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Abstract—Wearable robotic gloves have recently gained atten-
tion in the field of rehabilitation for their ability to support the
movement of affected hands. One of the widely used rehabilita-
tion methods for grasping is through action observation, where
participants continuously monitor specific actions while thinking
as if they were performing the bodily movements themselves.
While previous studies claim that such a method, based on
the mirror neuron system, may effectively induce brain activity
related to corresponding movements, it is unclear how the speed
of grasping movements may affect neural activity performance.
In this paper, we conducted a preliminary study with healthy
participants to investigate whether the speed of grasping from
a wearable robotic glove may influence the motor imagery
performance of users during action observation. Our results show
that using a wearable robotic glove to demonstrate grasping
movements improves motor imagery performance compared to
when no movements are provided. Additionally, our experiment
conveys that the grasping speed of the wearable glove has an
impact on motor imagery performance. Our study highlights
that detailed experimental designs, such as manipulating grasping
speed for action observation, play an important role in rehabili-
tation.
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I. INTRODUCTION

Motor imagery, the imagination of specific body movements
without actual execution, is often used to improve neural
activity in patients during clinical trials and rehabilitation. It
induces a decrease in oscillatory rhythms known as event-
related desynchronization (ERD) in sensorimotor areas and
specific patterns in cortical areas related to the imagined body
part [1]. This advantage allows motor imagery to be used not
only as a measure of neural activity performance but also as
a control paradigm for brain-computer interfaces [2]-[4].

Action observation for motor imagery is a widely used
method in rehabilitation to help users induce better neural
activation. Its approach of providing a visualized body part
movement related to the motor imagery task aligns with
the theoretical background of mirror neuron theory and has
been shown to improve brain activation in many previous
studies [5]-[7]. Specifically, in terms of hand rehabilitation,
the way the movement is visualized for action observation
is considered to be a critical factor. Recent studies have
investigated the effect of embodiment, which relates to the
sensation that users perceive movement as if they are actually
performing the action. Previous studies have employed various
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visualizations to highlight the significance of embodiment in
enhancing motor imagery performance. These include com-
parisons of participants’ own hand movements with those of
others [8], simulations on 2D monitors versus 3D immersive
virtual reality [9], and the presence or absence of anatomical
compatibility for simulated hand observation [10]. Wearable
robotics is another rising tool that aims to improve the sense
of embodiment while preserving the functionality of other
supportive devices [11], [12]. Unlike traditional devices such
as robotic arms, wearable robotics overlaps the affected body
parts of users and assists them in executing certain actions.
Due to its advantages, wearable robotics has been utilized
in many experimental trials to induce better motor imagery
performance from users.

Although many studies have utilized various visualization
tools and devices to provide better embodiment for hand
rehabilitation, providing observatory actions also relies on
other experimental factors. For instance, it is unclear whether
the speed of grasping for action observation affects the perfor-
mance of users with motor imagery. Other variations, such as
how the presented hands are placed and the detailed movement
of each finger, may also influence users’ perception, affecting
their motor imagery performance. As individuals have varying
perceptions and adaptability even within the same scenario
[13], designing experimental procedures that consider such
aspects may additionally serve as a critical component for
rehabilitation performance.

While previous studies have focused on the visualized
representations or devices employed to present the same
grasping movement, our study aims to investigate whether
the speed of grasping movement may influence the motor
imagery performance of users. To explore this aspect, we asked
our participants to perform sequences of right-hand grasping
motor imagery tasks while wearing a wearable robotic glove.
Three different action observation scenarios were presented
using a wearable robotic glove: no movement, slow grasping
movement, and fast grasping movement. To measure the motor
imagery performance from the experiment, electroencephalo-
gram (EEG) signals were acquired from participants while
they were instructed to perform the given tasks.
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Fig. 1: The electrode positions used in our experiment. The
positions in black represent the ground and reference locations.

II. METHODS
A. Farticipants

Six healthy participants (2 females, aged between 24 and
27) who had no neurological disorders volunteered for our
experiment. All participants were given detailed instructions
prior to conducting the experiment. In order to familiarize
participants with our system, they were asked to experience
our wearable robotic glove before EEG acquisition.

B. EEG Acquisition

The Brainvision antiCHamp system was used to collect
EEG data from participants. The EEG of the participants
was recorded using a total of 33 electrodes according to the
10-20 system as shown in Fig. 1, mainly located around
the sensorimotor cortex with AFz and Fz as ground and
reference electrodes, respectively. Brain signals were acquired
at a sampling rate of 500Hz and a band-pass filter between
8 and 15 Hz was applied to the data to account for motor
imagery-related EEG signals. The impedance of the electrodes
were kept under 10 k) throughout the experiment to obtain
high-quality data.

C. Experimental Procedure

Participants sat on a comfortable chair with a soundproof
room in front of the monitor screen with a wearable robotic
glove worn on their right hand as previously described in
[14]. As shown in Fig. 2, the wearable robotic glove performs
grasping movement through actuators and cables attached to
the parts of the glove related to the palm, index, and middle
fingers.

