
Autonomous Robots (2020) 44:1431–1450
https://doi.org/10.1007/s10514-020-09936-7

Online coverage and inspection planning for 3Dmodeling

Soohwan Song1 · Daekyum Kim1 · Sungho Jo1

Received: 30 June 2019 / Accepted: 15 July 2020 / Published online: 8 August 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In this study, we address an exploration problem when constructing complete 3D models in an unknown environment using
a Micro-Aerial Vehicle. Most previous exploration methods were based on the Next-Best-View (NBV) approaches, which
iteratively determine the most informative view, that exposes the greatest unknown area from the current partial model.
However, these approaches sometimes miss minor unreconstructed regions like holes or sparse surfaces (while these can
be important features). Furthermore, because the NBV methods iterate the next-best path from a current partial view, they
sometimes produce unnecessarily long trajectories by revisiting known regions. To address these problems, we propose a
novel exploration algorithm that integrates coverage and inspection strategies. The suggested algorithm first computes a
global plan to cover unexplored regions to complete the target model sequentially. It then plans local inspection paths that
comprehensively scans local frontiers. This approach reduces the total exploration time and improves the completeness of
the reconstructed models. We evaluate the proposed algorithm in comparison with other state-of-the-art approaches through
simulated and real-world experiments. The results show that our algorithm outperforms the other approaches and in particular
improves the completeness of surface coverage.

Keywords Active sensing · Exploration planning · Autonomous inspection · Next-best-view · Motion planning

1 Introduction

Reconstructed 3D models of large environments are becom-
ing more useful in many industrial fields, including agricul-
ture, engineering, and construction.With the development of
various mobile robots, many studies suggest various meth-
ods to realize autonomous modeling systems (Blaer and
Allen 2009; Ramanagopal et al. 2018; Roberts et al. 2017).
Recently, because of rapid technological advances, Micro-
Aerial Vehicles (MAVs) have become the most widely-used
robots in the modeling systems. With their high maneu-
verability, MAVs can acquire information from almost any
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vantage points. However, due to their limited battery life, it
is important to efficiently plan viewpoints when modeling a
target environment.

The problem of computing the optimal trajectory of an
MAV to reconstruct an environment is known as a view
path planning problem. This problem is addressed differ-
ently depending on the availability of environment’s prior
geometric information. First, when prior information is avail-
able, inspection approaches (Englot andHover 2012; Bircher
et al. 2016;Li et al. 2012) are used.The inspection approaches
precompute a view path that provides complete surface cov-
erage of the prior model. These methods are able to provide
an optimal solution for given geometric information of a tar-
get. However, prior informationmay not be available inmany
real-world situations. Second, when prior information is not
available, the exploration approaches (Yamauchi 1997; Juliá
et al. 2012; Vasquez-Gomez et al. 2017) are used. The explo-
ration approaches incrementally complete a 3D model of
unexplored regions. They iteratively plan view paths in an
online manner from the partially acquired environment.

In this study, we focus on the MAV 3D exploration
problem to model an unknown environment using a forward-
facing depth sensor. Most exploration algorithms are based
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on the Next-Best-View (NBV) method (Connolly 1985).
This method iteratively determines a view configuration
that provides the most informative from the current par-
tially reconstructed environment. Some studies (Bircher et al.
2018; Charrow et al. 2015) determine the most informative
sequence of views rather than a single optimal view. The
“informativeness”, the quantitativemeasurement of informa-
tion, is estimated by analyzing unknown volumes (Bircher
et al. 2018), frontiers (Blaer and Allen 2009; Yamauchi
1997), or information-theoretic measures (Moorehead 2001;
Julian et al. 2014; Jadidi et al. 2015). All these approaches are
greedy strategies that determine local solutions from current
partial information. However, some factors of greedy strate-
gies degrade the modeling performance. First, they focus
only on sensing a large unknown region while ignoring less
informative regions. Thus, the constructed model may be
incomplete, and therefore inaccurately reconstructed regions,
such as holes or sparse surfaces, are prevalent. Second, they
do not consider a global route of an entire environment.
Therefore, they may produce unnecessarily long trajectories
that frequently overlap. This results in inefficient reconstruc-
tion performance in time by repeatedly revisiting known
regions. Third, they ignore additional sensing targets that
may emerge from the continuousmodel updateswhile a robot
follows a planned path. Formore accuratemodeling, it is nec-
essary to refine the planned path according to the updated
information.

To address the aforementioned, this paper proposes a
new exploration planning method that provides an inspec-
tion strategy to model an unknown structure. The proposed
method integrates both global coverage and local inspec-
tion planning. For global coverage planning, an online map
partitioning method is introduced. It decomposes an entire
target space into uniformly distributed sectors representing
a topological map. Then, it consistently refines shapes of
the sectors based on currently updated map in real time. For
every iterative planning step, a global coverage path of the
entire environment is generated by computing a visitation
sequence of the currently refined sectors. For the local inspec-
tion planning algorithm, heuristics that actively determine
sampling region are proposed. This generates high quality
inspection samples even with a small number of sampling
points, which enables the existing inspection method to be
processed online. The proposed local inspection method is to
provide a path that fully covers local frontiers in the current
iteration. The obtained path is iteratively replanned based
on the currently updated map until completing the model-
ing of a local area. Integrating the individual components,
the proposed method is to obtain a global coverage and local
inspection path consistently to improve 3D modeling perfor-
mances; it reduces the total moving distance and time during
inspection and enhances the completeness of surface model-

ing. Figure 1depicts the overviewof the proposed exploration
planning method.

1.1 Contributions and outline

This paper suggests the following contributions:

– Unlike past solutions, the proposed solution includes
online coverage and inspection approaches for the explo-
ration problem to completely model 3D environments.

– For global coverage planning, this paper proposes an
online map partitioning method to construct a topologi-
cal map. This method decomposes a map into sectors by
clustering free space. To this end, a new distancemeasure
for clustering is introduced. This enforces the compact-
ness of complexity of each sector region.

– For online inspection planning, an informative sam-
pling algorithm is introduced. This aims to incrementally
reduce sampling regions through a streaming set cover
algorithm (Emek and Rosén 2016). The advantages of
the proposed method are verified through experiments.

– The proposed method is evaluated in both simulated and
real-word environments. There are two sets of simulated
scenarios: a classical 2D environment and 3D infrastruc-
ture. In the real-world scenario, the performances of the
proposed method is compared with the performances of
the offline inspection method (Englot and Hover 2012).

A preliminary version of this paper has been presented
(Song and Jo 2017). In the current paper, we extended the
previous study to take into account global coverage planning.
The sector decomposition and coverage planning methods
are newly presented. We provide more detailed explanations
about the inspection algorithm and present a thorough eval-
uation of the method using various experimental scenarios.
As compared to the previous study, we also experimentally
addressed the effect of the global coverage planning.

The remainder of this paper is structured as follows. Sect. 2
presents the related work on mobile robot exploration and
inspection. Section 3 describes the considered problem and
its basic setup. Section 4 provides an overview of the pro-
posed approach,which is divided into two stages.Global path
planning is detailed in Sect. 5 and local inspection planning
is detailed in Sect. 6. Sections 7 and 8 describe the simula-
tion experiments and real-world experiments, respectively.
Finally, in Sect. 9 we discuss our findings and the study lim-
itations and in Sect. 10 summarize the contributions of this
study.

2 Related works

In this section,wediscuss prior studies regarding autonomous
modeling systems for exploration and inspection of mobile
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robots. Approaches for the inspection task plan a coverage
path offline because they assume that prior information about
environments is given. In contrast, approaches for the explo-
ration task assume that the target environment is unknown.
Therefore, they consistently plan paths in an online manner
according to acquired information.

2.1 Exploration planning

Existing approaches for the exploration problem are based
on the NBV strategy, which iteratively selects the optimal
viewpoint and computes a path to reach the next-best view-
point. Frontiers are one of the most widely used evaluation
metrics on NBV methods for mobile robot exploration. The
frontier, first defined by Yamauchi (1997), represents the dis-
crete border between an explored and an unexplored space.
His approach always determines an exploration path toward
the closest frontiers. The frontier approach has been extended
to 3D volumetric representations and applied in MAV 3D
exploration tasks (Cieslewski et al. 2017; Bircher et al. 2018;
Charrow et al. 2015). Shen et al. (2012) suggested an indoor
exploration method using MAVs by utilizing the expansion
of a particle system, which is a similar/extended concept of
the frontier. Cieslewski et al. (2017) determined target fron-
tiers from the current Field of View (FoV) in order to explore
a large area at high speed.Vasquez-Gomez et al. (2014) pro-
posed a method that directly samples candidate views in the
configuration space. The NBV is determined by evaluating
the samples using a utility function considering some factors
such as unknown volume, overlap and path distance.

