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ABSTRACT This study addresses the challenge of online 3D model generation for neural rendering using
an RGB image stream. Previous research has tackled this issue by incorporating Neural Radiance Fields
(NeRF) or 3D Gaussian Splatting (3DGS) as scene representations within dense SLAM methods. However,
most studies focus primarily on estimating coarse 3D scenes rather than achieving detailed reconstructions.
Moreover, depth estimation based solely on images is often ambiguous, resulting in low-quality 3D models
that lead to inaccurate renderings. To overcome these limitations, we propose a novel framework for high-
quality 3DGS modeling that leverages an online multi-view stereo (MVS) approach. Our method estimates
MVS depth using sequential frames from a local time window and applies comprehensive depth refinement
techniques to filter out outliers. The refinement method produces temporally consistent depths by check-
ing sequential geometric consistency, enabling accurate initialization of Gaussians in 3DGS. Furthermore,
we introduce a parallelized backend module that optimizes the 3DGS model efficiently, ensuring timely
updates with each new keyframe. Experimental results demonstrate that our method outperforms state-of-
the-art dense SLAM methods, achieving an average PSNR improvement of approximately 2 dB on indoor
scenes. Moreover, our method reliably produces consistent 3D models in complex outdoor scenes, where
existing methods often fail due to tracking errors and depth noise. It also reconstructs large-scale aerial
scenes effectively, achieving an average PSNR gain of about 10.28 dB over existing methods.

INDEX TERMS online multi-view stereo, 3D gaussian splatting, neural rendering, dense SLAM, 3D
modeling, depth estimation

I. INTRODUCTION

PRECISE 3D models are in high demand for various
industrial applications, including digital twins and vir-

tual or augmented reality. One of the most commonly used
methods for 3D modeling is multi-view stereo (MVS) [1] [2]
[3]. MVS generates high-quality 3D models by identifying
dense correspondences among multiple images taken from
different viewpoints. Recently, MVS has been combined with
neural rendering techniques, such as neural radiance fields
(NeRF) [4] and 3DGaussian Splatting (3DGS), and extended
to support novel view synthesis [5] [6]. NeRF represents a
3D scene using a multilayer perceptron (MLP) that predicts
color and density along rays, enabling differentiable volu-
metric rendering optimized with multi-view supervision. To
overcome NeRF’s limitations in rendering speed and training

time, 3DGS [7] [8] [9] has emerged as a promising alter-
native. 3DGS explicitly represents scenes using anisotropic
Gaussians and achieves real-time, high-quality rendering
through a differentiable tile-based rasterizer. However, con-
ventional MVS remains an offline algorithm, requiring batch
processing and substantial computational time. As a result,
MVS has not been widely adopted in robotics or graphical
applications that require real-time processing.

In this study, we address the problem of online 3D model
generation for neural rendering using RGB-only frames. The
problem refers to generating 3D models in real time from im-
ages, with the goal of enabling neural rendering without re-
lying on depth sensors or precomputed geometry. Accurate
3D modeling with images is particularly difficult in online
processing settings, as the absence of geometric information
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FIGURE 1. Rendering results of (a) Photo-SLAM [21] and (b) our method.
The optimized Gaussian points and the estimated point cloud for each
method are shown in the upper right and lower right, respectively.

leads to scale ambiguity and uncertainty in depth estimation.
Dense simultaneous localization and mapping (SLAM)

[10] [11] [12] tackles the challenge of online 3D modeling.
Typically, dense SLAM methods estimate depth maps using
motion stereo [10] [11] or depth prediction [13] and then
integrate the depth maps online to construct a dense 3D
model. Recently, many studies have adopted NeRF [14] [15]
[16] [17] [18] [19] [20] or 3DGS [21] [22] [23] as map repre-
sentations in dense SLAM, enabling real-time 3D modeling
for rendering and view synthesis. However, existing methods
primarily focus on estimating coarse 3D scenes rather than
achieving detailed reconstruction. Most approaches rely on
down-sampled images or lightweight networks for real-time
computation, which significantly reduces the quality of the
generated 3D models. Moreover, depth estimated solely from
images is highly ambiguous due to factors such as motion
blur, occlusion, or textureless regions. Despite this, current
methods simply apply existing RGBD-based mapping tech-
niques [24] [25] that rely on reliable depth, often resulting in
noisy reconstructions. Therefore, a new approach is needed
to estimate high-resolution, accurate depth maps and incor-
porate stronger geometric priors for high-quality mapping.

To address these challenges, we propose a novel framework
that accurately estimates 3D information using an online
MVS approach, which is then used to generate high-quality
3DGSmodels. The online MVS utilizes a sequence of frames
within a local time window as source images and employs
MVS networks [3] to estimate the depth map of the current
frame. This method enables the real-time generation of pre-
cise, high-resolution depth maps. Additionally, since depth
estimates derived solely from images can contain numerous
outliers and inaccuracies, we implement a comprehensive
depth refinement and filtering process. This step enhances
the depth map by improving the consistency of sequentially
estimated depth information, effectively removing outliers.
As shown in Fig. 1, unlike existing methods [21] [22] [23]

FIGURE 2. Comparison between the proposed method (Ours) and
state-of-the-art online mapping methods on the Replica dataset [26]
evaluated with PSNR and SSIM.

that rely on sparse or noisy depths to generate 3DGS models,
our approach produces much denser and more accurate depth
maps, facilitating the initialization of highly detailed Gaus-
sian points.
Additionally, we developed an efficient mapping frame-

work to enhance the learning efficiency of high-quality 3DGS
within a limited timeframe. This framework includes an in-
dependent backend module focused on optimizing 3DGS
models, which runs in parallel with the frontend module
responsible for camera tracking and depth estimation. This
parallel setup ensures that the 3DGS has sufficient time to
refine its parameters before the next keyframe is processed.
We also integrated Generalized Exponential Splatting (GES)
[27] in place of the conventional 3DGS method [7], as GES
requires fewer particles to represent sharp edges, leading to
noticeable reductions in memory usage and training time.
The key contributions of this work are as follows:

• We propose a novel framework for high-quality 3DGS
mapping, leveraging an online MVS method. The precise
depth maps produced by MVS facilitate the initialization
of accurate and dense Gaussian points.

• We introduce an online MVS method that incorporates
a comprehensive depth filtering process. This approach
sequentially estimates depths from incoming frames, inte-
grates them to produce temporally consistent depths, and
effectively filters out outliers.

• An efficient backend for 3DGS mapping is designed to
operate in parallel with the frontend, ensuring sufficient
time for model optimization. This backend also reduces
the number of particles by initializing Gaussian points
only for unexplored regions.

• The proposed framework has been evaluated on two
benchmarks for indoor scenes [26] [28]. Unlike most
previous studies that evaluate only on indoor scenes, we
also tested the framework on challenging outdoor scenes
[29] to demonstrate its generalization capability. Source
code for our method is publicly available1

1https://github.com/lbg030/MVS-GS
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II. RELATED WORKS
A. 3D MODELING VIA MULTI-VIEW STEREO
MVS reconstructs 3D models of scenes by identifying dense
correspondences across multiple images [1]. Many studies
have addressed challenging issues such as matching ambigu-
ity and high computational complexity. Learning-basedMVS
methods [2] [3] have generally proven more effective than
traditional approaches [1] in overcoming these challenges.
Efforts have focused on improving performance by incorpo-
rating cascade cost volumes [2], or feature matching networks
[30] [3].

