or
global context via transformers (Sun et al. 2021; Wang et al.
2022). However, these approaches cannot explicitly describe
the details of the observed context information; therefore,
their results lack interpretability.

The human cognitive system quickly recognizes covisible
regions based on high-level contextual information, such as
objects or structures. It then determines the matching points
in the covisible regions. Inspired by this cognitive process,
we designed an end-to-end model that is human-friendly. It
categorizes local structures in images into different topics
and uses only the information within topics to augment fea-
tures. Moreover, our method performs interpretable match-
ing by selecting important topics in the covisible regions of
the two images. To the best of our knowledge, our method
is the first to explicitly introduce interpretability to an image
matching task.

Semantic Segmentation Various deep learning models
for semantic segmentation have been introduced, such as
fully convolutional networks (Long, Shelhamer, and Dar-
rell 2015), encoder-decoder (Yuan, Chen, and Wang 2020),
R-CNN-based (He et al. 2017), or attention-based models
(Strudel et al. 2021). Unlike semantic segmentation, our
topic modeling does not strictly detect semantic objects.
However, it can effectively exploit the local structures or
shapes, which benefits learning pixel-level representation
for feature matching. Moreover, the topics can be trained in
a self-supervised manner without requiring a large amount
of labeled training data, as in semantic segmentation.

Proposed Method
Coarse-to-Fine Architecture
This study addresses the feature-matching problem of an
image pair. Let FA and FB be the feature maps extracted

from images IA and IB , respectively. Our objective is to
find accurate and dense matching correspondences between
two feature points, fA

i ∈ FA and fB
j ∈ FB . We employ

a coarse-to-fine architecture (Sun et al. 2021) that trains a
feature-matching network end-to-end. This architecture es-
timates coarse matches from low-resolution features and re-
fines the matches to a finer level. This approach makes it
possible to perform feature matching of high-resolution im-
ages in real time while preserving the pixel-level accuracy.

Fig. 2 depicts the proposed architecture for feature match-
ing, which is composed of three steps: i) feature extrac-
tion, ii) coarse-level matching, and iii) fine-level refinement.
The feature extraction step generates multiscale dense fea-
tures through a UNet-like architecture (Lin et al. 2017a). Let
{FA

c , FB
c } and {FA

f , FB
f } be pairs of coarse- and finer-lever

feature maps of an image pair {IA, IB}, respectively. The
coarse matching method estimates the matching probabil-
ity distribution of {FA

c , FB
c } using a topic-assisted match-

ing module, TopicFM. It then determines coarse correspon-
dences based on the probability distribution (see the next
section). The last stage refines the coarse matches to a finer
level with high-resolution features {FA

f , FB
f }. We adopted

the matching refinement method of LoFTR directly (Sun
et al. 2021). For each coarse match (i, j), the method finds
the best matching coordinate in FB

f by measuring the simi-
larities between a feature point FA

f,i ∈ FA
f for all features of

the cropped patch at FB
f,j ∈ FB

f .

Topic-Assisted Feature Matching
Probabilistic Feature Matching The coarse feature maps
FA
c , FB

c can be regarded as a bag-of-visual-words (Sivic
and Zisserman 2003; Csurka et al. 2004), where each fea-
ture vector represents a visual word. Let mij be a random
variable that indicates an event in which the ith feature FA

c,i

is matched to the jth feature FB
c,j . Given two feature sets

{FA
c , FB

c }, our goal is to estimate the match distribution of
all possible matches M = {mij} (Bhowmik et al. 2020):

P (M | FA
c , FB

c ) =
∏

mij∈M

P
(
mij |FA

c , FB
c

)
(1)

The matches with high match probability P
(
mij |FA

c , FB
c

)
are selected as the coarse correspondences. Existing meth-
ods (Bhowmik et al. 2020; Sun et al. 2021; Sarlin et al.
2020) directly infer the matching probabilities using Soft-
max (Bhowmik et al. 2020), Dual-Softmax (Sun et al. 2021),
or optimal transport with Signkhorn regularization (Sarlin
et al. 2020). Unlike these methods, TopicFM incorporates
the latent distribution of topics to estimate the matching dis-
tribution.

