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Abstract—This work focuses on reducing false execution of
brain-computer interface(BCI) based Soft Robotic Glove by
considering visual information received by the first-person-view
camera equipped by the user. The proposed method intends to
seek to lower the false positive rate while providing an intuitive
interface by allowing the glove to execute depending on motor
imagery(MI) only when the hand is in sight. When the hand is out
of sight, no electroencephalogram(EEG) information is given to
operate the glove. Two sessions of online soft robotic glove control
were conducted on six participants, one session each for BCI-
based and BCI/Vision-based glove control. The result showed
that using visual information with BCI helped the participants
remain rested than they did with BCI-based soft robotic glove.
However, additional experiments from different participants are
necessary to ensure the effect that using visual information could
have on grasping and releasing action of BCI-based soft robotic
glove as well.
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I. INTRODUCTION

People with a disease such as a stroke often end up with
either partially or fully impaired hand function, which requires
them to receive help in a daily task such as object grasping.
The help of assistive tools for gripping objects is crucial in
the sense that it can ease the burden of patients with impaired
hand function in such tasks by enabling them to perform fine
movement of hands. For this reason, glove based wearable soft
robots were implemented in various works [1]–[5].

When using wearable soft robots, being able to hold objects
at the right timing based on the user’s desire is important for
a good user experience. In other words, applying the grasping
forces of the soft robot by accurately recognizing the moment
the user intends to hold an object leads to a satisfying experi-
ence. For instance, precisely recognizing the moment the user
plans to perform an action could prevent unnecessary grasping
actions by the soft robot even when the user didn’t mean to.
By preventing such possibly uncomfortable experiences, the
user’s satisfaction may improve. Thus, it is essential that the
robot accurately interpret the user’s purpose.

The brain-computer interface (BCI) is widely used to in-
terpret a user’s intention by converting brain signals into
a computer command. Numerous BCI paradigms have been
applied to control devices such as robots or wheelchairs in
other works [6]–[8]. Among all the paradigms, studies that

involved motor-imagery(MI) based BCI, a BCI paradigm that
requires the imagination of a body movement such as hand,
feet, or tongue movement, provides meaningful performances
in various device control [9] [10]. Therefore, employing MI-
based BCI is one way of manipulating the soft robot based
on the user’s intention using electroencephalogram (EEG). On
top of that, MI-based BCI could provide intuitive control for
the user especially when the user has to move a soft robotic
glove. Nevertheless, device control methods purely based on
MI-based BCI possess a critical drawback that limits its usage.
High false positive rate (FPR) [11], where FPR refers to the
rate of incorrect classification when the user has no intention
of controlling a device, is a problem that comes with using BCI
and MI-based BCI is no exception. Poor FPR is often exhibited
especially when BCI is performed in an asynchronous (self-
paced) manner [12]–[14]. For this reason, FPR is used as an
evaluation metric to assess the performance of MI-based BCI
which is an example of asynchronous BCI [15]–[17].

We propose a BCI/Vision-based soft robotic glove that can
resolve a previously mentioned limitation of BCI by taking
visual information into account while recognizing the user’s
intention. The visual information is received by a first-person-
view camera that is attached to the glasses. The camera
constantly receives an image which is later processed by
ResNet18 to recognize whether the soft robotic glove is within
the received image frame or not. The MI EEG signal will not
be in use unless the glove is spotted in the input image. For
instance, if the user imagines the MI of a ‘Right hand’ while
the glove is within sight, the glove either performs a grasp or
a release action. However, if the glove is not fully in sight, MI
EEG signal is not decoded, hence no command is not given
to control the glove.

This approach shows a significantly lower FPR than a pure
BCI approach. Our approach can achieve this while providing
an intuitive interface when the user attempts to grab an object
as the camera captures the surroundings from the first-person
point of view.