NeRF [4] models a scene as a radiance field and optimizes
it through differentiable volume rendering, resulting in pho-
torealistic view synthesis. However, this process requires ex-
tensive per-scene optimization. To overcome this limitation,
some studies [5] [6] have incorporated MVS techniques to
generalize NeRF to unseen scenes. MVSNeRF [5] employs
an explicit geometry-aware cost volume derived from MVS
to model geometry in novel views. Liu et al. [6] introduced
adaptive cost aggregation and a spatial-view aggregator to
encode 3D context-aware descriptors for geometry-aware re-
construction.

Even though NeRF-based methods have achieved signifi-
cant results, their performance is still limited by slow opti-
mization and rendering speeds. As an alternative to NeRF,
3DGS [7] has recently been proposed and has gained con-
siderable popularity in neural rendering. 3DGS explicitly
represents scenes using anisotropic 3D Gaussians, allowing
for real-time, high-quality rendering through a differentiable
tile-based rasterizer. Similar to NeRF, several studies [8] [9]
have attempted to apply MVS techniques to 3DGS to achieve
generalized performance. GPS-Gaussian [8] combines itera-
tive stereo-matching-based depth estimation with pixel-wise
Gaussian parameter regression. MVSGaussian [9] also em-
ploys MVS to estimate depth and establishes a pixel-aligned
Gaussian representation.

In [8] [9], the rich 3D information provided byMVS signif-
icantly enhances the rendering performance of the generated
3DGS. However, all of these methods [8], [9] are designed as
offline processes, making real-time processing impossible. To
overcome this limitation, developing an online 3DGS pipeline
capable of real-time depth estimation and Gaussian parameter
optimization is crucial. An online framework would enable
efficient adaptation to dynamic scenes, expanding the practi-
cal applicability of 3DGS-based rendering techniques.

B. MONOCULAR DENSE SLAM
Traditional SLAM research [31] [32] has primarily focused
on accurate camera localization, yielding impressive results.
Recently, many studies have shifted their focus toward precise
3D mapping, leading to the increased popularity of dense
SLAM. Classic methods used motion stereo with handcrafted
features for dense [11] or semi-dense mapping [33]. DTAM
[10] was among the first monocular dense mapping tech-
niques, optimizing a photometric cost volume on the GPU.

Similarly, REMODE [11] implemented probabilistic motion
stereo using a recursive Bayesian estimation approach.
Many studies have integrated deep learning models into

monocular dense SLAM.DeepFactors [34] compresses dense
depth maps into a low-dimensional latent space using deep
learning techniques, thereby reducing the computational bur-
den of depth estimation. TANDEM [12] combines direct pho-
tometric visual odometry with MVSNet [35], subsequently
fusing depth maps and extracting meshes from a truncated
signed distance function. DROID-SLAM [36] employs an
optical flow network to establish dense pixel correspon-
dences and performs dense bundle adjustments. This ap-
proach achieves excellent trajectory estimation while simul-
taneously generating dense 3D models.
As NeRF [4] has advanced, many studies [14] [15] [16]

[17] [18] have explored its potential for representing 3D
spaces in rendering and novel view synthesis. Orbeez-SLAM
[14] and iMODE [15] directly integrate the sparse features
or semi-dense depths obtained from ORB-SLAM [31] into a
NeRF model. Similarly, NeRF-SLAM [16] and GO-SLAM
[17] utilize low-resolution depth maps estimated by DROID-
SLAM for NeRF-based mapping. While some research [18]
[19] has explored using depth prediction networks [13] for
mapping, the accuracy of these predicted depths is often lim-
ited by the training dataset and does not match the precision
of MVS-based depth estimates.
Recently, 3DGS has shown great promise in 3D modeling

by addressing the limitations of NeRF and offering faster ren-
dering speeds. Although only a few studies [21] [22] have ap-
plied 3DGS to dense SLAM, these have demonstrated notably
superior performance compared to NeRF-based approaches.
Photo-SLAM [21] generates Gaussian points from the sparse
features extracted by ORB-SLAM and then densifies them
using geometric information through a Gaussian-Pyramid-
based learning approach. MonoGS [22] estimates camera
poses directly from images rendered by 3DGS, bypassing ex-
plicit depth estimation and instead generating new Gaussians
randomly from the rendered depths.
These methods [14] [15] [18] [21] [22] rely on sparse or

inaccurate depth data to construct NeRF or 3DGS models,
resulting in low-quality outcomes. Most approaches directly
adopt RGBD-based mapping techniques [24] [25], which
depend on reliable depth maps. However, the depths derived
from RGB images are often imprecise and noisy, ultimately
reducing performance. In contrast, our method utilizes MVS
to estimate high-quality depths and applies stringent noise
filtering techniques to generate Gaussian points. As a result,
this approach produces a 3DGS model that delivers more
accurate rendering compared to existing methods.

III. PROPOSED METHOD
Our goal is to reconstruct a 3DGS model online for high-
quality rendering from anRGB image stream. Fig. 3 describes
the overall architecture of the proposedmodeling system. The
system is mainly composed of two modules: the frontend and
the backend, which operate in parallel as independent threads.
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FIGURE 3. System overview: Our system consists of a frontend and a backend, both running in parallel. The frontend initially estimates the camera pose
of keyframes using SLAM. It then estimates the depth map and confidence map of each keyframe based on MVS, refining the depth map by incorporating
depth information from sequential keyframes. The backend generates new Gaussian points from the refined depth map and integrates them into the
3DGS model. The backend then continuously optimizes the 3DGS model.

The frontend first tracks camera poses {Tk} of sequential
input images {Ik} by using the DROID-SLAM [36]. DROID-
SLAM utilizes an optical flow network to predict dense pixel
correspondences between adjacent frames. It then continu-
ously performs dense bundle adjustment between keyframes
to refine the camera poses. When a new keyframe is identi-
fied, the system performs MVS depth estimation by using the
frame as a reference image (detailed in Section III.A). For
each keyframe Fk it saves the image-pose pair (Ik ,Tk) along
with the estimated depth map Dk and confidence map Ck in a
keyframe buffer. The estimated depth maps are relatively in-
accurate and contain many outliers compared to offlineMVS.
Therefore, the system refines the depths and robustly filters
out outliers based on previously estimated depth information
(detailed in Section III.B).

The backend sequentially integrates the estimated depth
maps into the 3DGS model (as detailed in Section III.C).
It identifies unexplored regions on the depth map where
3DGS reconstruction is insufficient and converts only those
depths into a point cloud Pk . This point cloud is then used to
initialize new Gaussians {gi}, which are subsequently added
to the 3DGS model. The backend continuously optimizes the
Gaussian parameters, running this process in parallel with the
frontend while continuously appending new Gaussians from
unexplored regions.

A. ONLINE MVS DEPTH ESTIMATION
We utilize the deep learning-based MVS method, MVS-
Former [3], for estimating depth maps for each keyframe.
MVSFormer uses a visual transformer to learn robust feature
representations, achieving state-of-the-art results in MVS re-
construction. It features a cascade structure [2] that utilizes
multiple smaller cost volumes instead of a single large one,
which significantly reduces GPUmemory usage and runtime.
This cascading strategy enables the real-time generation of
high-resolution depth maps, making it well-suited for our
online modeling system.