To solve the matching problem of Eq. 1, our method in-
fers a topic distribution for each feature point (Eq. 3). It then
estimates a matching probability conditioned on topics for
each matching candidate (Eq. 4). A sampling strategy is em-
ployed to calculate this probability (Eq. 6 and Eq. 7). Finally,
our method selects the coarse matches from the candidates
using probability thresholding.
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Figure 2: Overview of the proposed architecture. (a) Our method first extracts multilevel feature maps. (b) Next, the method
finds coarse matches from low-resolution features. It infers a topic distribution via a cross-attention layer with topic embeddings.
It then samples topic labels of each feature point and augments the features with self/cross attention layers. The coarse matches
are determined by estimating a matching probability with dual-softmax. (c) Finally, our method refines the coordinates inside
the cropped patches at high resolution.

Topic Inference via Transformers We assume that the
structural shapes or semantic instances of the images in a
specific dataset can be categorized into K topics. Therefore,
each image can be modeled as a multinomial distribution
over K topics. The probability distribution of the topics was
assigned to each feature point.

Let zi and θi be a topic indicator and topic distribution for
feature Fi, respectively, where zi ∈ {1, . . . ,K} and θi,k =
p (zi = k | F ) are the probabilities for assigning Fi to topic
k. We represent topic k as an embedding vector, Tk, which
is trainable. To estimate θi, our method infers the local topic
representations T̂k from the global representations Tk using
transformers:

T̂k = CA(Tk, F ) (2)

where CA(Tk, F ) is the cross-attention layer between
queries Tk, keys F , and values F . This function collects
relevant information from an image of each topic. Finally,
the topic probability θi,k is defined as the distance between
feature Fi and individual topics T̂k as follows:

θi,k =
⟨T̂k, Fi⟩∑K
h=1⟨T̂h, Fi⟩

(3)

Topic-Aware Feature Augmentation This section de-
scribes the computation of Eq. 1 using inferred topics. We
augment the features based on the high-level contexts of
topics to enhance their distinctiveness. The augmented fea-
tures are then used to estimate matching probability more
precisely. Given a feature point pair (FA

c,i, F
B
c,j), we define

an assigned topic of zij as a random variable zij ∈ Z =
{1, 2, . . . ,K,NaN}. If zij = k (k = 1, . . . ,K), the pair
belongs to the same topic k. Otherwise, zij = NaN in-
dicates that FA

c,i and FB
c,j do not belong to the same topic;

therefore, they are highly unmatchable.
We define zij as a latent variable for computing the

matching distribution in Eq. 1 as follows:

logP
(
M | FA

c , FB
c

)
=

∑
mij∈M

logP
(
mij | FA

c , FB
c

)
=

∑
mij∈M

log
∑
k∈Z

P
(
mij , zij = k | FA

c , FB
c

)
(4)

To compute Eq. 4, we approximated this equation with an
evidence lower bound (ELBO):

LELBO =
∑
mij

∑
k∈Z

P (zij = k | Fc) logP (mij | zij , Fc)

=
∑
mij

Ep(zij) logP
(
mij | zij , FA

c , FB
c

)
(5)

where P
(
mij |zij , FA

c , FB
c

)
refers to the matching proba-

bility conditioned on topic zij . Eq. 5 can be estimated by
applying Monte-Carlo (MC) sampling, as follows:

LELBO =
∑

mij∈M

1

S

S∑
s=1

logP
(
mij | z(s)ij , FA

c , FB
c

)
(6)

z
(s)
ij ∼ P

(
zij | FA

c , FB
c

)
(7)

where S is the number of samples (S ≪ K). This sam-
pling approach improves computational efficiency because it
is unnecessary to iterate all K topics to compute the expec-
tation in Eq. 5. Finally, the problem is reduced to the com-
putation of the topic distribution P (zij | FA

c , FB
c ) and the

conditional matching distribution P (mij | z(s)ij , FA
c , FB

c ).