II. METHODS

A. Wearable Soft Robot Control Strategies

The soft robotic glove control strategy consists of decoding
visual information and EEG. Brain signals are obtained by
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Fig. 1: (a) The tendon-driven soft robotic glove for grasping.
(b) The vision glasses with a camera attached.

a brainvision recorder and visual information is received by
the first-person-view camera attached to the glasses. Visual
information decides whether the soft robotic glove should
ignore the EEG information or not while the EEG information
decides whether the soft robotic glove should be executed or
not. Due to the higher priority of visual information over EEG
information, no EEG information will go through under certain
visual conditions. When EEG information goes through, a soft
robotic glove will either rest or operate. All in all, the glove is
executed based on given information about visual and EEG.

B. Hardware

1) Wearable soft robotic glove: In this study, we use
tendon-driven soft robotic gloves to assist in grasping objects.
As shown in Fig. 1a, the tendons are wired from the actuator
to the glove along the palmar side of the index finger and the
middle finger through cables.

The glove has FSR402 sensor attached to the fingertip of the
index finger. The sensor value received by the sensor reflects
the pressure applied to the index finger. When the pressure
value exceeds the threshold, the glove detects an object and
stops the grasping motion. The glove uses the sensor value to
suitably grasp objects that differ in size and shape.

2) Vision glasses: As shown in the Fig. 1b, the vision
glasses have a camera attached to the center of the glasses
placed at an angle similar to the person’s gaze. The glasses
are based on the work of Kim et al. [2].

C. EEG Acquisition

To obtain the EEG data from participants, Brainvision
antiCHamp was used. A total of 33 electrodes were used,

Fig. 2: The electrodes positions for the 32-channel EEG ac-
quisition. EEG signals are referenced and grounded to channel
Fz and AFz, respectively.

mainly placed around the sensorimotor cortex to record the
EEG of the participants, having AFz as the ground and Fz as
the reference electrode. The brain signal was acquired with a
sampling rate of 500Hz.

D. Classification Model

Our method involves two different classification tasks, hand
detection, and MI classification. Thus, it requires two models
that are dedicated to each task.

ResNet18 is used to detect whether the hand wearing a soft
robotic glove is completely included in the image received by
the first-person-view camera or not. The model we used was
trained using manually labeled images, each labeled as either
‘hand’ or ‘background’.

Images were acquired from each frame of a video that
includes the surroundings and the hand wearing a soft robotic
glove. Each frame is resized into an image of size 224 x
224 before it is given as an input to the model. ResNet18
classification result is displayed on the screen with the word
‘Hand’ if a hand wearing a robotic glove is detected. Other-
wise, ‘Background’ will be displayed on the screen indicating
that no hand is detected in the most recently received image.
The model labels an image as ‘hand’ only when the glove
is completely included in the image. Partial inclusion of the
glove in the image will be regarded as ‘background’ by the
model.

We used Shallow ConvNet in order to perform MI classi-
fication [18]. For each subject, training data obtained during
the training session was preprocessed using data augmentation,
where the data was split into 2 second time windows with a
stride of 0.1 seconds. The data were band-pass filtered between
4 and 38Hz. The model was trained using the training set
produced by the aforementioned process. During the online
sessions, the model receives the most recent 2 second time
window of EEG every 0.5 seconds and classifies the signal
into either ‘Right hand’ or ‘Rest’.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on July 06,2022 at 08:09:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 3: (a) The figure is the protocol of the train session and it
is the example of the screen which we showed to participants.
The figure shows two trials, each ‘Rest’ cue, and the ‘Right
hand’ cue. (b) The figure is the protocol of the online session
and it is the example of the screen which we showed to
participants. The figure shows two trials, each ‘Grasp’ cue,
and the ‘Rest’ cue.

E. Participants

We recruited six male participants for this study. Participants
were 22-27 years of age, all of them healthy without any
disability. All the participants have prior experience of BCI
and half of them have experienced MI-based BCI device
control.

F. Experimental Procedure

There are three sessions in the experiment: one MI training
session followed by two online soft robot control sessions,
each session being BCI-based control and BCI/Vision-based
control session. We divided the participants into two groups.
Each group participated in the online session in a different
order, one group starting the session with BCI-based control
first and the other group starting with BCI/Vision-based con-
trol first.