Information-theoretic measures have also been used for
NBVevaluations in robot exploration. Some studies aimed to
minimize themap entropy (Moorehead 2001) or tomaximize
the mutual information (Julian et al. 2014; Jadidi et al. 2015)
of future sensor measurements and the current map. These
studies were focused on exploring only a 2D occupancy grid
map constructed from the data provided by an omnidirec-
tional range sensor. The computational cost of evaluating
mutual information is high and scales linearly with the map’s
resolution and the dimension of the configuration space; thus,
these methods are not appropriate for 3D exploration with
sensors having a limited FoV.

Recently, several studies (Hepp et al. 2018; Wang et al.
2019; Zhu et al. 2018) employed machine learning meth-
ods for NBV planning. Hepp et al. (2018) proposed an
exploration method that predicts the utility of a viewpoint
via a 3D convolutional neural network (CNN). This 3D-
CNN used a multi-scale voxel representation of the current
volumetric map as an input to predict the utility score of
a viewpoint.Wang et al. (2019) proposed an information
gain metric for NBV determination, which integrates an
entropy-based volumetric utility with a data-driven metric.

The data-driven metric is estimated based on a 2D-CNN
architecture instead of the 3D-CNN (Hepp et al. 2018). The
2D-CNN computes the ranked motion directions from a
depth image input.Zhu et al. (2018) used deep reinforce-
ment learning to learn topological and structural information
of an office-like environment. This learned model enables
the robot to compute a long-term visiting sequence for unex-
plored areas.

The objectives of several recent studies (Bircher et al.
2018; Charrow et al. 2015; Heng et al. 2015; Song et al.
2020) was to evaluate view sequences or optimize view
paths toward the determined the next-best viewpoint. Shade
and Newman (2011) computed the steepest descent path
from a 3D vector field toward frontiers to obtain shorter
3D exploration paths. Bircher et al. (2018) proposed an
exploration method based on a receding horizon that sam-
ples feasible configurations in a rapidly exploring random
tree (RRT). The method extracts the most informative
branch in the random tree and moves the first node of
the branch.Charrow et al. (2015) proposed an information-
theoretic planning method that determines the trajectory that
maximizes the information-theoretic objective from global
and local motions. Although this method takes into account
the locally and globally uncertain parts of a map simulta-
neously, it does not consider their full coverage. Similar to
our approach, Heng et al. (2015) considers the coverage of
local unknown parts along the path to the NBV. For the
coverage computation, their method requires precomputed
3D state lattices that contain motion-constrained edges and
view frustums in every state. It also ignores updated sensing
information for the path, whereas our approach incremen-
tally refines the inspection path according to updates.Oßwald
et al. (2016) introduced a method that computes a global
exploration strategy from a topological graph provided by
the user. The method significantly reduces the overall path
length required to explore the entire environment. However,
using no prior information our method generates a topolog-
ical graph online and plans a global exploration strategy.

2.2 Coverage and inspection planning

Coverage planning is defined as a task of computing amobile
robot’s path that guarantees of visiting all the points in a target
area. In particular, inspection planning, referred to as visual
coverage planning, is a sub-problem of coverage planning
that determines a path by gathering the surface information
of all the target points using vision sensors. In this paper,
for clarification of meaning, we differentiate the inspec-
tion planning problem from the original coverage planning
problem, where robots perform contact or passage opera-
tions.
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Fig. 1 Overview of the proposed 3D modeling system. a The micro-
aerial vehicle explores a structure while simultaneously constructing its
volumetric map. The proposed approach is composed of two steps. b
First, a global path is determined by computing global coverage of the
unknown space. To compute the global coverage, we decompose the
entire map into a set of sectors and then compute the visitation order of

the unexplored sectors. The global path to move toward the next sec-
tor is then determined. c The second step is local inspection planning,
which provides an inspection path for the local frontiers near the global
path. The inspection path is iteratively updated according to the updated
frontiers

2.2.1 Coverage path planning

A large body of studies has been focused on coverage path
planning in 2D environments for many robot applications,
such as autonomous vacuum cleaners and lawn mowers,
and for search-and-rescue missions. Most coverage meth-
ods decomposed the entire map into sub-regions or cells and
then computed their visitation sequence. Some approaches
exactly decomposed the map into non-overlapping sub-
regions using trapezoidal (Oksanen and Visala 2009), bous-
trophedon (Choset 2000), or Morse cell decomposition
(Choset et al. 2000). However, in several studies (Zelin-
sky et al. 1993; Gabriely and Rimon 2002) the map was
approximately decomposed into grid cells and then their
coverage was planned. 2D coverage algorithms have been
extended to online applications (Yang and Luo 2004; Shnaps
and Rimon 2014) or to non-planar surfaces in 3D spaces
(Atkar et al. 2001, 2005).Atkar et al. (2001) utilized exact
cellular decomposition for coverage of 3D structures. They
decomposed an offset surface into cells, the boundaries of
which were defined by the critical points of a series of 2D
planners.Hess et al. (2012) investigated coverage planning
of redundant manipulators to clean 3D surfaces. They com-
puted coverage paths in terms of the amount of displacement
of joint configurations rather than Euclidean distance of sur-
face patches. These methods addressed coverage planning
for 3D surfaces, whereas our approach is focused on 3D cov-
erage of the entire free space. We constructed a topological
map by decomposing the entire free space into disjoint sec-
tors and then computes their coverage. Our approach is an
online algorithm that updates the global coverage according
to the incremental map construction.

The construction of a topological map is a major issue
in coverage planning. Topological maps represent the entire
environment as a graph consisted of the nodes, which are
decomposed into sub-regions, and the edges, which are the

connectivity between sub-regions. A constructed topological
map is used to compute a coverage sequence of sub-regions.
Each sub-region is covered by simple zigzag-like patterns
(Brown and Waslander 2016; Das et al. 2014). Compact and
convex decomposition of sub-regions is required for effective
coverage planning.Brown and Waslander (2016) proposed
a constriction decomposition method, which decomposes
indoor environments based on narrow passages, called con-
striction points. The constructed topologicalmaps are similar
to the results of room-based decomposition.Das et al. (2014)
proposed greedy convex polygon decomposition and a cov-
erage planning framework. The framework is extended to
a partially known search environment by iteratively re-
planning the coverage path after the current sector has been
fully searched.Liu et al. (2015) also proposed an incremental
topological segmentation algorithm for topological mapping
of partially known 2D environments. Blochliger et al. (2018)
presented a 3D topological mapping framework for MAV
path planning. They composed a topological map as a set of
convex-shaped free spaces, which was constructed by clus-
tering the free voxels from a given sparse feature-based map.
Most approaches for online topological mapping (Das et al.
2014; Liu et al. 2015) were designed for 2D environments.
The method for 3D topological mapping (Blochliger et al.
2018) requires prior information of the entire environment
and does not operate online. In this paper, an online algorithm
is proposed for constructing 3D topological maps for cover-
age planning in partially known environments. The algorithm
decomposes a map into a set of sectors by clustering free
spaces while enforcing the convexity of the cluster shape.

2.2.2 Inspection path planning

Traditional inspection methods plan a path offline using a
prior 3D model of the environment.Cheng et al. (2008) sim-
plified 3Durban structures into hemispherical and cylindrical
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models and planned time-optimal coverage trajectories for
the simplified models. Englot and Hover (2012) introduced
a sampling-based approach for inspecting the complex 3D
structures of a ship’s hull. The approach separately solves
the coverage sampling and the multi-goal planning problem.
The approach first performs coverage sampling, which deter-
mines the smallest set of views that guarantees full coverage,
and then solves the multi-goal planning problem: visiting all
the sampled views. Instead of selecting the smallest set of
views, Bircher et al. (2016) attempted to resample the cover-
age viewpoints iteratively to reduce the distance cost of the
overall trajectory.

Only a few studies have addressed online inspection plan-
ning in 3D environments.Vidal et al. (2017) proposed an
onlinemethod for the inspection of underwater structures that
does not require any prior information. Their method sam-
ples candidate viewpoints for sonar and camera sensors and
then determines the nearest viewpoint as the NBV, similarly
to the closest frontier method (Yamauchi 1997). This method
determines a viewpoint only using local sensing information
without considering global trajectories.Galceran et al. (2015)
took localization uncertainty into account for inspection tasks
using an underwater vehicle. Similarly to our method, their
method iteratively computes an inspection path according to
sensingmeasurements. However, their system assumes that a
prior model of the target is provided. Also, it computes initial
paths offline using the prior model. In contrast, our algorithm
consistently provides an inspection path without using prior
model, in real time and online.