Topic Distribution We estimate the distribution of zij by
factorizing it into two distributions of zi and zj as follows:

P (zij = k | FA
c , FB

c ) =

P (zi = k | FA
c )P (zj = k | FB

c ) = θAi,kθ
B
j,k (8)
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where θAi,k, θBj,k are computed using Eq. 2 and Eq. 3.
This represents the probability of assigning feature pair
{FA

c,i, F
B
c,j} to a specific topic k ∈ {1, . . . ,K}. The prob-

ability of being in at least one topic is calculated as follows:

P (zij ∈ {1, . . . ,K} | FA
c , FB

c ) =
K∑

k=1

θAi,kθ
B
j,k (9)

Otherwise, the probability of not being on the same topic is
calculated by

P (zij = NaN | .) = 1−
K∑

k=1

P (zij = k | .)

= 1−
K∑

k=1

θAi,kθ
B
j,k

(10)

In summary, the topic distribution for each pair of features
was determined as follows:

P (zij = k | Fc) =

{
θAi,kθ

B
j,k k ∈ {1. . .K}

1−
∑K

k=1 θ
A
i,kθ

B
j,k k = NaN

(11)
We can sample z

(s)
ij from this distribution by sampling z

(s)
i

and z
(s)
j from θAi and θBj separately based on the indepen-

dent and identically distributed (i.i.d.) assumption:

z
(s)
ij =

{
k if z

(s)
i = z

(s)
j = k

NaN if z
(s)
i ̸= z

(s)
j

(12)

Conditional Matching Distribution After sampling, we
classified a pair of features into topics. Let FA,k̃

c ⊂ FA
c

and FB,k̃
c ⊂ FB

c be a set of features sampled with topic
k̃ = z

(s)
ij . These features are augmented to improve their dis-

tinctiveness by applying self- and cross-attentions (SA and
CA) of the transformer (Sarlin et al. 2020; Sun et al. 2021):

F̂A,k̃
c,i ← SA

(
FA,k̃
c,i , FA,k̃

c

)
, F̂B,k̃

c,j ← SA
(
FB,k̃
c,j , FB,k̃

c

)
F̂A,k̃
c,i ← CA

(
FA,k̃
c,i , FB,k̃

c

)
, F̂B,k̃

c,j ← CA
(
FB,k̃
c,j , FA,k̃

c

)
This augmentation learns powerful representation by con-
sidering adequate context information inside the topic k̃. Fi-
nally, the matching probability conditioned on topic z

(s)
ij in

Eq. 6 is determined by computing the feature distance and
normalizing it with a dual-softmax (Sun et al. 2021):

P (mij | z(s)ij = k̃, FA
c , FB

c ) = DS
(
⟨F̂A,k̃

c,i , F̂B,k̃
c,j ⟩

)
(13)

To reduce redundant computation, we only augmented the
features with covisible topics. Covisible topics were deter-
mined by comparing the topic distributions of the two im-
ages. The topic distribution in an image is estimated by ag-
gregating the distributions of all features:

θAk ∝
∑|FA

c |
i=1 θAi,k, θBk ∝

∑|FB
c |

j=1 θBj,k (14)

where ∝ denotes the normalization operator. We then calcu-
lated the covisible probability by multiplying the two topic
distributions as θV is

k = θAk θ
B
k . Finally, the most important

topics were selected as the covisible topics for feature aug-
mentation based on probability.