Given a keyframeFk , we useFk as a reference frame and its
neighboring keyframes

{
Fnbr
k,n

}
as source frames to estimate

the depth map Dk and confidence map Ck .
{
Fnbr
k,n

}
are deter-

mined as the Nnbr consecutive keyframes before and after Fk .
MVSFormer initially extractsmulti-scale visual features from
hierarchical vision transformers. These extracted features are
used to construct cascade cost volumes at progressively finer
scales using 3D CNNs [2]. The depths estimated by DROID-
SLAM are used to determine the depth hypothesis range for
the first-stage cost volume. It then incrementally refines the
depth maps from coarse to fine by narrowing the depth range
and reducing the number of hypotheses. Finally, MVSFormer
predicts a depth map Dk and a confidence map Ck from a
cost-volume by using the temperature-based method [3]. The
method unifies the advantages of both regression-based depth
and classification-based depth. The regression-based method
(i.e., the expectation of depth probability) yields precise depth
results. Conversely, using cross-entropy loss to optimize the
network for depth classification offers a more reliable confi-
dence estimation. By combining both methods, MVSFormer
produces smooth and accurate depths and confidences.

Fig. 4 shows examples of reconstructed point clouds and
estimated depth maps obtained from different depth esti-
mation methods. Existing methods [16], [18], [19] typically
construct 3D models using either low-resolution depth maps
or predicted depth estimates. In Fig. 4a, a sparse point cloud is
shown, resulting from the low-resolution depth maps gener-
ated via the dense optical flow of DROID-SLAM. Fig. 4b il-
lustrates depthmaps produced by the depth predictionmethod
[13]; although the estimation appears accurate along object
boundaries and planar surfaces, scale inconsistencies hinder
proper alignment of the point cloud. In contrast, our method
(Fig. 4c) utilizes an MVS-based approach, which estimates
globally consistent depth and enables the reconstruction of a
more complete and accurate 3D model.

B. DEPTH REFINEMENT AND OUTLIER FILTERING
The estimated depth maps often contain numerous outliers,
especially in the background and boundary regions. Addition-
ally, online depth estimation tends to produce more outliers
compared to offline methods due to limited source views.
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FIGURE 4. Examples of point clouds reconstructed from two estimated
depth maps for each method. (a) low-resolution depth maps of
DROID-SLAM, (b) learned depth prediction [13], (c) our online MVS
depths.

The source views can lead to incomplete coverage of the
reference view and result in stereo matching errors from
invisible pixels. To address these issues, our system incorpo-
rates additional steps to refine the depth maps and robustly
filter outliers by leveraging sequentially estimated depth and
confidence information.

Given the depth and confidence maps (Dk ,Ck) of the
reference keyframe Fk , as well as the set of depth and con-
fidence maps {(Dnbr

k,n ,C
nbr
k,n )} of the neighboring keyframes

{Fnbr
k,n }, we integrate them to generate a refined depth and

confidence maps (D̄k , C̄k) for Fk . To solve this problem, we
employ the depth map fusion network, V-Fuse [37]. It first
calculates the mean and standard deviation of the input depth
and confidence values to establish the depth hypothesis range
for each pixel. It then constructs a visibility constraint volume
by analyzing visibility factors such as support, occlusions,
and free-space violations. This volume is regularized using a
3D convolutional network, after which the system generates
the fused depth map through regression.

Next, we remove the outliers from the refined depth map.
We first filter out low-confidence depths on D̄k by applying
a threshold to the confidence map C̄k . Then, it assesses the
geometric consistency [38] of the depth D̄k against the depths
{Dnbr

k,n} of {Fnbr
k,n }. For each neighboring keyframe Fnbr

k,n , the
system wraps depths ofDnbr

k,n onto the view of Fk . It calculates
the relative depth differences between the wrapped depths of
Fnbr
k,n and the depths of Fk . If the relative depth difference is

smaller than the defined threshold, the depth is considered
geometrically consistent. Finally, depths that do not exhibit
consistency across at least three views are filtered out. Fig. 5
illustrates the depth filtering process.

C. ONLINE 3DGS MAPPING
The backend module integrates the filtered depth maps D̄k

into a unified 3DGSmodel. To enhance efficiency, we employ
the generalized exponential splatting (GES) [27] in place of
the original approach [7] for constructing the 3DGS model.
We have adapted the GES method to support online opti-
mization of the 3DGS by sequentially inputting keyframes.
Themodule continuously produces newGaussian points from

FIGURE 5. An illustration of the depth map refinement and filtering
process: (b) the depth map and (c) the confidence map estimated by MVS
are (d) refined using V-Fuse [37]. Our method then (e) filters outliers by
checking the geometric consistency of the depths.

the incoming keyframes and updates their parameters through
iterative processes. This operation is carried out in parallel
with the frontend module.
Generalized Exponential Splatting. The 3DGS model rep-
resents the scene using a set of 3D Gaussians, G = {gi},
where each Gaussian point gi is defined by a covariance
matrix Σi ∈ R3×3, a mean µi ∈ R3, opacity oi ∈ [0, 1],
and color ci ∈ R3. Original 3DGS requires a large number of
points to capture high-frequency details, making it inefficient
for real-time mapping and rendering, particularly in large-
scale scenes. To address this, we employ the more efficient
method, GES, which is an extension of the generalized expo-
nential function (GEF). Density function for each Gaussian
with respect to a 3D point x is given by the GEF as:

gi(x) = exp

{
−1

2
(x − µi)

TΣ−1
i (x − µi)

} β
2

where β is a shape parameter that controls the splat’s sharp-
ness. GES treats this shape parameter as a trainable element
across different frequency bands, leading to more adaptable
and efficient rendering. This method effectively handles high-
frequency components that posed challenges for the original
3DGS approach. GES also incorporates edge recognition via
an edge-aware mask, which is generated using a difference of
Gaussian filter.
To render an image Îk from an input pose T̂k , the 3D

Gaussians are projected onto the image plane. The color ĉ of
each pixel p is determined by sorting the Gaussian points by
depth and applying front-to-back alpha-blending, as follows:

ĉ(p) =
∑
i∈N

ciαi
i−1∏
j=1

(1− αj)

where αi is calculated as the product of the opacity oi and
the GEF density gi [27]. This method ensures that the closer
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Gaussian points contribute more prominently to the final
color, while the further points blend into the background.

Likewise, the rendered depth d̂ can be obtained using the
same projection method:

d̂(p) =
∑
i∈N

ziαi
i−1∏
j=1

(1− αj)

where zi represents the distance from the ray to the Gaussian
mean.

The loss function used to train the GES is defined as:

L = λL1L1 + λssimLssim + λdepthLdepth + λωLω

whereL1 denotes the L1 loss computed between the rendered
images and the original images. Ldepth is also calculated be-
tween the rendered depth maps and the MVS depth maps,
ensuring the preservation of the geometric structure. Lssim

represents the structural similarity loss [39], while Lω cor-
responds to the frequency-modulated loss derived from the
edge-aware mask [27]. The Lω term ensures that the shape
parameter is trained over a wide frequency range, allowing
images to be rendered with fewer splats while enhancing edge
sharpness.
Online Densification. The backend module incrementally
densifies the 3DGS model by initializing new Gaussians at
each incoming keyframe.We transform the filtered depthmap
D̄k of a keyframe Fk into a 3D point cloud Pk , which is then
used for densification. Since Pk contains a large number of
3D points, it would be inefficient to directly append all of
them as newGaussians. Therefore, we segment the depth map
D̄k into explored and unexplored regions, creating the point
cloud Pk only from the depths in the unexplored regions. The
explored region consists of areas where the current Gaussians
already accurately represent the scene geometry, while the
unexplored region includes areas where the Gaussians are
either insufficient or newly observed. A pixel is classified as
part of the unexplored region if its rendered color significantly
differs from the original color. To identify such pixels, we
compute the peak signal-to-noise ratio (PSNR) between the
original and rendered images, marking those with a PSNR
below a certain threshold as belonging to the unexplored
region.