3 Problem description and basic setup

In this study, we consider the exploration problem of an
unknown and spatially bounded 3D space V ⊂ R

3. We
assume that the target structure is bounded within V . An
MAV is to simultaneously construct a 3D model of the tar-
get structure by exploring 3D space V . We assume that the
MAV is equipped with a forward-looking depth sensor that
collects dense 3D data. The sensor has innate and userdefined
constraints like a limited Field of View (FoV) and max/min
sensing ranges. The estimated 3D data are integrated into a
probabilistic volumetric map using an OctoMap (Hornung
et al. 2013). The volumetric map M discretizes the entire
space V into discrete volumes as octree structures. Each vol-
ume is classified to three space states: occupied Vocc ⊂ V ,
free V f ree ⊂ V , and unknown Vunk ⊂ V . It simultaneously
represents a workspace W ⊂ R

3 and the volumetric model
of an environment.

We assume that the configuration of theMAV is a flat state
comprising a 3D position and yaw angle q = {x, y, z, ψ}T
with zero roll and pitch (Bircher et al. 2018). We denote the
maximum translational speed vmax and the rotational speed

Algorithm 1 Proposed exploration planning algorithm
Input: Volumetric mapM, Current configuration qcurr , Previous sec-

tor set S, and Initial sampling distance dsample.
/∗ Global Path Planning ∗/

1: S ← Sector Decomposi tion(M,S)

2: SΠ ← SectorCoveragePlanning(S, qcurr )
3: [Scurr , Snext ] ← Current&Next Sectors(SΠ)

4: Rsearch ← Get SearchRegion(Scurr , Snext )
5: [qgoal , ξglobal ] ← CompGlobal Path(qgoal , Snext , Rsearch)

/∗ Local Inspection Planning ∗/

6: while qcurr �= qgoal do
7: V f ront ← Get FrontierCells(M, Rsearch)

8: if |V new
f ront | > θ f ront then

9: [ξlocal , QueueQ∗ ] ← I nspectionPathPlanning
(qcurr , qgoal , QueueQ∗ , V f ront , dsample)

10: end if
11: MoveT oward(ξlocal )

12: Update(M, qcurr , QueueQ∗ )
13: end while

by ψ̇max . Both speed limits are set to be small to achieve
increased sensing accuracy and exact path following. Paths
that MAV navigates are computed in real-time. The paths are
planned only within the known free space that guarantees a
collision-free navigation. Let Q be a feasible configuration
space, which contains all possible configuration of the MAV.
We define a path ξ : [0, 1] → Q as a sequence of configura-
tions. Let V ∗ ⊂ V be as a set of all volumes that are visible
from any configuration in Q. The volumetric model is com-
plete when Vocc ∪V f ree inM is equal to V ∗. Ultimately, our
objective is to generate a complete volumetric model with
the minimum exploration time.

4 Proposedmethod

To generate a 3D model of an environment, we iteratively
plan an exploration path for an MAV by utilizing a current
volumetric model M until the entire model is completely
explored. Figure 1 shows an overview of our proposed
approach and system. The proposed approach is a two-stage
planning algorithm. The first stage constitutes global path
planning,which determines the goal configuration and global
path by computing the global coverage of the entire space.
The second stage is local inspection planning. It provides
an inspection path for the local frontiers near the global
path. Both the global and local planning methods are online
algorithms that can be operated on the partially known and
consistently updatedmap. Using this approach, theMAV can
rapidly explore the entire areawhile completelymodeling the
local surfaces of the target structure.

Algorithm 1 depicts the pseudocode of the proposed
exploration planning algorithm, which is an iterative step
in a loop. The algorithm first decomposes the entire space
into a set of polygonal regions denoted as sectors S (line
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1 and Sect. 5.1). It then estimates the global coverage of
the unexplored area by computing a visitation sequence
among the sectors (line 2 and Sect. 5.2). The global cov-
erage is represented as a sequence of unexplored sectors
SΠ = {Sπ1 , . . . , SπN }, whereΠ = {π1, . . . , πN } is a permu-
tation of the unexplored sector indices {1, . . . , N }. TheMAV
sequentially constructs themodel following the global cover-
age. The sector set and its coverage are consistently updated
based on the changing information of the map. The search
region Rsearch is defined as a region inside the sectors from
a current sector Scurr to a subsequent sector Snext (line 4).
The goal configuration qgoal is determined to be the sensor
position that maximizes the potential visibility of unknown
volume while being close to the center of Snext . The algo-
rithm then computes the global path ξglobal from the current
configuration qcurr to the qgoal (line 5 and Sect. 5.3).

Next, the algorithm plans the local inspection path ξlocal
that provides maximal coverage of the frontier cells in
Rsearch . The volumetric map M (line 12) and frontier cells
V f ront are consistently updated inside Rsearch (line 7). We
define a frontier cell as the free volume adjacent to the
unknown volume in M. The inspection path is then itera-
tively planned according to the updated frontier cells (line 9
and Sect. 6). In each iteration, our inspection algorithm per-
forms online refinement of the current local path ξlocal by
maintaining a configuration set Q∗ ⊂ Q. Q∗ is a set of sam-
pled configurations that composes the local path ξlocal . The
sampled configurations are sequentially stored in a queue
structure QueueQ∗ . The configurations that have already
been visited by the MAV are removed from QueueQ∗ (line
12). The refinement step of the inspection path is performed
only if the total number of new frontier cells |V new

f ront | is
greater than the constant value θ f ront front (line 8). If the
MAV reaches qgoal , the iteration is stopped. These planning
steps for global and local paths are repeated until the model
is completed.

5 Global path planning

Our approach consistently computes global coverage of the
unexplored region to obtain a global path. In contrast to the
other exploration methods (Yamauchi 1997; Bircher et al.
2018;Charrowet al. 2015), ourmethod assumes the unknown
volumes in M to be free and computes their coverage. To
compute the global coverage, it first decomposes themap into
a set of sectors S. A sector Si ∈ S is a volume, changeable
in shape, which can be fully covered by the local inspection
algorithm. We restrict the sector’s maximum size, propor-
tional to the maximum sensing range of the vision sensor.
The suggested method then computes the coverage of all
unexplored sectors. An unexplored sector is defined as a sec-
tor where more than a certain percentage of volumes has not

Fig. 2 Examples of sector decomposition and global coverage planning
during exploration in an office-like environment (Fig. 5c). Each yellow
circle shows the position of an MAV when each volumetric map is
constructed. The shape of the sectors is iteratively refined according
to the updated map. Each sector maintains a convex shape as far as
possible. The shortest path that visits all the center positions of the
unexplored sectors is then determined. (Color figure online)

been explored. Figure 2 depicts an execution example of the
sector decomposition and global coverage planning. After
the sector coverage has been computed, a goal configura-
tion and global path are determined to move toward the next
sector and to obtain the maximum visibility of the unknown
volume. The global paths are computed within the known
free space for a collision free navigation.

5.1 Online sector decomposition

This section describes the method of dividing the entire map
into a sector set, which is defined as a set of unknown and
free volumes V f ree ∪ Vunk in M. We formulate the sec-
tor decomposition problem as a graph-partitioning problem.
Let Gad j = (Xad j , Ead j ) be a weighted, undirected adja-
cency graph, where the vertex set Xad j is composed of the
set of unknown and free volumes with specific resolution
θ sectorad j−res and the edge set Ead j is composed of their connec-
tions. The given problem here is to decompose the vertex
set Xad j into a collection of mutually disjoint non-empty
sets S = {S1, . . . , SN }, such that all the vertices contained
in a particular set are connected by their edges. The set of
unknown and free volumes of Xad j are extracted by travers-
ing the octree nodes ofM with the fixed octree depth of the
resolution θ sectorad j−res . The edge set Ead j is constructedwith the
26-adjacency relation (Papon et al. 2013). The edge weight
is defined as the Euclidean distance of adjacent vertices.
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Algorithm 2 Online sector decomposition algorithm

Input: Volumetric map M, and Previous sector set S.
/∗ Initialization ∗/

1: Gad j ← UpdateAd jGraph(M)

2: Xseed ← GetCenterV ertices(S,Gad j )

3: S ← AssignT oSectors(Xseed )

/∗ Assignment ∗/

4: while S change do
5: for all Si ∈ S do
6: Xnbr

i ← Get Ad jV ertices(Si ,Gad j )

7: RemoveOutO f Max RangeV ertices(Xnbr
i , xseedi )

8: X∗nbr
i ← GetMinDist N BR(Xnbr

i , xseedi ,S, Xseed )

9: Si ← Si ∪ X∗nbr
i

10: end for
11: end while

/∗ Post-Processing ∗/

12: Cluster RemainV ertices(S,Gad j )

13: MergeSmallClusters(S)

14: ReExpandClusters(S)

15: return S

To solve this, we employ a local region growing method
(Papon et al. 2013), which is a variant of the k-means cluster-
ing algorithm. This method generates a set of local clusters
by incrementally expanding the cluster regions from each of
the seed points distributed evenly in the map. The cluster
expansion proceeds up to a certain restricted range, maxi-
mum expansion range. This generates compact and nearly
uniformed clusters with a low computational overhead.