Implementation Details
Efficient Model Design To achieve a fast computation, we
designed an efficient lightweight network for each coarse-to-
fine step. For feature extraction, we applied a standard UNet
instead of ResUnet, as in other methods (Zhou, Sattler, and
Leal-Taixe 2021; Sun et al. 2021). In the coarse matching
step, TopicFM uses a single block of self/cross-attention and
shares it across topics to extract the features. This operation
is applied only to covisible topics; therefore, it is more effi-
cient than methods that use a multi-block transformer (Sun
et al. 2021; Wang et al. 2022). Finally, in the fine matching
step, our method applies only a cross-attention layer instead
of both self- and cross-attention, as in LoFTR

Training Loss The loss function is defined as L = Lf +
Lc, where Lf and Lc are fine- and coarse-level losses, re-
spectively. We directly adopted the fine-level loss Lf of
LoFTR (Sun et al. 2021). It considers l2 loss of fine-level
matches with the total variance on a cropped patch.

For coarse-level loss Lc, we define a new loss function
considering the topic model. Given a set of ground truth
matches Mc at a coarse level, we label each ground truth
pair as one. The loss for the positive samples has the follow-
ing form.

Lpos
c = −

∑
mij∈Mc

(
Ep(zij) logP (mij | zij , FA

c , FB
c )+

+ log

K∑
k=1

θAi,kθ
B
j,k

)
(15)

where the first term represents the ELBO loss estimated by
Eqs. 6 and 7, and the second term is used to enforce the pair
on the same topic, which is derived from Eq. 9.

We also needed to add a negative loss to prevent the as-
signment of all features to a single topic. For each ground
truth match mij , we sampled N unmatched pairs {min}Nn=1
and then defined the negative loss using Eq. 10:

Lneg
c = −

∑
mij

(
1

N

N∑
n=1

log
(
1−

K∑
k=1

θAi,kθ
B
n,k

))
(16)

The final coarse-level loss involves these positive and nega-
tive terms, Lc = Lpos

c + Lneg
c

Experiments
Settings and Datasets
Training We trained the proposed network model on the
MegaDepth dataset (Li and Snavely 2018), in which the
highest dimension of the image was resized to 800. Com-
pared with state-of-the-art transformer-based models (Sarlin
et al. 2020; Sun et al. 2021) (e.g., LoFTR (2021) requires
approximately 19GB of GPU), our model is much more ef-
ficient. Therefore, we used only four GPUs with 11GB of
memory to train the model with a batch size of 4. We imple-
mented our network model in PyTorch, with an initial learn-
ing rate of 0.01. For the network hyperparameters, we set
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Method Homo. Est.
AUC (%) #M

3px 5px 10px
D2Net (2019) + NN 23.2 35.9 53.6 0.2K
R2D2 (Revaud et al. 2019) + NN 50.6 63.9 76.8 0.5K
DISK (2020) + NN 52.3 64.9 78.9 1.1K
SP (2018) + SuperGlue (2020) 53.9 68.4 81.7 0.6K
Sparse-NCNet (2020) 48.9 54.2 67.1 1.0K
DRC-Net (Li et al. 2020) 50.6 56.2 68.3 1.0K
Patch2Pix (2021) 59.3 70.6 81.2 0.7K
LoFTR (Sun et al. 2021) 65.9 75.6 84.6 1.0K
TopicFM (Ours) 67.3 77.0 85.7 1.0K

Table 1: Evaluation of homography estimation on HPatches
(Balntas et al. 2017). We compute AUC metrics follow-
ing Sun et al. (2021). #M denotes the number of estimated
matches

Method
Relative Pose Estimation
(MegaDepth / ScanNet)
5o 10o 20o

SP + SuperGlue 42.2/16.16 61.2/33.81 76.0/51.84
DRC-Net⋆ (2020) 27.0/7.69 43.0/17.93 58.3/30.49
Patch2Pix⋆ (2021) 41.4/9.59 56.3/20.23 68.3/32.63
LoFTR⋆ (2021) 52.8/16.88 69.2/33.62 81.2/50.62
MatchFormer⋆ (2022) 52.9/- 69.4/- 82.0/-
TopicFM⋆ (ours) 54.1/17.34 70.1/34.54 81.6/50.91

Table 2: Evaluation of relative pose estimation on
MegaDepth and ScanNet. We use models trained only on
MegaDepth for the coarse-to-fine methods denoted by ⋆

the number of topics K to 100, threshold of coarse match
selection τ to 0.2, and number of covisible topics for feature
augmentation Kco to 6.