1) Data Collection: The MI training session for collecting
the data is comprised of 20 trials of two MI tasks: ‘Right
hand’, ‘Rest’. Each trial involves 8 seconds visual cue display
and 4 seconds interval. While the visual cue is displayed on
the screen, the participant either imagines the movement of the
right hand or rest. Fig. 3a shows the protocol of the training
session. Participants are asked to imagine nothing while the
‘Rest’ cue is displayed and right hand movement when the
‘Right hand’ cue is displayed. The order of tasks in the
section is a repetition of ‘Rest’ and ‘Right hand’ throughout
the session. A red triangle pointing right and fixation cross is
given as visual cues for the ‘Right hand’ and for the ‘Rest’
command, respectively.

2) Online Evaluation: The online control of BCI-based
glove consists of 20 trials that involve three commands ‘Rest’,
‘Grasp’, and ‘Release’. When the user is asked to imagine
the right hand movement, ‘Grasp’ is displayed on the screen
when the glove is already in a released state and ‘Release’
is displayed when the glove is in a grasping state. ‘Rest’
is displayed on the screen when the user is expected not to
move the glove. Thus, 10 trials ask the user to perform ‘Rest’,
and the other 10 trials display either ‘Grasp’ or ‘Release’
which asks the user to imagine the right hand movement to
execute the soft robotic glove. The order of commands is given
in a random order, but the order for BCI and BCI/Vision-
based control sessions are identical. Each trial of the session
lasts 14 seconds, where 10 seconds is given to carry the
command and 4 seconds is given as the interval for the
participant to rest. Visual cues are given to the participants
by displaying a word on the screen during the command
part and fixation cross during the interval. Fig. 3b simply
shows the experimental protocol of the online session. The
same procedure follows for online control of BCI/Vision-based
glove. The only difference is the presence of vision glasses

Fig. 4: (a) The figure is the BCI-based online session. It shows
the command by GUI cue. (b) The figure is the BCI/Vision-
based online session. It shows the GUI cue and the camera
frame with the classification result in real-time.
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TABLE I: Online session result of soft robotic glove control
after 5 minutes of training. Value of ‘Rest’ and ‘Right’ denotes
the number of correct trials out of 10 trials each. ‘Total’ refers
to the number of total correct trials out of 20 trials. Subject 1,2,
and 3 started the online session with BCI session followed by
BCI/Vision session (group 1) while subject 4,5, and 6 started
the session with BCI/Vision session first and ended with BCI
session (group 2).

BCI BCI/Vision
Subject Rest Right Hand Total Rest Right Hand Total

1 8 6 14 10 6 16

2 3 10 13 9 10 19

3 0 10 10 10 10 20

4 0 10 10 7 10 17

5 6 10 16 9 5 14

6 1 10 11 10 8 18

Average 3/10 9.33/10 12.33/20 9.17/10 8.17/10 17.33/20

showing the visual information that the camera is receiving,
which is displayed on the bottom right side of the screen.
Fig. 4a shows the command screen of BCI-based glove control
and Fig. 4b shows the command screen of BCI/Vision-based
glove control which includes the camera screen that the BCI-
based control session screen did not have.

During the online evaluation, we obtain the number of
successful trials from each participant. A trial is considered
a success in ‘Grasp’ and ‘Release’ when the user succeeds to
execute the soft robotic glove within 10 seconds. With ‘Rest’
on the screen, it is considered a success if the user manages
to keep the glove still without moving it for 10 seconds, but is
regarded as a failure if the glove moves before the 10 seconds
mark passes.

Furthermore, the average response time and FPR of ‘Rest’
are computed from the result of BCI and BCI/Vision, and the
respective values are compared. The response time represents
the elapsed time until the user executed the glove when the
‘Rest’ cue was given. If the user successfully kept the glove
from operating, the response time was recorded as 10 seconds.
FPR is the rate of false execution that happened during the
‘Rest’ cue of the online session.

The voting method is applied in operating a soft robotic
glove in the online session. A trained Shallow ConvNet re-
ceives a 2-second time window every 0.5 seconds and the
result is pushed into a voting list. A voting list is a queue
that contains the five most recent classification results from
the model. A result that receives the most votes in a voting
list is adopted in executing the robotic glove.