A total of 30 trials were conducted for each participant, 10
each for the 3 wearable robot operations: no movement, slow
grasping movement, and fast grasping movement. As shown
in Fig. 3, the trial includes a 3-second interval period with

Fig. 2: Environmental setup for the experiment using a wear-
able robotic glove.
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Fig. 3: The timeline of a single trial employed for our
experiment.

a dark cross cue, an 8-second resting period represented by a
white cross cue, and a 12-second right-hand cue indicated by a
red arrow shown on the monitor screen. When the interval cue
was shown, participants were instructed to adjust the wearable
robotic glove by attempting to open their right hand. When the
resting cue was shown, participants were asked to remain calm
and not to perform any movement. When the right-hand cue
was shown, participants were expected to perform right-hand
grasping motor imagery for the entire 12-second period.

The right-hand period was divided into three different
phases, each lasting 4 seconds. For the first phase, the wearable
robotic glove remained open without any movement. In the
second phase, the wearable robotic glove either remained open,
performed slow grasping movement, or performed fast grasp-
ing movement depending on the trial. The wearable robotic
glove stopped its execution during the last phase, maintaining
its recent position for the rest of the phase. During the whole
three periods, participants were instructed to continuously gaze
at the wearable robotic glove while performing right-hand
grasping motor imagery.

D. ERD ratio calcuation

We calculated the ERD value from the electrode C3 to
quantify the motor imagery performance of participants, which
is claimed to be the electrode position related to right hand
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Fig. 4: (a) The average ERD value from only phase 2 on
three different operations. (b) The average ERD value from
three different operations considering all three phases.

movements. The ERD value of a single trial in this study was
calculated using the following equation:

PSDrest - PSDphase
PSDrest

where PSD,., indicates the power spectral density (PSD)
measured from the last 4-second of the resting period of a trial
and PSDppqse indicates the PSD measured from the whole
4-second phase of the trial.

The ERD value of each participant with respect to the three
different operations was then calculated by averaging the ERD
of all the corresponding trials.

ERDphase = (1)

III. RESULTS AND DISCUSSION

The average ERD value results for only considering phase
2 and the average value combining all three phases are
shown in Fig. 4. As shown in Fig. 4(a) where the averaged
ERD values from phase 2 are shown for the three different
operations, participants exhibited the least ERD (0.066) when
no movement was performed by the wearable robotic glove.
The average ERD value was the greatest when the robotic
wearable glove executed fast grasping movement, with a value
of 0.11. The ERD value during the slow grasping movement
exhibited an average value of 0.081. While the ERD value for
the slow grasping movement exceeded the ERD from when no
grasping was performed, it was comparatively less than when
fast grasping movement was performed.

The average ERD values considering all three phases were
also measured for the three different operations, as can be seen
in Fig. 4(b). The lowest ERD value was when no execution
was performed by the wearable robotic glove, with a value of
0.064. The greatest ERD was from the fast grasping movement
with a value of 0.082, while the slow grasping movement
exhibited a relatively lower ERD value (0.065).

The changes in ERD values across the three phases are
shown in Fig. 5. As can be seen from the figure, the ERD
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Fig. 5: The ERD values with respect to each phase while
participants were performing motor imagery.

values increased from phase 1 to phase 2 and decreased from
phase 2 to phase 3 in all three different operations. However,
the degree of change differed between the operations. The
increment and decrement of ERD values from when no move-
ment was performed (increment: 0.003, decrement: 0.002)
were relatively less than those of when slow grasping was per-
formed (increment: 0.034, decrement: 0.013). Moreover, even
larger incremental and decremental gaps were shown when
fast grasping movement was performed (increment: 0.045,
decrement: 0.028) compared to those of slow grasping. Such
results indicate that the operation from the wearable robotic
glove was the most effective in inducing motor imagery-
based signals when fast grasping movement was performed.
Furthermore, slow grasping also provided positive influences
in supporting the motor imagery performance of participants.
Consequently, our findings suggest that the presence of glove
movement not only benefits motor imagery training, but that
its grasping speed may also affect the performance of users
during motor imagery training.

Although we have seen the effect of grasping speed for our
wearable robotic glove during motor imagery training, there
are some limitations in our study. As our experiments were
performed with healthy participants, there are possibilities that
other sensations besides visualizations, such as proprioception,
may have also taken effect. Thus, whether the cause of
neural activity enhancement lies purely on action observation
needs further investigation. Furthermore, our study involves
a limited number of samples. To perform statistical analysis,
investigations involving more participants should be conducted
as future work.
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IV. CONCLUSION

In this paper, we performed a preliminary study with healthy
participants to investigate whether the speed of grasping from
the wearable robotic glove may influence the motor imagery
performance of users during action observation. The results
of our experiments indicate that a wearable robotic glove
can support users’ motor imagery performance. Moreover,
our results indicate that grasping speed should be taken into
consideration when designing experiments related to motor
imagery training, as different grasping speeds may affect mo-
tor imagery performance. The results of our study suggest that
not only rehabilitation tools but also a specific experimental
design tailored to the target user may play an important role
in rehabilitation.
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