Similarly, the suggestedmethod aims to expand each clus-
ter region while enforcing the convexity of a cluster shape to
the greatest extent possible, which enhances obstacle clear-
ance and the sensor coverage performance in a local area.
The method limits the search region and reduces the num-
ber of distance comparisons; this gives a significant speed
improvement compared to a conventional k-means cluster-
ing algorithm that calculates the distances for all vertices.
Furthermore, our approach expands a cluster region to the
connected vertices at each step, so the additional connectiv-
ity check is not required. We provide a new distance measure
that includes a metric for star-convexity for convex-shaped
clustering. Furthermore, our approach is an online algorithm;
it iteratively updates each sector region according to the
changed environment. It computes a new seed point for the
updated sector region and performs clustering again. The
proposed sector decomposition algorithm is summarized in
Algorithm 2.

5.1.1 Algorithm pipeline

The proposed algorithm first constructs the adjacent graph
Gad j from the current mapM (line 1). Vertices are rejected
if they are unreachable from the current robot position. The
reachability is estimated by traversing the adjacent graph
using a breadth-first search starting from the current vertex.

Volumes that are not included in Gad j are eliminated from
the previous sector set S. Then, a set of seed points Xseed is
initialized at vertices located at each center position of S (line
2). If this is the first iteration with no previous sector set, the
seeds are initialized as the center positions of the equal-sized
rectangular cuboid grids in M. Size of the cuboid grid in
the xy-direction is set to be equal to the maximum expan-
sion range while the size in the z-direction is 0.8 times the
maximum expansion range, due to the flat state constraint of
the MAV. Each seed point xseedi ∈ Xseed is assigned to each
cluster Si ∈ S for the first time (line 3).

The algorithm incrementally expands each cluster set Si
to the neighboring vertices Xnbr

i ⊂ Xad j by measuring their
distance to seed point xseedi . The expansion to the neighbor-
ing vertices is sequentially processed for each cluster at each
iterative step. When a sector region reaches the boundary of
another sector, further expansion is achieved by assigning a
vertex to a seed point with the minimum distance. Figure 3
illustrates the expansion of two clusters. To restrict a sector
expansion to the maximum expansion range, out of range
vertices are removed from Xnbr

i (line 7). The vertices that a
cluster already visited are excluded from the neighboring ver-
tex set of the cluster. The clustering operation is performed
until there is no further expansion. This approach is simi-
lar to the breadth-first search of multiple starting points in
the adjacency graph, and therefore guarantees the clustered
vertices’ connectivity and proximity properties.

At the end of this process, the algorithm clusters the
unclustered vertices by randomly selecting a vertex and
grouping it with neighboring unclustered vertices within the
maximum expansion range (line 12). All the small clusters
then are merged with the cluster closest to them (line 13). A
small cluster is defined as a cluster having a size smaller than
a specific volume. Finally, the algorithm determines the last
sector shape by re-expanding the clusters to their neighbor
vertices (line 14).

5.1.2 Distance measure

An existing clustering method (Papon et al. 2013) considers
the spatial compactness of the cluster, but the convexity is not
considered. The convexity of the cluster is an important fac-
tor to improve the performances of global and local planning.
The convex-shaped clustering enhances the sensor coverage
performance in a local area by reducing the possibility of
blocking the sensor’s field of view. The convex-shaped free
space guarantees collision-free navigation of a robot with
local obstacle clearance. Furthermore, each decomposed sec-
tor corresponds to a partially enclosed area such as a room;
this area implicitly represents the vertices of a topological
map. When assigning a vertex to a cluster, we consider the
spatial proximity and cluster convexity simultaneously. We
define the distance measure from a vertex xk to a cluster Si

123



1438 Autonomous Robots (2020) 44:1431–1450

Fig. 3 Illustrations of proposed region growing process. a The algo-
rithm incrementally expands each cluster region to the neighboring
vertices, starting from each seed point (red and blue points). Vertices
with the same color transparency represent neighbor sets processed
simultaneously. Each vertex overlapped by more than two clusters (ver-
tices colored purple) compares the distances to each seed point. b For
the convexity measure of a target vertex to a cluster, the star convexity
is evaluated by counting vertices, the line segment of which from the
target lies in the cluster region. (Color figure online)

as a spatial distance between xk and seed point xseedi , which
is penalized by the convexity of Si from xk . Given a vertex
xk and a cluster set Si , the distance function is defined as

DG(Si , xk) = Dspatial
G (xseedi , xk) + α{1− Dconvex

G (Si , xk)}
(1)

where Dspatial
G and Dconvex

G are spatial distance and convex-
ity measure functions, respectively. The convexity measure
has a range [0, 1]; the higher the value, the more convex the
cluster shape is. The α is a constant weight for the convexity
penalty. The spatial distance Dspatial

G is defined as the dis-
tance of the shortest path from xseedi to xk in Gad j . Similarly
toDijkstra’s algorithm, our algorithmmaintains the distances
of the shortest path at every expansion step.

We define the convexity measure Dconvex
G as the star con-

vexity for a cluster set Si . A set X is star-convex with respect
to a point c, if every line segment from c to a point x ∈ X lies
in the set X . Let line(xk, x j ) be a set of vertices composing
a line segment from xk to x j . The star convexity for a sector
Si w.r.t a vertex xk is defined as

Dconvex
G (Si , xk) = 1

|Si |
∑

x j∈Si
1[line(xk, x j ) ⊂ Si ] (2)

where |Si | is the number of vertices in Si and 1 is the indicator
function. This measure simply represents the ratio of vertices
that satisfy star convexity in Si from a vertex xk . Figure 3b
illustrates the convexity measure of a vertex between two
sectors. The dashed line is a line segment that does not sat-
isfy star convexity. This effectively constructs convexshaped
clusters, as shown in Fig. 2.

5.2 Sector coverage planning

After performing sector decomposition, a coverage path that
visits every unexplored sector from a current location is
planned. The coverage path is computed with the adjacency
graph Gad j constructed in the previous step. The path in
Gad j guarantees collision-free navigation, because the ver-
tices are composed of reachable unknown and free volumes.
The sector coverage problem is to find the shortest path that
starts from a current vertex and visits all center vertices of
the uncovered sectors in Gad j .

To compute the coverage, we employ an approach simi-
lar to that in Das et al. (2014), which applies metric closure
to transform the coverage problem into a Hamiltonian path
problem. The metric closure is used to compose an aug-
mented graph Gaug = (Xaug, Eaug), where the vertex set
Xaug is composed of vertices located at the center of each
unexplored sector in Gaug and the edge set Eaug is their
connections. Each edge has a cost obtained by calculating
the shortest path distance between the vertices; the path is
computed using an A* search in Gad j .

The complete graphGaug is constructed by computing the
all-pair shortest paths in Gad j . This augmented graph Gaug

represents the topological map of the entire environment.
Finally, the Hamiltonian path in Gaug is computed using a
heuristic TSP solver (Helsgaun 2000). The resulting path
provides the sector visitation order and the sector coverage
is estimated by sequentially connecting the computed paths
according to the order.

5.3 Goal determination and global path planning

Todetermine a goal, wefirst determine a sensor configuration
qgoal that maximizes the utility function in the search region
Rsearch from the current partial modelM. The configuration
qgoal is determined as

qgoal = argmax
k=1,...,Nglobal

samples

U til(qk, Rsearch) (3)

where Nglobal
samples is the number of sampled configurations.

The samples are directly generated in a feasible configura-
tion space by extending the branches of an RRT* (Karaman
and Frazzoli 2011) from the current configuration qcurr . We
generate the sample configurations only within the free space
in the search region Rsearch . This approach, similarly to that
inVasquez-Gomez et al. (2018) and Bircher et al. (2018),
simultaneously processes the sample evaluation and path
planning. Thus, all the samples in the RRT* can feasibly
be reached and their paths are inherently collision-free.