We evaluated the image-matching performance on three
application tasks: i) homography estimation, ii) relative pose
estimation, and iii) visual localization. All of these exper-
iments used the pre-trained model of MegaDepth without
fine-tuning. However, some hyperparameters, including τ
and Kco can be modified during testing.

Benchmark Performance

Homography Estimation The homography matrix be-
tween two images can be estimated by matching correspon-
dences using the algorithm (Hartley and Zisserman 2003).
We used the HPatches dataset (Balntas et al. 2017) to esti-
mate the homography matrices. For each image pair, we first
warped the four corners of the first image to the second im-
age based on the estimated and ground-truth homographies.
We then computed the corner error between the two warped
versions (DeTone, Malisiewicz, and Rabinovich 2018). The
error was measured using the AUC metric with thresholds of
3, 5, and 10 pixels (Sarlin et al. 2020). To report the results,
we followed the same setup as in LoFTR. Table 1 shows
the homography estimation performance of our method and
the state-of-the-art methods. Our method generally outper-
formed other methods, demonstrating its effectiveness

Figure 3: Qualitative comparison between our method and
other coarse-to-fine methods Patch2Pix and LoFTR. Our
method can produce a high number of accurate correspon-
dences in challenging conditions such as large relative view-
points (MegaDepth) or untextured scenes (ScanNet).

Method Day Night over-
all(0.25,10o)/(0.5,10o)/(1.0,10o)

ISRF (2020) 87.1/94.7/98.3 74.3/86.9/97.4 89.8
KAPTURE + R2D2
+ APGeM (2020) 90.0/96.2/99.5 72.3/86.4/97.9 90.4

SP + SuperGlue 89.8/96.1/99.4 77.0/90.6/100 92.1
Patch2Pix (2021) 86.4/93.0/97.5 72.3/88.5/97.9 89.2
LoFTR (2021) 88.7/95.6/99.0 78.5/90.6/99.0 91.9
TopicFM (Ours) 90.2/95.9/98.9 77.5/91.1/99.5 92.2

Table 3: Evaluation of visual localization on Aachen Day-
Night v1.1 (Zhang, Sattler, and Scaramuzza 2021). We re-
port the results using HLoc pipeline (Sarlin et al. 2019)

Relative Pose Estimation To evaluate the image-
matching performance, we measured the accuracy of the
transformation matrix between the two images. We tested
outdoor (MegaDepth (Li and Snavely 2018)) and indoor
(ScanNet (Dai et al. 2017)) datasets. Each test set includes
1500 image pairs of images. We set the image resolution to
640 × 480 for ScanNet and resized the highest dimension
of the image to 1200 for MegaDepth. Similar to (Sarlin
et al. 2020; Sun et al. 2021), we measured the area under
the cumulative curve (AUC) of the pose estimation error at
thresholds of {5o, 10o, 20o}.

Table 2 shows the AUC results for both MegaDepth and
ScanNet datasets. To make a fair comparison on ScanNet,
we used models trained only on MegaDepth for all the
coarse-to-fine methods. As shown in Table 2, our method
performed better than the other coarse-to-fine baselines
for all evaluation metrics. Compared with SuperPoint (SP)
(DeTone, Malisiewicz, and Rabinovich 2018) + SuperGlue
(Sarlin et al. 2020), our method had a worse performance
only at 20o of AUC on the ScanNet. The main reason for
this is that SuperGlue is trained directly on the ScanNet.
However, TopicFM was still better than SP+SuperGlue. We
provide a detailed comparison with additional baselines for
ScanNet in the Supplementary Material.
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Figure 4: Topic visualization across images and datasets. Our method can model a specific kind of structure by a topic that then
supports the matching process effectively, as described in the method section.