The extracted point cloud Pk might contain multiple points
that are densely clustered in certain areas. To address this,
we further reduce the number of points in Pk using a voxel
grid filter. The filtered point cloud is then directly converted
into new Gaussian points {gnewi }, with each point assigned an
identity covariance matrix Σi and β = 2. Finally, these new
Gaussian points are added to the 3DGS G.
Optimization. The backend module iteratively updates the
parameters of the 3DGS model using differentiable rendering
and gradient-based optimization [7]. It also performs adap-
tive density control to optimize the distribution of Gaussian
points. This method dynamically adjusts the point density
according to the level of detail required in different regions of
the scene, ensuring efficient use of computational resources

TABLE 1. Quantitative evaluation on the Replica RGB dataset

Method Off0 Off1 Off2 Off3 Off4 Rm0 Rm1 Rm2 Avg.

PSNR ↑

GO-SLAM - - - - - - - - 21.17
NICER-SLAM 28.54 25.86 21.95 26.13 25.47 25.33 23.92 26.12 25.41
GLORIE-SLAM 35.88 37.15 28.45 28.54 29.73 28.49 30.09 29.98 31.04
Q-SLAM 36.31 37.22 30.68 30.21 31.96 29.58 32.74 31.25 32.49
Photo-SLAM 36.99 37.52 31.79 31.62 34.17 29.77 31.30 33.18 33.29
MonoGS 32.00 31.21 23.26 25.77 23.85 23.53 25.00 22.42 25.88
MGSO 36.34 38.20 28.90 30.27 31.41 28.11 30.04 31.89 31.90
Ours 41.22 42.24 34.12 34.67 33.52 32.18 31.75 35.89 35.70

SSIM ↑

GO-SLAM - - - - - - - - 0.70
NICER-SLAM 0.87 0.85 0.82 0.86 0.87 0.75 0.77 0.83 0.83
GLORIE-SLAM 0.97 0.99 0.97 0.97 0.97 0.96 0.97 0.96 0.97
Q-SLAM 0.94 0.94 0.90 0.88 0.89 0.83 0.91 0.87 0.89
Photo-SLAM 0.96 0.95 0.93 0.92 0.94 0.87 0.91 0.93 0.93
MonoGS 0.90 0.88 0.82 0.84 0.86 0.75 0.79 0.81 0.83
MGSO 0.95 0.96 0.90 0.91 0.93 0.82 0.87 0.92 0.91
Ours 0.98 0.98 0.95 0.96 0.95 0.95 0.93 0.96 0.96

LPIPS ↓

GO-SLAM - - - - - - - - 0.41
NICER-SLAM 0.17 0.18 0.20 0.16 0.18 0.25 0.22 0.18 0.19
GLORIE-SLAM 0.09 0.08 0.15 0.11 0.15 0.13 0.13 0.14 0.12
Q-SLAM 0.13 0.15 0.20 0.19 0.18 0.18 0.16 0.15 0.17
Photo-SLAM 0.06 0.06 0.09 0.09 0.07 0.10 0.08 0.07 0.08
MonoGS 0.23 0.22 0.30 0.24 0.34 0.33 0.35 0.39 0.30
MGSO 0.24 0.25 0.31 0.27 0.25 0.35 0.29 0.26 0.28
Ours 0.04 0.04 0.08 0.07 0.06 0.09 0.11 0.06 0.07

TABLE 2. Quantitative evaluation on the TUM-RGBD dataset

Metrics Method f1/desk f2/xyz f3/off Avg.

PSNR ↑

GO-SLAM 11.71 14.81 13.57 13.36
MonoGS 19.67 16.17 20.63 18.82
Photo-SLAM 20.97 21.07 19.59 20.54
GLORIE-SLAM 20.26 25.62 21.21 22.36
Ours 24.25 23.51 24.81 24.19

SSIM ↑

GO-SLAM 0.41 0.44 0.48 0.44
MonoGS 0.73 0.72 0.77 0.74
Photo-SLAM 0.74 0.73 0.69 0.72
GLORIE-SLAM 0.87 0.96 0.84 0.89
Ours 0.86 0.83 0.86 0.85

LPIPS ↓

GO-SLAM 0.61 0.57 0.64 0.61
MonoGS 0.33 0.31 0.34 0.33
Photo-SLAM 0.23 0.17 0.24 0.21
GLORIE-SLAM 0.31 0.09 0.32 0.24
Ours 0.19 0.17 0.16 0.17

by assigning more Gaussians to high-frequency detail areas
and fewer to low-frequency regions.
In each iteration, we use the current keyframe along with

previously input keyframes for optimization. Due to limited
computational time, instead of using all input keyframes, we
select a subset of keyframes. Instead of selecting only recent
keyframes, we randomly sample keyframes from the entire
keyframe pool to create a keyframe subset. The module then
performs an optimization on the selected subset to update the
Gaussian parameters until the next new keyframe is received.
This approach helps mitigate the forgetting problem, where
the influence of earlier input frames gradually diminishes
over time.

IV. EXPERIMENTAL RESULTS
To verify the performance of our method, we conducted
comparative experiments on online 3D modeling for neural
rendering. We evaluated the modeling performance on both

6 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3583156

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Lee et al.: High-Quality 3D Gaussian Splatting Mapping

FIGURE 6. Qualitative evaluation on the Replica RGB dataset (first and second rows) and the TUM-RGBD dataset (third and fourth rows).

FIGURE 7. Our system delivers superior scene reconstruction and rendering quality by utilizing enhanced depth estimation techniques and an optimized
Gaussian learning approach. The results are averaged across all keyframes, with the experimental scene derived from the TUM-RGBD fr3 office dataset.

indoor and outdoor scenes. Additionally, we performed an
ablation study to assess the effectiveness of key components.

All experiments were performed on a desktop computer
featuring an Intel i9-13900KS processor and an NVIDIA
GeForce RTX 3090 Ti GPU. CUDA was employed for GPU
acceleration in some processes, including time-sensitive ras-
terization and gradient computation, while the remaining
components were implemented using PyTorch.

A. EVALUATION IN INDOOR SCENES
We evaluated the rendering performance of our method in
indoor scenes using the Replica dataset [26] (8 sequences),

the TUM RGBD dataset [28] (3 sequences), and the ScanNet
dataset [40] (6 sequences). Although these datasets include
RGBD frames, we focused solely on the RGB images. For
MVS depth estimation, we used 384 × 512 images, while
3DGS was trained on the original resolution. We set the voxel
resolution to 0.005m, confidence threshold to 0.7, the number
of neighboring keyframes Nnbr to 4, and PSNR threshold for
masking to 40.

The performance of our method was compared against
state-of-the-art monocular dense SLAM methods, including
NeRF-based methods (GO-SLAM [17], NICER-SLAM [16],
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TABLE 3. Rendering performance results on the ScanNet dataset.

Method 0000 0059 0106 0169 0181 0207 Avg.