We define the utility function as the unknown volumes
that are visible from qk , which is penalized by two distance
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measures DT and DE (Song and Jo 2018):

Util(qk, Rsearch)

= V is(qk, Rsearch)e
−λ{DT (qcurr ,qk )+DE (qk ,Snext )} (4)

whereV is(qk, Rsearch) is the volumeof visible andunknown
cells from qk in Rsearch . The volume is estimated through ray
casting in the view frustum of the sensor and counting the
number of unknown visible cells. For the fast utility com-
putation, the resolution of ray casting is set to a two-times
lower resolution than the resolution of volumetric map. The
parameter λ is a tuning factor penalizing long distance costs.
DT (qcurr , qk) is the path distance between qcurr and qk in
the random tree T . DE (qk, Snext ) is the Euclidean distance
between qk and the center position of a sector Snext . The
sample paths in T toward the center of Snext is assigned a
higher weight value by DT and DE . Thus, the determined
goal configuration qgoal covers large unknown volumes in
Rsearch and explores toward the center of Snext simultane-
ously. After qgoal is determined, a global path ξglobal can
be obtained by extracting edges from qcurr to qgoal in T .
The path ξglobal is then smoothed by using a path smoothing
method, as in Kuffner and LaValle (2000).

6 Local inspection planning

This section describes the planning of a local inspection path
that provides visual coverage of the local frontier cells. The
proposed inspection path planning algorithm is detailed in
Algorithm 3. The algorithm first computes the shortest path
ξshort from the current configuration qcurr to qgoal by using
an RRT* planner and then performs path smoothing (line 1).
If it is the first iteration of the loop ofAlgorithm 1 (line 6–13),
ξshort is equal to the global path ξglobal , so ξglobal is directly
used. We define a sampling region Rsample ⊂ W as a set of
positions in radius dsample centered at each discretized posi-
tion of ξshort (line 2). We restrict feasible sampling positions
for path planning to Rsample to prevent a situation in which
the length of the inspection path is significantly longer than
ξshort . As some frontier cells cannot be observed from any
positions in Rsample, our algorithm determines the best path

that provides a certain percentage θ
insp
cover of coverage rather

than full coverage. If there is no sample set that satisfies a
θ
insp
cover -coverage, the algorithm instead finds a path that gives
the maximum coverage.

To compute the inspection path, we employ a sampling-
based approach (Englot and Hover 2012). The sampling-
based approach is efficiently applicable to problems involv-
ing a high-dimensional configuration space. Furthermore, it
guarantees that the probabilistic completeness (Englot and
Hover 2012), meaning the feasible solution, if such exists,

Algorithm 3 Local inspection planning algorithm
Input: Current configuration qcurr , Goal configuration qgoal , Queue of

configurations QueueQ∗ , Frontier cells V f ront , and Initial sampling
distance dsample.

1: ξshort ← ComputeShort Path(qcurr , qgoal )
2: Rsample ← Get SamplingRegion(ξshort , dsample)

/∗ Informative Coverage Sampling ∗/

3: for k = 1, ..., Nlocal
sample do

4: qk ← Get FeasibleSample(QueueQ∗ , Rsample)

5: Vk ← V isible(qk , V f ront )

6: Tk ← argmaxTi⊂Vk lev(Ti )
7: for all vi ∈ Tk do
8: eid(vi ) ← k
9: e f f (vi ) ← lev(Tk)
10: end for
11: Q∗ ← UpdateSampleSet(eid(·))
12: dmax ← maxqi∈Q∗ wi

13: if (CovRatio(Q∗) > θ
insp
cover )&(dmax < dsample) then

14: dsample ← dmax
15: Rsample ← Get SamplingRegion(ξshort , dsample)

16: end if
17: end for

/∗ Multi-Goal Planning ∗/

18: ξ∗ ← SolveT SP({qcurr , qgoal } ∪ Q∗)
19: [ξ∗, QueueQ∗ ] ← SmoothPath(ξ∗)
20: return ξ∗ and QueueQ∗

will be eventually found by algorithm. The sampling-based
approach is composed of a two-step optimization scheme.
In the first step, the algorithm solves the coverage sampling
problem aimed to determine an optimal set of configurations
that cover the frontier cells. In the second step, it solves a
multi-goal planning problem, which is aimed to compute
the shortest path connecting all sampled configurations. The
following subsections (Sects. 6.1 and 6.2) detail the cover-
age sampling algorithm and multi-goal planning framework,
respectively.

6.1 Informative coverage sampling

The goal of the coverage sampling problem is to determine a
set of sample configurations that covers more than a certain
percentage θ

insp
cover of the frontier cells. The ideal coverage set

consists of a small number of samples with high proximity to
the shortest path. We represent the problem as a weighted set
cover problem in a set system (V , Q), where V is a finite set
of frontier cells and Q is the robot configuration space. Every
feasible configuration qk ∈ Q maps to a subset Vk ⊂ V
viewed by the sensor (line 5) and has its own weight. The
weight wk is defined as the proximity of qk and ξshort and
can be computed as

wk = min
qi∈ξshort

DE (qk, qi ) (5)

where qi is a discretized configuration in ξshort . When each
configuration qk is sampled individually, the goal is to con-
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Fig. 4 Illustration of the proposed algorithm’s use of the streaming
set cover approach (Emek and Rosén 2016) for incrementally reducing
a sampling range and improving the coverage sampling problem. The
processes are described in 2D for clarity. The red line and the gray ellip-
soid represent the shortest path and sampling region, respectively. The
successive boxes are frontier cells. Each box stores an identifier eid and

effectiveness e f f . Each configuration is sequentially sampled, from 1©
to 12©. a Configurations 1© to 4© are assigned to each eid of a frontier
cell. b The configurations 3© 5© 4© 8© are included in a suboptimal
coverage set Q∗, while 1© 2© 6© 7© are excluded. c If the coverage
ratio reaches 100%, the algorithm starts reducing the sampling region.
d Finally, the best coverage samples are obtained. (Color figure online)

struct a set of configurations Q∗ ⊂ Q that provides the
maximum cover of V with the objective of minimizing the
sum of their weights.

Unlike the previous method (Englot and Hover 2012), in
this method, the inspection paths should be planned online;
therefore, a sufficiently large number of samples cannot be
evaluated. Moreover, the suggested algorithm iteratively re-
plans the path according to the changed environment, and
therefore, it is important to consider the existing samples
from the previous path. Thus, an informed sampling method,
which efficiently utilizes the heuristic information such as
existing samples and local solutions, is required.

In this study, we employed a streaming set cover algo-
rithm (Emek and Rosén 2016) to perform the informed
sampling. The algorithm investigates the set cover problem
under the semi-streaming model (Feigenbaum et al. 2005),
where the configurations arrive one-by-one. It sequentially
processes the configurations and iteratively determines a
suboptimal set-cover solution at each step. The streaming
algorithm determines coverage samples Q∗ that δ–covers
frontiers (at least δ% of frontier coverage) with the objective
of minimizing

∑
vk∈Q∗ wk and maximizing δ. The algo-

rithm gives O(min{1/(1 − δ),
√
N })-approximation for the

original set cover problemwhere N represents the total num-
ber of frontier cells. Each input sample qk is processed in
O(|Vk |log(|Vk |)) time where |Vk | is the number of mapped
frontiers. The algorithm assigns two variables for each fron-
tier cell vi ∈ V f ront : an identifier eid(vi ) of a sample qk that
representatively covers it and a positive variable e f f (vi ) that
intuitively captures the effectiveness of qk in covering vi .
For each iterative step, a suboptimal solution is consistently
maintained by updating the variables. The suboptimal solu-
tion is estimated by extracting the configurations assigned to
one more frontier cell from eid(·).

Similarly to the streaming algorithm (Emek and Rosén
2016), our sampling approach (line 3–17) repeatedly pro-
cesses sampled configurations individually and outputs them
for every frontier cell vi ∈ V f ront , identifier eid(vi ), and
effectiveness e f f (vi ). Thus, we consistently maintain a sub-
optimal coverage set Q∗ online. To compute the effectiveness
of a sample qk , we define a level of a subset Tk ⊂ Vk as

lev(Tk) = |Tk |
β · wk

(6)

where β is a constant value, and |Tk | is the number of ele-
ments in Tk . Subset Tk is said to be effective if every vi ∈ Tk
satisfies lev(Tk) > e f f (vi ). For each vi in an effective set
Tk , we assign the ID of sample qk to eid(vi ) and lev(Tk)
to e f f (vi ) (lines 7–10). If lev(Tk) = 0, the sample qk is
eternally rejected.

