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Abstract—Inter-subject variability is one of the critical issues
that hinder electroencephalogram-based brain-computer inter-
faces from wide usage. Recent studies that aimed to tackle
such problems utilize deep learning methods such as domain
adaptation to have their feature extractor learn domain-invariant
features. As such approaches employ user state classification as
well as subject classifiers to contribute toward domain-invariant
feature extractions, considering the performance on both the
state classification and subject identification for designing the
feature extraction model may further benefit such approach.
Thus in this work, we aim to improve widely used convolutional
neural network-based feature extractors by enhancing subject
identification accuracy while preserving user state classification.
Along with our approach of using multi layer perceptron, we
trained and evaluated our method using the visual imagery
dataset and the speech imagery dataset collected from five
participants. By training with EEG dataset of one paradigm and
evaluating with the other dataset, our proposed feature extraction
method achieved higher subject identification accuracy than the
baseline models, while preserving their user state classification
performance.
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I. INTRODUCTION

Brain-computer interface (BCI) enables direct communica-
tion between a computer and a brain by using signals from
the brain [1]. Among various signals utilized in BCIs, a non-
invasive approach such as electroencephalography (EEG) is
widely used due to its accessibility. Various EEG paradigms
have been well-explored for potential applications in de-
vice control depending on their intended purpose. Reactive
BCI paradigms, such as P300 or steady-state visual-evoked
potential (SSVEP), decode user’s intention based on brain
signals generated as a response to an external stimulus, while
active BCI paradigms, such as motor imagery (MI) [2], visual
imagery (VI), and speech imagery (SI) [3], employ brain
activations during different mental tasks that do not require an
external stimulus. These EEG paradigms are used for various
purposes such as quadcopter control [4], controlling home
appliances [5], spellers [6], and playing chess [7]. Different
paradigms are used in multiple studies as each of them has
its own distinctive feature that can be made distinguishable
through signal analysis [8].

Despite a variety of choices in EEG paradigms, one issue
remaining in BCI systems is the data scarcity problem. This is
a difficult issue to overcome since the problem occurs due to

the fact that EEG collection is a burdensome task for the user
and that massive EEG data collection is not feasible. Allowing
for subject-independent decoding of EEG is one approach
amongst many in resolving the issue [9], [10]. The idea is
that enabling the use of EEG data from others will vastly
increase the amount of EEG in training and reduce the need for
the actual user to collect EEG data repetitively. However, the
classification accuracy coming from the subject independent
approach is yet lower than subject dependent approach. One
approach to improving cross-subject classification involves
the use of domain adversarial neural network (DANN), a
well-known method used to achieve domain adaptation with
convolutional neural network-based models such as Shallow-
ConvNet or EEGNet as a feature extractor. It aims to train
the model to extract domain-invariant features with the use
of a gradient reversal layer [11]. This approach involves the
user-state classifier as well as the domain classifier in order to
consider user-state-related and subject-related features respec-
tively. Previous works involving DANN in EEG-related studies
trained user-state classifiers with only task-related knowledge;
however, given that the classifier can efficiently learn both task
and subject-related features, providing additional information
regarding the subjects during training may result in a faster and
more separable feature space when used with domain adaption.

In this work, the possibility of a user-state classifier that
can learn both task and subject-related features is explored.
Existing deep learning models, such as ShallowConvNet and
EEGNet, utilize several convolutional layers as a feature ex-
tractor and a single dense layer as a classification layer, which
may not be deep or complex enough. We propose using an
additional multi-layer perceptron (MLP) as the classification
layer instead; an additional block of MLPs is applied to a
pre-trained feature extractor block and fine-tuned to better
learn the subject and user-state related features simultaneously.
The models are trained and evaluated with a hybrid paradigm
dataset containing visual imagery (VI) and speech imagery
(SI), using labels containing both subject and task-related
information and evaluated in terms of subject identification
performance and paradigm task classification performance.
Our proposed method showed higher cross-paradigm subject
identification accuracy when compared to basic ShallowCon-
vNet and EEGNet while maintaining the user state classifica-
tion performance.
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II. METHODS

A. Data acquisition

Visual imagery (VI) and speech imagery (SI) EEG were
collected from a total of five subjects, two males and three
females, with an average age of 23.8, ranging from 23 to 26.
Cues were displayed through a monitor while the participant
remained seated. EEG was recorded in a dark soundproof room
in order to minimize distractions when recording. EEG data
were obtained at a sampling rate of 500Hz using BrainProd-
ucts’ actiChamp and actiCAP. Having AFz as ground and Fz
as a reference, a total of 27 electrodes (Fp1, F3, F7, FC5, FC1,
C3, CP5, CP1, Pz, P3, P7, O1, Oz, O2, P4, P8, CP6, CP2,
Cz, C4, FC6, FC2, F4, F8, Fp2) were used in both the VI and
SI settings according to the international 10-20 system.

B. Paradigms and protocols

All five subjects participated in a data acquisition procedure
that lasted for four days in total, where VI data were collected
for two consecutive days and SI data were also collected for
the other two consecutive days. For both VI and SI, two
sessions of EEG recording took place each day, yielding a total
of four sessions of recording for each paradigm. In between
two sessions conducted in a single day, a ten-minute break
was given.