PSNR ↑

GO-SLAM 15.74 13.15 14.58 14.49 15.72 15.37 14.84
MonoGS 16.91 19.15 18.57 20.21 19.51 18.37 18.79
GLORIE-SLAM 23.42 20.66 20.41 25.23 21.28 23.68 22.45
Ours 23.91 22.60 21.65 25.56 22.18 24.22 23.35

SSIM ↑

GO-SLAM 0.42 0.32 0.46 0.42 0.53 0.39 0.42
MonoGS 0.62 0.69 0.74 0.74 0.75 0.70 0.71
GLORIE-SLAM 0.87 0.87 0.83 0.84 0.91 0.76 0.85
Ours 0.82 0.88 0.84 0.85 0.80 0.77 0.83

LPIPS ↓

GO-SLAM 0.61 0.60 0.59 0.57 0.62 0.60 0.60
MonoGS 0.70 0.51 0.55 0.54 0.63 0.58 0.59
GLORIE-SLAM 0.26 0.31 0.31 0.21 0.44 0.29 0.30
Ours 0.24 0.22 0.27 0.21 0.37 0.27 0.26

TABLE 4. Rendering accuracy and efficiency comparison between
NeRF-based methods (above the dashed line) and 3DGS-based methods
(below the dashed line) on the Replica dataset.

Method PSNR ↑ SSIM ↑ LPIPS ↓ GPU Usage FPS ↑[GiB] ↓

NICER-SLAM 25.41 0.83 0.19 21.30 0.13

GO-SLAM 21.17 0.70 0.41 18.50 9.21

GLORIE-SLAM 31.04 0.97 0.12 14.62 0.52

Ours 35.70 0.96 0.07 11.27 11.56

GLORIE-SLAM [19], and Q-SLAM [20]) and 3DGS-based
methods (Photo-SLAM [21] and MonoGS [22]). For evaluat-
ing rendering performance, we utilized standard photometric
metrics: PSNR, SSIM(Structural Similarity Index Measure)
[39], and LPIPS (Learned Perceptual Image Patch Similarity)
[41].

Tables 1 - 3 show the rendering accuracy on the Replica,
TUM-RGBD, and ScanNet datasets, respectively. As illus-
trated in the tables, our method achieves the highest perfor-
mance in average PSNR and LPIPS, while also securing ei-
ther the top or second-best results in average SSIM. Notably,
our method significantly outperforms MonoGS. MonoGS
generates Gaussian points based on arbitrary depth estimates
for unexplored scenes, which leads to inaccurate depth infor-
mation and consequently produces low-quality 3DGS maps
with poor rendering results. Additionally, our method sur-
passes Photo-SLAM in all metrics, demonstrating that gener-
ating Gaussian points from dense MVS depths is much more
effective in producing high-quality 3DGS models compared
to the sparse feature point-based initialization method em-
ployed by Photo-SLAM.

In addition to rendering accuracy, we evaluated the ef-
ficiency of each method by measuring GPU memory con-
sumption and frame processing speed (FPS: the number
of frames processed per second). Table 4 presents a com-
parison of both rendering quality and efficiency metrics
for NeRF-based methods (NICER-SLAM, GO-SLAM), the
3DGS-based method (GLORIE-SLAM), and our proposed

FIGURE 8. Rendering results of (a) Photo-SLAM [21] and (b) our method
on two aerial scenes. Each PSNR and SSIM represents the average result
for the entire scene.

approach. As shown in Table 4, NeRF-basedmethods demon-
strate significantly lower rendering performance and require
substantially more GPU memory compared to 3DGS-based
methods. For instance, NICER-SLAMachieves a PSNRmore
than 10 dB lower than our method while consuming nearly
twice as much GPU memory. Furthermore, both NICER-
SLAM and GLORIE-SLAM operate at less than 1 FPS, mak-
ing real-time processing impractical. In contrast, our method
achieves 11.56 FPS, offering significantly faster frame pro-
cessing than all other methods. NeRF-based methods rely on
computationally intensive volumetric rendering and implicit
neural representations, which demand high GPUmemory and
slow down processing speed. Additionally, their reliance on
low-resolution 3D volumes often leads to suboptimal recon-
struction quality, resulting in lower PSNR.
Fig. 6 shows the qualitative comparison results of 3DGS-

based methods. As shown in Fig. 6, our method produces
high-quality rendering results with greater scene detail com-
pared to the other methods. In particular, our method applies
a comprehensive noise filter, resulting in significantly fewer
artifacts.
Fig. 7 presents examples of depth maps and images ren-

dered from 3DGS models generated by different methods,
allowing for a comparative evaluation of their performance.
As shown in the figure, our method not only produces cleaner
rendered images compared to other approaches but also gen-
erates depth maps with significantly higher accuracy based
on L1 loss. This demonstrates that the proposed method
effectively estimates precise 3D structural information, which
in turn contributes to improved image rendering performance.

B. EVALUATION IN OUTDOOR SCENES
This section assesses the generalization capability of our
method by evaluating its performance on outdoor scenes, in-
cluding aerial scenes [38] and the Tanks and Temples dataset
[29]. Fig. 8 shows the rendering results along with the PSNR
and SSIM performance of the generated 3DGS in two aerial
scenes. The sequential images for these scenes were captured
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FIGURE 9. Rendering results of our method on the Tanks and Temples dataset. Our method produced exceptionally precise rendering results, closely
mirroring real-world scenes. However, accuracy may drop in occluded or dynamic scenes, as shown in the red box area of (e).

using a monocular camera mounted on a drone, which were
then used for online 3DGS modeling. Both Photo-SLAM and
our method successfully generated the 3DGS in the scenes,
but MonoGS failed to produce the 3DGS model. As illus-
trated in Fig. 8, our method outperformed Photo-SLAM in
terms of PSNR and SSIM, leading to more accurate rendering
results. The disparity in performance between Photo-SLAM
and our method is considerably more pronounced in outdoor
scenes than in indoor scenes. Since MVS methods can ac-
curately reconstruct large-scale scenes over wide ranges, our
method proves to be significantlymore effective in generating
3DGS models in aerial scenes.

Fig. 9 shows the rendering performance of our method in

several outdoor scenes from the Tanks and Temples dataset.
In these scenes, both Photo-SLAM andMonoGS were unable
to track camera poses or generate 3DGS models due to in-
sufficient continuous motion in the image frames. GLORIE-
SLAMwas able to track camera poses using DROID-SLAM;
however, its depth prediction module failed to accurately es-
timate 3D information in untrained outdoor environments. As
a result, it was ultimately unable to generate 3DGS models.
In contrast, our method was the only one capable of suc-

cessfully tracking camera poses and accurately estimating
depth maps in these scenes. Consequently, it was able to
generate precise 3DGS models. As illustrated in Fig. 9, our
approach delivered highly accurate rendering results that
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TABLE 5. Ablation Study on the Replica “office 0”

Method MVS Noise Mask PSNR SSIM LPIPS FPSDepth Filtering Update

Method-A X X X 23.46 0.84 0.54 18.96
Method-B O X X 40.74 0.97 0.05 13.72
Method-C O O X 41.30 0.98 0.04 10.02
Method-D O O O 41.22 0.98 0.04 11.56

closely resemble real images. These results demonstrate the
effectiveness of the proposed method in leveraging online
MVS for Gaussian point generation.