The key advantage of this online set cover approach is
that it consistently maintains a suboptimal solution Q∗ in
each iteration. The major difference fromEmek and Rosén
(2016) is that our method actively determines the sampling
region from the suboptimal solution. We can estimate the
sampling region of Q∗, which can be used to decrease the
size of the sampling domain to possibly improve the solution.
Thus, we can efficiently sample a configuration by incremen-
tally reducing the sampling range Rsample. First, a sample qk
is sequentially extracted from QueueQ∗ , which contains the
sampled configurations in a previous inspection path. After
all samples in QueueQ∗ have been extracted, a uniform sam-
ple is iteratively generated in Rsample (line 4). In each step,
a coverage ratio of Q∗ is computed. If the ratio is greater
than the threshold θ

insp
cover , the samples are regarded as a first

solution of the coverage sampling problem and the algorithm
starts reducing Rsample (line 13). Let dmax be the maximum
weight of a sample from Q∗; then, set dsample to dmax and
recompute Rsample (lines 14 and15). This approachfinds effi-
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Fig. 5 Map layouts of three office-like environments used in the simu-
lator. Scenario 1 has dimensions 30×30×3m3. Scenarios 2 and 3 have
the same dimensions 38×23×3m3. The entire area is decomposed into
uniformly distributed zones, which are illustrated through the dashed
lines. The micro-aerial vehicle explores each map until all zones are
visited

cient samples that are closer to the shortest path than those
found by the original coverage-samplingmethod (Englot and
Hover 2012). If the first solution is not found in line 13,
our algorithm performs the general coverage sampling with-
out informative sampling; the results gives the maximum
coverage solution. Figure 4 illustrates the proposed coverage-
sampling approach.

6.2 Multi-goal planning

The final inspection path ξ∗ is extracted by computing the
shortest connecting path over all configurations q ∈ Q∗ by
using the TSP solver (Helsgaun 2000) (line 18). We define a
connection cost cost(qi , q j ) of the TSP solver as the execu-
tion time of motion (Bircher et al. 2016):

cost(qi , q j ) = max(DE (qi , q j )/vmax , ‖ψi − ψ j‖/ψ̇max )

(7)

where DE (qi , q j ) is the Euclidean distance directly connect-
ing pairsqi andq j . If the connection has a collision, theRRT*
planner is used to connect them. Although all configurations
are sampled in free space, there may be configurations that
are not reachable by the MAV. The unreachable configura-
tions from Q∗ are rejected.

After the initial path ξ∗ has been extracted, a path smooth-
ing step is performed. In this step, positions and yaws in ξ∗
are refined sequentially while preserving the visibility of the
corresponding frontiers. First, the positions are refined and
the path length is shortened by using the heuristic speed-
up improvement procedure inEnglot and Hover (2013). If
the Euclidean distance of the two subsequent configurations
is close, the execution time of the motion depends on the
time of yaw rotation, so yaw directions should be smoothed.
Each yaw direction is then refined according to the criterion
proposed in Bircher et al. (2016). This yaw refinement is
additionally applied from the previous algorithm (Song and
Jo 2017), which minimizes the decrease in the movement
speed of the MAV in yaw rotation. Finally, each configura-
tion in the smoothed path is sequentially stored in QueueQ∗ .

Table 1 Parameters used in office-like environment scenarios

Parameter Value Parameter Value

Resolution of M 0.3 m dsample 1 m

Max sensing range 5m θ f ront 20

vmax 0.2m/s θ sectorad j−res 1.2m

ψ̇max 0.5 rad/s θ
insp
cover 90%

RRT edge length 1 m

7 Simulation experiments

In this section, we conducted experiments under simu-
lated environments to evaluate the proposed approach. We
employed the simulation system used inBircher et al. (2018),
which uses the model of a Firefly hexacopter MAV in the
RotorS simulation environment (Furrer et al. 2016). We con-
ducted two sets of comparison experiments. In the first set,
a classical 2D exploration performance was evaluated in
office-like environments (Sect. 7.1). In the second set, the
3D exploration performance of our approach was evaluated
by modeling a large infrastructure (Sect. 7.2). We then eval-
uated the proposed informative sampling method (Sect. 7.3)
and analyzed the computation time of the whole process
(Sect. 7.4).

In the comparison experiments, we separately evaluated
the performances of the proposed inspection approach with
andwithout the use of global coverage tomeasure the benefits
of the global coverage planning described in Sect. 5. The
inspection approach without the global coverage is the same
as the method proposed in our previous study (Song and Jo
2017), which is referred to as INSP. We refer to the approach
with global coverage as INSP-COV. The proposed approach
was compared with three state-of-the-art methods:

– Closest frontier method (CF) (Yamauchi 1997): This
method has most frequently been used in 2D exploration
applications. We extended the method to 3D environ-
ments. We first cluster adjacent frontier cells within a
certain distance and then choose the closest cluster as a
target of the NBV.

– Volumetric method (VOL) (Vasquez-Gomez et al. 2014):
This method directly moves to the configuration with the
highest utility, similarly to the global planning method
described in our previous study (Sect. 6.1 in (Song and
Jo 2017)).

– Receding-horizon NBV (RH-NBV) (Bircher et al. 2018):
This is themost recently developed exploration algorithm
for autonomous modeling. It evaluates an exploration
path by directly expanding an RRT and moves to the
first edge of the best branch of the RRT.
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Fig. 6 Results in office-like environment scenarios. Comparison of a
completion time, b path length, c percentage of covered volume, and
d number of zone visits of proposed methods, INSP-COV and INSP,
and three alternative methods, RH-NBV (Bircher et al. 2018), VOL
(Vasquez-Gomez et al. 2014), and CF (Yamauchi 1997). INSP-COV

consistently shows the best performance with the minimum standard
deviation in every evaluation criteria. The number of revisit for INSP-
COV is the lowest in every scenario; this reduces the completion time
and path length in comparison to other methods

Fig. 7 Three simulated environments of the infrastructure modeling
scenarios in the robot operating system (ROS) simulator. a Scenario
4: statue of liberty model (16 × 16 × 35m3), b Scenario 5: St. Vitus
Cathedral model (43 × 23 × 25m3), and c Scenario 6: Tower Bridge
model (18 × 65 × 25m3)

For every method, the MAV performs continuous scan-
ning and mapping while following a planned path. RH-NBV,
VOL, and our approach evaluate the utility while extending a
random tree for global path planning. The parameters related
to the random tree and the evaluation were applied to each
algorithm in the same manner. The number of samples for
the random tree was set to Nglobal

sample = 500 so that the samples
would be sufficiently distributed in the entire area of themap.
The number of samples for the local inspection planning was
set to Nlocal

sample = 500. The edge length of the tree was set to
a different value based on the map scale of each scenario.
The λ parameter for the utility evaluation was set to 0.3. For
the fast utility computation, the number of unknown cells
was counted by using ray casting in a two-fold lower resolu-
tion map. For RH-NBV, the RRT cannot be extended when
the MAV is located in the middle of a fully explored area,
because it rejects a sample having zero utility. Therefore, we
modified the RRT in RH-NBV to also extend the zero-utility
samples.

7.1 Exploration in office-like environments

In this experiment, we performed simulations for three differ-
ent scenarios to evaluate the performance of a 2D exploration
task. Figure 5 shows the simulation environments. Scenario

1 (Fig. 5a) is composed of narrow corridors and rooms.
Scenario 2 (Fig. 5b) is composed of only relatively wide
corridors. Both Scenarios 1 and 2 refer to the map layouts
in Oßwald et al. (2016). Scenario 3 (Fig. 5c) is composed
of various open rooms, which is the same map as the office
scenario inCieslewski et al. (2017). The volumetric maps of
the structured and flat office environments were constructed
using each exploration algorithm. Table 1 summarizes the
parameters used in the scenarios.

Starting from each fixed position, the MAV explores the
entire map. As shown in Fig. 5, we manually divided the
entire area of the map into uniformly distributed zones for
performance evaluation. When the MAV had visited all the
zones, we stopped the exploration and evaluated the perfor-
mance. For each algorithm, we computed the exploration
completion time, path length, percentage of covered volume,
and number of zone revisits. The number of zone revisits was
computed by counting the number of visits to a zone that the
MAV had already visited. This represents the coverage effi-
ciency of the path. Figure 6 shows the results, where each
result is the average of 10 executions.

RH-NBV shows the poorest performance in terms of
completion time in all three scenarios. RH-NBV frequently
changes the best branch, and therefore generates back-
and-forth reciprocating motions. VOL shows the poorest
coverage performance, although its performance is simi-
lar to that of INSP in terms of completion time and path
length. VOL generates the simplest and fastest path, because
it directly moves to the largest unknown region. However,
it frequently misses small, unknown regions. Our methods
fully cover the local regions and therefore show high cover-
age performances.