III. RESULTS AND DISCUSSION

The numerical result of BCI-based and BCI/Vision-based
soft robot control session from every participant is given in
table I. Subject 1,2,3 started the session with the BCI session
while the other three started with BCI/Vision session. The
value in the table refers to the number of trials correctly
executed by the participants. For instance, subject 1 performed
8 successful trials out of 10 ‘Rest’ trials and 6 successful

TABLE II: The average response time of the ‘Rest’ cue and
FPR of each online session by subject. The response time
refers to the average time spent until the participant executed
the glove during the ‘Rest’ cue. If the user successfully rested,
the response time is recorded as 10 seconds. The FPR is an
inaccurate classification rate during the ‘Rest’ cue.

Response Time False Positive Rate
Subject BCI BCI/Vision BCI BCI/Vision

1 8.65 10.00 0.2 0.0

2 4.15 9.09 0.7 0.1

3 2.41 10.00 1.0 0.0

4 2.52 8.17 1.0 0.3

5 6.88 9.10 0.4 0.1

6 1.91 10.00 0.9 0.0

Average 4.42 9.39 0.7 0.08

‘Right Hand’ trials out of 10, going through 14 trials correctly
out of 20 trials in the BCI session. Participants correctly
executed 12.33 trials in the BCI session while the number
improved to 17.33 in BCI/Vision session to record 61.67%
and 86.67% accuracy in each session, respectively. The result
indicates that the classification average improved significantly
in the BCI/Vision session. This is due to a huge difference
in the average accuracy of rest commands, where the mean
number of correct trials was 3 in the BCI session while it was
9.17 in the BCI/Vision session. A difference in the number of
correct execution of ‘Right Hand’ wasn’t as significant as in
‘Rest’ trials.

The average response time taken when the ‘Rest’ cue was
given and the FPR of each session from every subject are
illustrated in table II. There was a noticeable difference in
average response time of ‘Rest’ between BCI/Vision-based
and BCI methods, where each method recorded 4.42 and 9.39
seconds, respectively. The average FPR of each method was
0.7 and 0.08. Given the fact that such a result was carried out
without a huge difference in ‘Right Hand’ performance, this
implies that using BCI along with vision glasses helps subjects
in vastly improving the overall performance.

Failure to perform several ‘Rest’ commands in BCI/Vision
session is likely from the fact that a group of participants who
started the session with BCI/Vision wasn’t familiar enough in
utilizing BCI and vision information simultaneously compared
to the other group. Our inference regarding this issue is that
participants may have needed more time to get used to con-
trolling robots and vision glasses proficiently simultaneously.

A further change could be made in the first-person view
camera to enhance the performance. The gaze of the camera
attached to the glasses and the gaze of the participants may
not be perfectly aligned as each participant stares at the object
at a different angle, in contrast to the camera angle which
is fixed. For this reason, a camera may fail to recognize the
hand with a glove on even when the user is in fact staring at
the hand. A slight modification of hardware such as using a
rotatable camera that rotates in a way that suits the individual
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user could achieve a better result.
Another possible change can be made to the vision clas-

sification model for this method to work better. The model
we used in vision classification was sensitive when there were
a lot of distractions around the glove and often misclassified
other objects as a glove. With more robust performance of the
vision classification model, we expect the method to be more
applicable under various circumstances.

IV. CONCLUSION

In this study, experiments were conducted to inspect
whether the use of vision glasses can improve the performance
of controlling the soft robotic glove when combined with
MI-based BCI. We compared the performance of BCI-based
and BCI/vision-based soft robotic glove control and had each
participant control the glove. The results of the experiments
show that vision glasses can play a role in reducing FPR
and enhancing the control of soft robot glove in MI-based
BCI. In addition to that, the result indicates that this change
was made while maintaining the level of performance of
glove movement which is carried out by the imagination of
right hand movement. However, further improvement of vision
glasses hardware and vision classification algorithm could lead
to better performance in controlling the soft robotic glove, and
additional participants could statistically confirm the result.
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