However, in particularly challenging scenes involving se-
vere occlusions, motion blur, or dynamic objects, our method
occasionally fails to produce fully accurate renderings. Al-
though the Tanks and Temples dataset frequently includes
heavy occlusion, our approach still demonstrated robust per-
formance in most cases. Nevertheless, as shown in Fig. 9e,
failure cases can occur in regions affected by dynamic objects
or extreme occlusions. Addressing these limitations may re-
quire additional strategies, such as acquiring more views or
filtering out dynamic objects during reconstruction.

C. ABLATION STUDY
We performed an ablation study on the Office0 scene from
the Replica dataset to validate the effectiveness of the key
components of our method. We measured the photometric
metrics and FPS. Table 5 shows the performance variation
of each key component (MVS depth estimation in Sect. III.A,
depth filtering in Sect. III.B, and mask-based initialization of
Gaussians in Sect. III.C) by comparing the four variants.

Method-A generates the 3DGS model directly from the
low-resolution depth map of DROID-SLAM, resulting in
high FPS but the lowest rendering performance. As shown
in Fig. 4a, the low-resolution depth map produces a highly
sparse Gaussian points, leading to a significant drop in per-
formance. Method-C achieved the best rendering quality
but had the lowest FPS. Compared to Method-B, the pro-
posed noise filter significantly improved the performance of
Method-C. Fig. 10 shows the qualitative comparison results
with (Method-C) and without (Method-B) applying the depth
refinement filter. As illustrated in the figure, applying the
refinement filter results in significantly less noise and enables
more detailed and cleaner reconstruction of objects. Inter-
estingly, while Method-D slightly reduced rendering qual-
ity compared to Method-C, it achieved a higher FPS. This
suggests that initializing Gaussian points only in unexplored
regions is an effective strategy.

To evaluate the real-time performance of the proposed sys-
tem, we measured the execution time of each module. Table 6
presents the average runtime and invocation interval for each
component. All modules operate within their respective invo-
cation intervals, indicating the absence of performance bot-
tlenecks. In particular, the 3DGS optimization module runs
asynchronously from the frontend processes (e.g., tracking
and MVS), maintaining consistent mapping quality without

TABLE 6. The average runtime and invocation interval of each module of
our method on the Replica “office 0”. Modules that share the same
invocation interval are considered interdependent, while the others
operate independently.

Module Tracking MVS Depth
Refinement

3DGS
Mapping

3DGS
Opt.

Runtime
(sec) 0.048 0.206 0.182 0.013

0.181
(per frame)

Invocation
Interval (sec) 0.050 1.010

Consistent
Optimization

interrupting the overall pipeline. This architecture ensures
both computational efficiency and robustness, enabling stable
operation in complex environments.

V. LIMITATIONS AND DISCUSSION
The proposed method achieved outstanding performance on
various indoor benchmark datasets. Notably, by leveraging
MVS techniques, our method effectively extracts highly ac-
curate 3D information, even from large-scale environments.
This capability enabled our method to successfully perform
accurate 3D modeling in challenging outdoor scenes, where
other existing approaches typically fail. As illustrated in Fig.
8, prior methods such as MonoGS and Photo-SLAM strug-
gle to form adequate Gaussian representations in wide-field
outdoor environments. In contrast, our approach consistently
produces complete and robust 3DGS models through precise
depth estimation and continuous optimization of Gaussians.
Furthermore, experiments conducted on the Tanks and Tem-
ples dataset (Fig. 9) show that existing methods frequently
encounter camera tracking failures or inaccurate initialization
of Gaussians. Our method, however, maintains robust recon-
struction results, empirically demonstrating its technical su-
periority. Despite these achievements, our proposed method
still has several significant limitations.
First, our method focuses on precise reconstruction rather

than rapid depth estimation; therefore, we adopted MVS-
Former [3], which provides state-of-the-art performance. In
our setup, MVSFormer can estimate depth maps for approxi-
mately five keyframes per second, which is sufficient for on-
line processing in our system. Since Droid-SLAM extracts a
keyframe every 1.3 seconds on average in the Replica dataset,
depth estimation does not pose a bottleneck for our approach.
Several studies have introduced efficient MVS network mod-
els [42], [43] that bypass the use of 3D convolutional neural
networks for cost-volume regularization. Since these models
can calculate depth maps much faster than MVSFormer, they
could serve as alternatives if faster computation time is re-
quired.
Second, our method relies solely on keyframe information

to train the 3DGSmodel. However, because keyframes do not
fully capture the entire scene, this can result in incomplete
reconstructions. Improving the generalization capability of
the 3DGS model requires training with frames taken from
diverse viewpoints. A promising direction for future research
would be to identify non-keyframes that enhance modeling
performance and integrate them into the training process.
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FIGURE 10. Qualitative comparison of results with and without the depth refinement filter (as described in Section III.B).

Lastly, the performance of 3DGS modeling is highly in-
fluenced by localization errors. To mitigate this issue, we
integrated DROID-SLAM [36], a state-of-the-art system, and
achieved relatively stable localization accuracy in our experi-
mental datasets, resulting in satisfactory modeling outcomes.
However, in challenging scenarios such as textureless scenes
or dynamic environments, localization errors are inevitable
and can significantly degrade the quality of the reconstructed
3D model. To address this problem, we plan to integrate
global dense bundle adjustment (DBA) [36] into our frame-
work in future work. This approach refines the poses of all
keyframes while simultaneously adjusting Gaussian points
based on the updated poses to ensure consistency. Regular
execution of global DBA is expected to greatly improve both
localization accuracy and overall modeling performance.

VI. CONCLUSION
We have presented a novel online mapping method for high-
quality 3DGS modeling. Our approach leverages an online
MVS method to generate high-resolution depth maps and
accurately initialize Gaussian points in the 3DGS represen-
tation. By integrating depth information sequentially from a
local time window and applying a comprehensive filtering
process, our method effectively removes outliers, leading to
highly accurate and temporally consistent depth estimation.
This, in turn, enables the generation of precise and detailed
3DGS models.

Furthermore, to ensure online performance, we introduced
an efficient mapping framework that includes a parallelized
backend module dedicated to optimizing the 3DGS model
while the frontend module handles camera tracking and depth
estimation. This parallel processing allows the 3DGS model
to be continuously refined and updated with each incoming
keyframe, significantly enhancing both rendering accuracy
and reconstruction quality. Unlike previous methods that rely
on sparse or noisy depth estimates, our framework generates
dense, high-fidelity depth maps, resulting in superior Gaus-
sian initialization and more detailed reconstructions.

Through extensive experiments on both indoor and out-
door datasets, we demonstrated that our method outperforms
state-of-the-art dense SLAM techniques. In particular, our
method performs exceptionally well in challenging outdoor

environments where existing approaches face difficulties due
to uncertainties in camera tracking and depth estimation. The
integration of robust depth filtering and online optimization
allows our method to achieve exceptional rendering quality,
closely resembling real-world images.

As future work, our technology can be applied to various
domains, including digital twins [44] and autonomous robot
perception [45] Digital twin systems require continuous 3D
model updates to accurately reflect dynamic environmental
changes. However, conventional platforms [46] often strug-
gle to meet real-time requirements due to the lengthy pro-
cess involved in generating and updating 3D models. Our
approach overcomes these limitations by enabling the online
generation and updating of accurate 3D models directly from
RGB camera streams. For instance, in a logistics warehouse
setting [47], multiple mobile robots equipped with RGB
cameras can continuously capture visual data, which is im-
mediately converted into precise digital twins. These digital
models support real-time tasks such as inventory tracking,
stock localization, and anomaly detection. Thanks to its ac-
curacy and responsiveness, our method can be effectively
extended to a wide range of real-time monitoring and control
applications beyond the logistics domain. To support broader
adoption in such digital twin applications, however, the sys-
tem must be further optimized and lightweighted for efficient
onboard execution.