INSP-COV has the best performance of every evalua-
tion criterion. As can be seen in Fig. 6d, the number of
revisit for INSP-COV is the lowest in every scenario, which
reduces the completion time and path length in comparison
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Performances when 95% of the map had been explored.
Scenario 4 Scenario 5 Scenario 6

Time Path Length Surf Cover Time Path Length Surf Cover Time Path Length Surf Cover
(min) (m) (%) (min) (m) (%) (min) (m) (%)

INSP-COV 9.81 183.3 93.10 18.48 366.6 96.07 20.05 383.0 92.87
INSP 10.02 168.9 92.60 21.82 430.5 94.99 24.36 446.2 92.53

RH-NBV 12.02 223.5 88.40 31.74 607.1 92.58 30.42 532.1 93.04
VOL 12.94 246.3 81.20 32.16 627.5 88.48 27.24 484.1 91.73
CF 17.69 295.7 83.50 37.12 802.5 94.79 32.90 714.3 92.12

Fig. 8 The graphs in (a), (b), and (c) show unknown volumes and the
surface coverage of the target over time in the infrastructure modeling
scenarios. Note that the reduction rates of the unknown volume in INSP-
COV are near constant throughout the explorations. The table shows

the average performances when each algorithm had completed 95% of
exploration. INSP-COV in general outperforms the other approaches.
Especially, INSP-COV shows the highest average surface coverage,
94.01%

Table 2 Parameters used in
infrastructure modeling
scenarios

Parameter Value Parameter Value

Resolution of M 0.3m RRT edge length 2m

Max sensing range Scenario 4: 8m dsample 2m

Scenario 5: 8m θexp 95%

Scenario 6: 10m θ f ront 100

vmax 0.4m/s θ sectorad j−res 1.2m

ψ̇max 0.5 rad/s θ
insp
cover 90%

with other methods. In particular, as compared to INSP, it
reduces the average exploration time by 9.45% and the aver-
age path length by 7.29%. In addition, it can be confirmed
that the robustness of the global coveragemethod is increased
because it has the minimum standard deviation values in all
evaluation criteria.

7.2 Modeling large infrastructures

In this experiment, we evaluated the exploration performance
of each approach in terms of themodeling quality.We consid-

ered three target infrastructures1 placed on the ground within
four walls (Fig. 7). The first target was Scenario 4 : Statue of
Liberty (Fig. 7a), which is a simple cylindrical-like structure.
The second was Scenario 5: St. Vitus Cathedral (Fig. 7b),
whose structural size is larger and more complex than that of
the first model. The final target was Scenario 6: Tower Bridge
(Fig. 7c), which is composed mostly of open free spaces.

Table 2 summarizes the parameters used in the scenar-
ios. Because of the increased size of the maps, we set larger
parameter values of the RRT edge length (2 m) and the

1 http://3dwarehouse.sketchup.com/.
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Fig. 9 Constructedvolumetricmodels of each target structure (top: Sce-
nario 4, middle: Scenario 5, and bottom: Scenario 6) with trajectories
taken by the micro-aerial vehicle at the end of executions of proposed
a INSP-COV and three alternative methods, b RH-NBV (Bircher et al.

2018), cVOL (Vasquez-Gomez et al. 2014), and dCF (Yamauchi 1997).
Note that INSP-COVproduces the shortest pathswith theminimumpath
overlap while constructing the complete volumetric models

maximum sensing range (8 m or 10 m) than for the pre-
vious scenarios. The maximum velocity of the MAV was
set to vmax = 0.4 m/s. We assumed that the bounded space
containing an infrastructure was known and the remaining
workspace of the robot was empty. The MAV explored the
bounded spacewhile simultaneously constructing a volumet-
ric map of the structure until a certain percentage θexp of the
map is explored. We performed experiments ten times to
compare the results with different methods.

We present the results in Figs. 8 and 9. The plots in Fig. 8
show the unknown volume and surface coverage in the map
over time. Figure 9 shows the constructed volumetric models
and the MAV’s trajectories after each execution of best case.
The graphs of the unknown volume represent the time taken
by each algorithm to explore an unknown area. The surface
coverage is the percentage of the observed surface cells as
compared to the total number of surface cells of the origi-
nal model. It represents the completeness of the constructed
volumetric model.

The performance of CF is the poorest in all scenar-
ios. RH-NBV showed better performances than in the 2D
exploration scenarios. The frequency of the back-and-forth
reciprocating motions of RH-NBV is reduced, because the
RRT samples are more uniformly distributed in the open
3D spaces. VOL can move at maximum speed in a large

Fig. 10 Comparative results of different sampling algorithms for
inspection path planning. a Normalized path distance and b averaged
execution time over the number of samples for three different algo-
rithms. Our approach, online weighted set cover, produces the shortest
inspection paths even with a small sampling

free space, and therefore outperforms RH-NBV in terms of
exploration in Scenario 6. In the graph of the unknown vol-
ume, the most important observation is the reduction rate
of the unknown volume. This shows the speed at which
unknown volumes are explored and this indicates the effi-
ciency of the exploration. The unknown volume reduction
rates of RH-NBV and VOL are similar to those of our
methods until the half of the total unknown volume has
been explored, but thereafter they are sharply reduced. The
unknown volume curves of RH-NBV and VOL have long,
flat tails. The reason is that the newly covered volumes are
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Table 3 Average and maximum
computation time (s) of the four
sub-modules and total
computation in three scenarios

Key submodules Scenario 2 Scenario 4 Scenario 6

Avg. Max. Avg. Max. Avg. Max.

Sector decomposition 0.04 0.07 0.23 0.29 0.81 0.94

Sector coverage planning 0.04 0.11 0.12 0.66 0.05 0.16

Global path planning 0.03 0.09 0.20 0.27 0.46 0.55

Local inspection planning 0.02 0.04 0.06 0.32 0.09 0.24

Total computation 0.09 0.24 0.43 1.20 1.14 1.70

relatively small when the MAV is exploring or overpassing
an already explored area. As can be seen in Fig. 9, the paths
of RH-NBV and VOL evenly cover the entire area of the
structure, but they sometimes overlap. However, our meth-
ods fully cover the local regions using the inspectionmethod,
and therefore already covered regions are rarely revisited.
Therefore, the reduction rates of the unknown volume in
our approaches do not decrease significantly. The trajecto-
ries of the paths of INSP-COV are shorter than those of other
methods and simultaneously cover the entire area of the struc-
tures.

The table in Fig. 8 summarizes the performances when
each algorithm has completed 95% of the exploration.
The results show that INSP-COV in general outperforms
the other approaches. As compared with CF, INSP-COV
reduces the average exploration time by 44.60% and the
average path length by 46.23%. Furthermore, INSP-COV
performs better as the scene size increases. As compared
to RH-NBV, INSP-COV reduces the exploration time by
18.39% and the path length by 17.99% in Scenario 4.
However, in Scenarios 5 and 6, INSP-COV reduces the
average exploration time by 37.93% and the average path
length by 33.82% as compared to RH-NBV. When the
MAV needs to revisit an already explored area, the larger
the scene size, the longer the distance traveled for the
return to revisit. INSP-COV reduces the number of revis-
its by considering a global visitation sequence and by
completely scanning a local area. Thus, INSP-COV can
get a more improved performance in an increased size
scene.

The performances of INSP-COV and INSP are similar
in Scenario 4, but different in the remaining scenarios. As
compared to INSP, INSP-COV reduces the average explo-
ration time by 16.50% and the average path length by 14.50%
in Scenarios 5 and 6. This suggests that the global cover-
age planning is ineffective for modeling a simple cylindrical
structure, but is effective for modeling complex structures.
In particular, our methods show the highest average surface
coverage, 94.01%, indicating that our approach is very suit-
able for autonomous modeling systems.

7.3 Effect of informative sampling

In order to verify the advantage of informative sampling
(Sect. 6.1) over the existing offlinemethod (Englot andHover
2012), we conducted a comparative experiment. The offline
method consists of a batch algorithm that solves the set cover
problem after extracting all samples. The proposed method
that solves online weighted set cover was compared with two
offline methods. The first solves the original set cover prob-
lem that finds a small number of coverage configurations.
Similarly to our method, the second solves the weighted set
cover problem that finds a set of coverage samples with the
minimum distances to the shortest path.

In Fig. 10a, we plot the average length of the inspection
path generated by eachmethodwithout path smoothing. Each
path length is normalized by dividing by the shortest path
length such that the value represents the increase in its length
as compared to that of the shortest path. The offline set cover
method provides the longest path lengths, which means that
the configurations close to the shortest path in general gener-
ate a shorter inspection path in a local region. The inspection
path of the weighted set cover method becomes shorter as
the sampling number increases. However, our method gen-
erates a short inspection path even with a small sampling,
and always shows a higher performance than the weighted
set cover method. This indicates that the method of reduc-
ing the sampling range in the online set cover can efficiently
improve the sampling performance and the inspection path
quality.