Method DUC1 DUC2 over-
all(0.25,10o)/(0.5,10o)/(1.0,10o)

ISRF (2020) 39.4/58.1/70.2 41.2/61.1/69.5 56.6
KAPTURE (2020) +
R2D2 (2019) 41.4/60.1/73.7 47.3/67.2/73.3 60.5

SP + SuperGlue 49.0/68.7/80.8 53.4/77.1/82.4 68.6
Patch2Pix (2021) 44.4/66.7/78.3 49.6/64.9/72.5 62.7
LoFTR (2021) 47.5/72.2/84.8 54.2/74.8/85.5 69.8
CoTR (2021) 41.9/61.1/73.2 42.7/67.9/75.6 60.4
MatchFormer (2022) 46.5/73.2/85.9 55.7/71.8/81.7 69.1
TopicFM (Ours) 52.0/74.7/87.4 53.4/74.8/83.2 70.9

Table 4: Visual localization on InLoc dataset (Taira et al.
2018) using HLoc pipleline. We achieve best performance
in overall.

Visual Localization Unlike relative pose estimation, vi-
sual localization aims to estimate a camera pose for each
image in a global coordinate system; however, it involves
several steps. First, the pipeline builds a 3D structure of the
scene from a set of database images. Next, given an input
query image, it registers this image into the database and
finds a set of 2D-3D matches that are then used to output
the pose of the query image. Finding correspondences plays
an important role in these steps. Therefore, we plugged the
matching method into a visual localization pipeline to evalu-
ate the matching performance. Following Patch2Pix, we use
a full localization pipeline with HLoc (Sarlin et al. 2019).
The benchmark datasets were the Aachen Day-Night v1.1
containing outdoor images and the InLoc dataset with in-
door scenes.

Tables 3 and 4 present the results for the Aachen v1.1
(Zhang, Sattler, and Scaramuzza 2021) and InLoc (Taira
et al. 2018) datasets, respectively. Our method achieved
competitive performance on both benchmarks compared
with state-of-the-art baselines. As shown in Table 3, Top-
icFM had a similar overall performance to SP+SuperGlue.
SP and SuperGlue are trained by leveraging different types
of datasets with various shapes and scenes, such as MS-
COCO 2014 (Lin et al. 2014) (SP), synthetic shapes (SP),
and MegaDepth (SuperGlue). Compared with the second-

best LoFTR method, our overall result was slightly better.
The main reason for achieving a satisfactory performance
of LoFTR is that it was fine-tuned by augmenting the color
images of MegaDepth to fit the nighttime images. In con-
trast to all the aforementioned setups, our method uses only
a unified model trained on MegaDepth. This demonstrated
the robustness of the proposed architecture. Similarly, for the
InLoc evaluation shown in Table 4, our method is better for
all baselines on the DUC1 set with a large margin, although
it is worse on the DUC2 set. However, we still achieved the
best performance on average.

Interpretability Visualization
We visualized the inferred topics to demonstrate the inter-
pretability of the proposed model. As shown in Fig. 4, our
method can partition the contents of an image into differ-
ent types of spatial structures, in which the same seman-
tic instances are assigned to the same topic. For instance,
the topic “human” is marked in green color in the first im-
age pair of MegaDepth and Aachen; the ”tree” is marked
in orange, and the ”ground” is in blue. Different parts of a
building, such as roofs, windows, and pillars, are separated
into different topics. This phenomenon was repeated across
images of MegaDepth and Aachen Day-Night, demonstrat-
ing the effectiveness of our topic modeling and inference
modules. Notably, as illustrated in the third image pair of
the first two rows in Fig. 4, our method focuses on the
covisible structures in the same topic (marked with color)
and ignores the non-overlapping information (marked with-
out color). Although TopicFM was trained on the outdoor
dataset MegaDepth, it could still generalize well on the in-
door dataset ScanNet, as shown in the last row of Fig. 4.

Conclusion
We introduced a novel architecture using latent semantic
modeling for image matching. Our method can learn a pow-
erful representation without high computational power by
leveraging adequate context information in latent topics. As
a result, the proposed method is robust, interpretable, and
efficient compared with state-of-the-art methods.
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