REFERENCES
[1] J. L. Schönberger, E. Zheng, J.-M. Frahm, and M. Pollefeys, ‘‘Pixelwise

view selection for unstructured multi-view stereo,’’ in Computer Vision–
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part III 14. Springer, 2016, pp. 501–
518.

[2] X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan, and P. Tan, ‘‘Cascade cost volume
for high-resolution multi-view stereo and stereo matching,’’ in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 2495–2504.

[3] C. Cao, X. Ren, and Y. Fu, ‘‘Mvsformer: Multi-view stereo by learn-
ing robust image features and temperature-based depth,’’ arXiv preprint
arXiv:2208.02541, 2022.

[4] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, ‘‘Nerf: Representing scenes as neural radiance fields for view
synthesis,’’ Communications of the ACM, vol. 65, no. 1, pp. 99–106, 2021.

[5] A. Chen, Z. Xu, F. Zhao, X. Zhang, F. Xiang, J. Yu, and H. Su, ‘‘Mvsnerf:
Fast generalizable radiance field reconstruction from multi-view stereo,’’

VOLUME 11, 2023 11

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3583156

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Lee et al.: High-Quality 3D Gaussian Splatting Mapping

in Proceedings of the IEEE/CVF international conference on computer
vision, 2021, pp. 14 124–14 133.

[6] T. Liu, X. Ye, M. Shi, Z. Huang, Z. Pan, Z. Peng, and Z. Cao, ‘‘Geometry-
aware reconstruction and fusion-refined rendering for generalizable neural
radiance fields,’’ inProceedings of the IEEE/CVFConference onComputer
Vision and Pattern Recognition, 2024, pp. 7654–7663.

[7] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, ‘‘3d gaussian
splatting for real-time radiance field rendering.’’ ACM Trans. Graph.,
vol. 42, no. 4, pp. 139–1, 2023.

[8] S. Zheng, B. Zhou, R. Shao, B. Liu, S. Zhang, L. Nie, and Y. Liu, ‘‘Gps-
gaussian: Generalizable pixel-wise 3d gaussian splatting for real-time hu-
man novel view synthesis,’’ in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2024, pp. 19 680–19 690.

[9] T. Liu, G. Wang, S. Hu, L. Shen, X. Ye, Y. Zang, Z. Cao, W. Li, and
Z. Liu, ‘‘Fast generalizable gaussian splatting reconstruction from multi-
view stereo,’’ arXiv preprint arXiv:2405.12218, 2024.

[10] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, ‘‘Dtam: Dense
tracking and mapping in real-time,’’ in 2011 international conference on
computer vision. IEEE, 2011, pp. 2320–2327.

[11] M. Pizzoli, C. Forster, and D. Scaramuzza, ‘‘Remode: Probabilistic,
monocular dense reconstruction in real time,’’ in 2014 IEEE international
conference on robotics and automation (ICRA). IEEE, 2014, pp. 2609–
2616.

[12] L. Koestler, N. Yang, N. Zeller, and D. Cremers, ‘‘Tandem: Tracking and
dense mapping in real-time using deep multi-view stereo,’’ in Conference
on Robot Learning. PMLR, 2022, pp. 34–45.

[13] A. Eftekhar, A. Sax, J. Malik, and A. Zamir, ‘‘Omnidata: A scalable
pipeline for making multi-task mid-level vision datasets from 3d scans,’’
in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 10 786–10 796.

[14] C.-M. Chung, Y.-C. Tseng, Y.-C. Hsu, X.-Q. Shi, Y.-H. Hua, J.-F. Yeh, W.-
C. Chen, Y.-T. Chen, andW. H. Hsu, ‘‘Orbeez-slam: A real-timemonocular
visual slam with orb features and nerf-realized mapping,’’ in 2023 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2023, pp. 9400–9406.

[15] H. Matsuki, E. Sucar, T. Laidow, K. Wada, R. Scona, and A. J. Davison,
‘‘imode: Real-time incremental monocular dense mapping using neural
field,’’ in 2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2023, pp. 4171–4177.

[16] A. Rosinol, J. J. Leonard, and L. Carlone, ‘‘Nerf-slam: Real-time dense
monocular slam with neural radiance fields,’’ in 2023 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE, 2023,
pp. 3437–3444.

[17] Y. Zhang, F. Tosi, S. Mattoccia, and M. Poggi, ‘‘Go-slam: Global opti-
mization for consistent 3d instant reconstruction,’’ in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2023, pp. 3727–
3737.

[18] Z. Zhu, S. Peng, V. Larsson, Z. Cui, M. R. Oswald, A. Geiger, and
M. Pollefeys, ‘‘Nicer-slam: Neural implicit scene encoding for rgb slam,’’
in 2024 International Conference on 3D Vision (3DV). IEEE, 2024, pp.
42–52.

[19] G. Zhang, E. Sandström, Y. Zhang, M. Patel, L. Van Gool, and M. R.
Oswald, ‘‘Glorie-slam: Globally optimized rgb-only implicit encoding
point cloud slam,’’ arXiv preprint arXiv:2403.19549, 2024.

[20] C. Peng, C. Xu, Y. Wang, M. Ding, H. Yang, M. Tomizuka, K. Keutzer,
M. Pavone, andW. Zhan, ‘‘Q-slam: Quadric representations for monocular
slam,’’ arXiv preprint arXiv:2403.08125, 2024.

[21] H. Huang, L. Li, H. Cheng, and S.-K. Yeung, ‘‘Photo-slam: Real-time
simultaneous localization and photorealistic mapping for monocular stereo
and rgb-d cameras,’’ in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024, pp. 21 584–21 593.

[22] H. Matsuki, R. Murai, P. H. Kelly, and A. J. Davison, ‘‘Gaussian splatting
slam,’’ in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024, pp. 18 039–18 048.

[23] T. Lan, Q. Lin, and H. Wang, ‘‘Monocular gaussian slam with language
extended loop closure,’’ arXiv preprint arXiv:2405.13748, 2024.

[24] Z. Zhu, S. Peng, V. Larsson, W. Xu, H. Bao, Z. Cui, M. R. Oswald, and
M. Pollefeys, ‘‘Nice-slam: Neural implicit scalable encoding for slam,’’ in
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2022, pp. 12 786–12 796.

[25] N. Keetha, J. Karhade, K. M. Jatavallabhula, G. Yang, S. Scherer, D. Ra-
manan, and J. Luiten, ‘‘Splatam: Splat track & map 3d gaussians for dense
rgb-d slam,’’ in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024, pp. 21 357–21 366.

[26] J. Straub, T. Whelan, L. Ma, Y. Chen, E. Wijmans, S. Green, J. J. Engel,
R.Mur-Artal, C. Ren, S. Verma et al., ‘‘The replica dataset: A digital replica
of indoor spaces,’’ arXiv preprint arXiv:1906.05797, 2019.

[27] A. Hamdi, L. Melas-Kyriazi, J. Mai, G. Qian, R. Liu, C. Vondrick,
B. Ghanem, and A. Vedaldi, ‘‘Ges: Generalized exponential splatting for
efficient radiance field rendering,’’ in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 2024, pp. 19 812–
19 822.