7.4 Computation time analysis

In this sub-section, we analyze the computational perfor-
mance of ourmethod. Table 3 lists the average andmaximum
computational time for the key components of our method
for three different scenarios. The total computation time in
Table 3 is the average and maximum of the total time taken
in each planning step. The planning step includes all cases
where global and local planning are performed together or
inspection path re-planning is performed alone. All compo-
nents were processed on a standard desktop PC with an Intel
Core i7 CPU without a graphics processing unit.
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(c) INSP-Offline (completion time: 4.64 min, path length: 115.10 m) (d) INSP-COV (completion time: 5.07 min, path length: 126.09 m)

(a) KAIST Building 

(b) MAV Platform

Fig. 11 Results of real-world experiments. a Experimental environ-
ment of part of the campus building (40× 50× 25m3). bMicro-aerial
vehicle (MAV) platform with stereo camera employed in the experi-
ment.Reconstructed 3Dmodels andvolumetricmodelswith trajectories
taken by the MAV at the end of executions of c INSP-Offline (Englot
and Hover 2012) and d INSP-COV. Notice that INSP-COV performs as

good as INSP-Offline in completion time and path length, considering
that INSP-COV planned complex paths for the free space exploration.
The 3D models were reconstructed from each set of recorded images
by using the multi-view stereo program, COLMAP (Schönberger et al.
2016)

In Scenario 2 and 4, the results show that our method
can be operated online. Each element does not significantly
delay the entire system, especially in the worst case. In Sce-
nario 6,most components have the longest computation time,
because the map size and the maximum sensing range are
large. The major part of the computation time is spent on the
sector decomposition andglobal path planning step. In partic-
ular, sector decomposition takes an average time of 0.81sec,
which is notmuch time as compared to the performance gains
from global coverage planning.

8 Real-world experiments

We conducted a real-world experiment to demonstrate the
feasibility of proposed approach in real-world applications.
The MAV platform used in the experiment is shown in
Fig. 11b.ADJIMatrice-100dronewas used and aZEDstereo
camera and Jetson TX2 board were mounted on the drone.
We employed a ZED SDK2 for depth sensing and ORB-
SLAM (Mur-Artal and Tardós 2017) for pose estimation.
The Jetson TX board computed the depth map and camera
pose and transmitted them to a laptop at the ground station.
The laptop constructed the volumetric map and planned the
exploration path. In reality, theMAVcannot follow a planned
path exactly because of the internal sensor noise and wind
gusts. For safety reasons, wemanually controlled theMAV to
follow the path instead of using autonomous navigation. To
achieve precise manual control in a constant velocity, we set
vmax and ψ̇max to the minimum speed values, 0.45 m/s and

2 https://www.stereolabs.com/.

Table 4 Parameters used in real-world experiments

Parameter Value Parameter Value

Resolution of M 0.5m dsample 2m

Max sensing range 15m θexp 90%

vmax 0.45m/s θ f ront 200

ψ̇max 0.4 rad/s θ sectorad j−res 2m

RRT edge length 2m θ
insp
cover 90%

0.4 rad/s, respectively. Table 4 summarizes the parameters
used in this experiment.

A 3D model of a part of the campus building was con-
structed by exploring the environment depicted in Fig. 11a.
The performance of the proposed method (INSP-COV) was
compared with that of the offline inspection method (INSP-
Offline) (Englot and Hover 2012), which precomputes a
scanning path for 3D modeling using prior geometric infor-
mation. The offline method can provide an optimal solution
for given geometric information of a target; therefore, its
performance can be an appropriate baseline for feasibil-
ity demonstration. If the performance of INSP-COV is as
good as INSP-Offline, the proposed method can be consid-
ered as effective and feasible in a real-world experiment. To
acquire the prior information for INSP-Offline, we manually
collected the images of the target and constructed the 3D
model by using the multi-view stereo program, COLMAP
(Schönberger et al. 2016). Localization uncertainty is a
major issue in INSP-Offline, because localization errors are
incrementally accumulated; however, the MAV must follow
the planned path without online path refinement (Galceran
et al. 2015). To obtain globally consistent localization of
INSP-Offline, we generated the feature map of the entire
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environment in advance and estimated the camera pose from
the feature map in the localization mode of ORB-SLAM.
The shape, scale, and position of the constructed prior model
were refined to match the feature map. To compare the
online exploration performances with the performances of
INSP-Offline, INSP-COV also used the same feature map
for localization. This allowed an exact performance evalua-
tion of the planned paths of INSP-COV and INSP-Offline,
excluding the localization inconsistency.

Figure 11c, d show the experimental results. In the two
experiments, the MAV moved in a globally similar direc-
tion. INSP-Offline focuses only on the scanning of the target
surfaces, while INSP-COV additionally considers the paths
for securing free spaces. INSP-Offline showed better explo-
ration performances than INSP-COV in terms of completion
time and path length. However, considering that INSP-COV
planned complex local paths for the free space exploration,
the performance gap is not significant. Although an accu-
rate 3D model could not be constructed because of the error
in localization and depth estimation, the volumetric models
maintained the structural shape of the building. Figure 11c, d
show the 3D models reconstructed from each set of recorded
images by using COLMAP. As can be seen in the figures, the
two models are similar and of high quality, which indicates
that the proposed online inspection method could cover all
the target surfaces, similarly to the offlinemethod. This result
demonstrates the practical feasibility of the proposed online
inspection method in real-world environments.

9 Limitations and discussion

The proposed approach has four major limitations. First, we
restricted the maximum limit of the motion speed to be small
to achieve stable sensing accuracy and exact path followings.
All the experiments were conducted under this restriction.
In the real-world experiments, the localization error was not
sufficiently large to affect the exploration performance.How-
ever, if anMAVis in fastmotion or a challenging environment
(e.g., a dynamic or textureless environment), the uncertainty
of the motion and state of the MAV should be taken into
account for path planning. The application of active SLAM
approaches (Chaves et al. 2016; Costante et al. 2018) to our
method would be a good direction for future work.

Second, although the proposed sector decomposition
method enforces the convexity of each cluster shape, this
method, unlike of the greedy cut (Das et al. 2014) or trape-
zoidal decomposition (Oksanen and Visala 2009), does not
perform exact convex partitioning. The objective of our
decomposition method is to divide the entire map into
sub-regions that can be sufficiently covered by the local
inspection planning algorithm. To successfully perform this,
two major factors need to be considered: 1) the decomposed

sectors should be as convex as possible, and 2) the decom-
posed sectors should be evenly distributed (which is similar
to the objective of distributed environment partitioning prob-
lem for coverage control (Durham et al. 2011)). In order to
satisfy both factors at the same time, the convexity is not
always guaranteed while conventional 2D coverage algo-
rithms (Choset et al. 2000; Oksanen and Visala 2009) require
to partition sectors as completely convex. Therefore, the pro-
posed method may not be as effective in the conventional 2D
coverage problem.

Third, the inspection path computed by our algorithm fre-
quently changed in terms of the yaw angle to fully cover a
local region. This made it difficult for the MAV to maintain
its maximum velocity, although it could improve the explo-
ration and modeling performances. VOL, similarly to the
method inCieslewski et al. (2017), maintains the maximum
velocity most frequently. However, as verified in Sects. 7.1
and 7.2, the proposed method showed a higher exploration
performance than VOL in every scenario. This suggests that
inspection with a frequent yaw change is effective in explo-
ration and modeling.

Finally, we used the sampling-based approach (Englot and
Hover 2012), which separately solves the coverage sampling
and multi-goal planning problems. Although the separation
approach may provide a feasible coverage solution, it does
not guarantee an optimal solution because of the decoupled
two-step optimization. Even if we obtain an optimal set cover
solution and find the shortest path solution, the computed
inspection path may not be the shortest path. To allevi-
ate this limitation, some approaches (Papadopoulos et al.
2013; Kafka et al. 2016) were aimed at solving the sampling
and multi-goal planning problems simultaneously. However,
these approaches are computationally expensive, and there-
fore are not suitable for online operation. We have no choice
but to employ the separation approach for real-time compu-
tation and should accept its limitations.

10 Conclusion

In this paper, we proposed online coverage and inspection
methods. In our study, we applied them to exploration tasks
for constructing 3D models of unknown environments. The
online coverage method computes the global coverage of
unexplored sectors, which guides an MAV to complete the
model sequentially. The online inspection method plans a
local inspection path that provides comprehensive scanning
of local frontiers. The local inspection path is continually
refined according to the updated local model. Our simulation
results show that the proposed method performs better than
other state-of-the-art methods and in particular improves the
completeness of the constructed 3D models. In real-world
experiments, without prior structural information the pro-
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posed method showed a performance similar to that of the
offline inspection method (Englot and Hover 2012). To the
best of our knowledge, this is the first study in which an
online coverage and inspection approach was implemented
to explore and model 3D environments using an MAV.
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