[28] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, ‘‘A
benchmark for the evaluation of rgb-d slam systems,’’ in 2012 IEEE/RSJ
international conference on intelligent robots and systems. IEEE, 2012,
pp. 573–580.

[29] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, ‘‘Tanks and temples:
Benchmarking large-scale scene reconstruction,’’ ACM Transactions on
Graphics (ToG), vol. 36, no. 4, pp. 1–13, 2017.

[30] K. T. Giang, S. Song, and S. Jo, ‘‘Curvature-guided dynamic scale networks
for multi-view stereo,’’ arXiv preprint arXiv:2112.05999, 2021.

[31] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, ‘‘Orb-slam: a versatile
and accurate monocular slam system,’’ IEEE transactions on robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[32] T. Qin, P. Li, and S. Shen, ‘‘Vins-mono: A robust and versatile monocular
visual-inertial state estimator,’’ IEEE transactions on robotics, vol. 34,
no. 4, pp. 1004–1020, 2018.

[33] J. Engel, T. Schöps, and D. Cremers, ‘‘Lsd-slam: Large-scale direct monoc-
ular slam,’’ in European conference on computer vision. Springer, 2014,
pp. 834–849.

[34] J. Czarnowski, T. Laidlow, R. Clark, and A. J. Davison, ‘‘Deepfactors:
Real-time probabilistic dense monocular slam,’’ IEEE Robotics and Au-
tomation Letters, vol. 5, no. 2, pp. 721–728, 2020.

[35] Y. Yao, Z. Luo, S. Li, T. Fang, and L. Quan, ‘‘Mvsnet: Depth inference for
unstructured multi-view stereo,’’ in Proceedings of the European confer-
ence on computer vision (ECCV), 2018, pp. 767–783.

[36] Z. Teed and J. Deng, ‘‘Droid-slam: Deep visual slam for monocular, stereo,
and rgb-d cameras,’’ Advances in neural information processing systems,
vol. 34, pp. 16 558–16 569, 2021.

[37] N. Burgdorfer and P.Mordohai, ‘‘V-fuse: Volumetric depthmap fusionwith
long-range constraints,’’ in Proceedings of the IEEE/CVF International
Conference on Computer Vision, 2023, pp. 3449–3458.

[38] S. Song, D. Kim, and S. Choi, ‘‘View path planning via online multiview
stereo for 3-d modeling of large-scale structures,’’ IEEE Transactions on
Robotics, vol. 38, no. 1, pp. 372–390, 2021.

[39] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: from error visibility to structural similarity,’’ IEEE transac-
tions on image processing, vol. 13, no. 4, pp. 600–612, 2004.

[40] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, andM. Nießner,
‘‘Scannet: Richly-annotated 3d reconstructions of indoor scenes,’’ in Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion, 2017, pp. 5828–5839.

[41] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, ‘‘The unrea-
sonable effectiveness of deep features as a perceptual metric,’’ in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2018, pp. 586–595.

[42] F. Wang, S. Galliani, C. Vogel, P. Speciale, and M. Pollefeys, ‘‘Patch-
matchnet: Learned multi-view patchmatch stereo,’’ in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2021,
pp. 14 194–14 203.

[43] F. Wang, S. Galliani, C. Vogel, and M. Pollefeys, ‘‘Itermvs: Iterative
probability estimation for efficient multi-view stereo,’’ in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2022, pp. 8606–8615.

[44] F. Tao, H. Zhang, A. Liu, and A. Y. Nee, ‘‘Digital twin in industry: State-
of-the-art,’’ IEEE Transactions on industrial informatics, vol. 15, no. 4, pp.
2405–2415, 2018.

[45] I. Armeni, Z.-Y. He, J. Gwak, A. R. Zamir, M. Fischer, J. Malik, and
S. Savarese, ‘‘3d scene graph: A structure for unified semantics, 3d space,
and camera,’’ in Proceedings of the IEEE/CVF international conference on
computer vision, 2019, pp. 5664–5673.

[46] A. Barbasiewicz, T.Widerski, and K. Daliga, ‘‘The analysis of the accuracy
of spatial models using photogrammetric software: Agisoft photoscan and
pix4d,’’ in E3S Web of Conferences, vol. 26. EDP Sciences, 2018, p.
00012.

[47] P. Stączek, J. Pizoń, W. Danilczuk, and A. Gola, ‘‘A digital twin approach
for the improvement of an autonomous mobile robots (amr’s) operating
environment—a case study,’’ Sensors, vol. 21, no. 23, p. 7830, 2021.

12 VOLUME 11, 2023

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3583156

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Lee et al.: High-Quality 3D Gaussian Splatting Mapping

BYEONGGWON LEE received the B.S. degree
in software engineering from Hanyang University,
South Korea, in 2023. He is currently pursuing the
M.S. degree in computer science and artificial in-
telligence with Dongguk University, Seoul, South
Korea. His current research interests include 3D
reconstruction, computer vision, and SLAM.

JUNKYU PARK is currently pursuing the B.S.
degree in computer science at DonggukUniversity,
Seoul, South Korea, while working as an under-
graduate researcher at the AI & Robotics Lab.
His research interests include computer vision, 3D
reconstruction, and visual SLAM.

KHANG TRUONG GIANG received the B.S. de-
gree from Hanoi University of Science and Tech-
nology (HUST), Vietnam, in 2018, and the M.S.
and Ph.D. degrees in computer science from Ko-
rea Advanced Institute of Science and Technol-
ogy (KAIST), in 2021 and 2024, respectively. His
research interests include 3D reconstruction, fea-
ture matching, visual localization, and multi-view
depth estimation.

SUNGHO JO (SeniorMember, IEEE) received the
B.S. degree in mechanical and aerospace engineer-
ing from the School of Mechanical and Aerospace
Engineering, Seoul National University, Seoul,
South Korea, in 1999, and the S.M. degree in
mechanical engineering and the Ph.D. degree in
electrical engineering and computer science from
the Massachusetts Institute of Technology (MIT),
Cambridge, MA, USA, in 1999 and 2006, respec-
tively. While pursuing the Ph.D. degree, he was

associated with the Computer Science and Artificial Intelligence Laboratory
(CSAIL) and the Laboratory for Information Decision and Systems (LIDS)
and Harvard-MIT HST NeuroEngineering Collaborative. Before joining as
a Faculty Member of KAIST, he was a Postdoctoral Researcher with the
MIT Media Laboratory. Since December 2007, he has been with the School
of Computing, KAIST, where he is currently a Full Professor. He is also
associated with the KAIST Institute for AI and the KAIST Institute for
Robotics. He is also anAdjunct Professor with the KAISTRobotics Program.
His research interests include robotic intelligence, augmented intelligence,
and neuro-hybrid intelligence.

SOOHWAN SONG received the B.S. degree in
information and communication engineering from
Dongguk University, Seoul, South Korea, in 2013,
and the M.S. and Ph.D. degrees in computer sci-
ence from Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, South Korea,
in 2015 and 2020, respectively. He is currently an
Assistant Professor with the College of AI Conver-
gence, Dongguk University. Prior to joining Dong-
guk University, he was a Senior Researcher with

the Field Robotics Research Division, Electronics and Telecommunications
Research Institute (ETRI), Daejeon. His research interests include robotics,
motion planning, multi-robot systems, and computer vision.

VOLUME 11, 2023 13

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3583156

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