A protocol of a single trial in VI EEG recording is illustrated
in Figure 1a. The trial starts with a two-second rest by
showing a big cross, followed by a four-second long visual
cue-providing period. A visual cue is displayed in the monitor
as an animation that shows a particular movement of a mass
drone over a 4-second span. Then another four seconds are
given for rest in order to prevent the recorded EEG from being
influenced by the visual stimuli given as cue. Then for the
next four seconds, participants are required to visualize the
animation they have seen through the visual cue while staring
at the screen. Four different types of labels were collected
based on the type of animation that the participant visualized
in each trial, where four types of animation are spread out,
split, fall in, and rest. Visual cue shows an animation of drones
spreading out in a circle for spread out, splitting into two
groups of drones towards the outer direction for split, drones
moving towards a center circle from being spread out for fall
in, and drones remaining stationary for rest class. One session
consists of a total of 60 trials, 15 trials per label, and the entire
VI dataset of a subject contained 240 four-second-long EEG
data.

The procedure for recording a single trial of SI EEG is
represented in Figure 1b. The trial begins with a cue that
indicates the word that the participant is required to speak out
in mind for two seconds. Then one-second interval is given
afterward, followed by a two-second-long speech imagination
period. The participants are required to imagine speaking out
a word displayed in the cue period. One-second interval and
speech imagination period is then repeated three more times,
imagining a speech of the word given in the cue period. Once
the participant imagined the speech of a word given in the cue

(a)

(b)

Fig. 1: (a) A single trial illustration of visual imagery protocol.
Each line represents one second. Cue is provided in the form
of animation of a mass drone movement (b) A single trial
illustration of speech imagery protocol. Each line represents
one second

period four times, a two-second long interval is given before
the participant moves on to receive the next cue. Four different
words were provided as cues in SI, each of them being ba, ku,
he, and li. One session consisted of a total of 240 trials, 60
trials per label, and the entire SI dataset of a subject contained
960 two-second long EEG data.

C. Data preprocessing

SI and VI datasets were preprocessed in an identical manner.
60Hz notch filter was applied to both datasets which was later
band-pass filtered between 1Hz and 90Hz. This is to keep
the high-frequency band that is known to include SI-related
patterns. Data augmentation was applied to the VI dataset by
cropping four-second long EEG windows in the VI dataset
into 1.5-second long windows with a stride of 0.1 seconds.
Since the length of each trial of SI is 2 seconds, SI had to
be augmented with a narrower stride in order to provide a
sufficient number of samples. Thus, two-second long EEG
windows in the SI dataset were cropped into 1.5-second long
windows with a stride of 0.05 seconds.

D. Proposed model architecture

The proposed method adds multi layer perceptron in be-
tween the feature extraction network and the dense layer of the
deep learning based models. The multi layer perceptron used
in the proposed method is composed of four dense layers with
ReLU activations in between each dense layer. The dimension
of the dense layer narrows down and returns to the original size
at the end. With ShallowConvNet, the multi layer perceptron
receives an input sequence with the length of 760, which
gradually narrows down to 512 and 256 and increases the size
again to 512 and 760. Output dimensions of dense layers in
EEGNet are smaller than that of ShallowConvNet. The multi
layer perceptron added to the end of EEGNet receives an input
sequence with a length of 288, which is narrowed down to 256
and 128, and then gradually increases the size to 256 and 288.

E. Training and evaluation

The focus of the evaluation is on whether the model can
produce generalized subject-specific features while preserving
user state-related features. Evaluation of the proposed model
was designed to demonstrate the capability to learn both
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subject-specific and user state related features. VI and SI
dataset were used as a training set and testing set respectively,
and vice versa. Test sets were used for subject identification
performance evaluation; this was to measure how well the
model learned features related only to the subject identity and
not the paradigm. VI and SI datasets that were initially labeled
as 4-class data were relabeled as 20-class data when used as a
training dataset, where each label was assigned to each visual
or speech imagery label from each subject (4 paradigm labels
× 5 subjects = 20). Each dataset was divided into train, valid,
and test sets as stated below. Sessions recorded on the first
day were assigned to train set, EEG from the first session
of day 2 to valid set, and the second session of day 2 was
assigned to test set. EEG of a paradigm not used in the training
was relabeled as a 5-class dataset to have each label represent
the subject and was used in evaluating subject identification
performance. When evaluating 4-class or 5-class dataset with
the model which classifies 20 classes, the output of the model
was relabeled into a corresponding label of a given dataset.

The output dimension of the dense layer of ShallowCon-
vNet and EEGNet was set to 20 for models to learn both
subject-related features and user state-related features. Each
model that applied the proposed MLP will be referred to as
MLP-ShallowConvnet and MLP-EEGNet. The order of both
experiments proceeded as follows. The original deep learning
models were first trained either with 20-class SI or VI dataset.
After the first training, the dense layer of the trained model
was replaced with multi layer perceptron (MLP) that classifies
20-class EEG to build a proposed model. With its feature
extraction network frozen, only the MLP was fine-tuned using
the same 20-class EEG dataset used in the previous training.

The performance of the proposed model was compared
against ShallowConvNet and EEGNet, two widely used EEG
deep learning models in EEG domain adaptation. MLP-
ShallowConvNet and MLP-EEGNet were also trained for
comparison with the baseline model. With both VI and SI
dataset band-pass filtered between 1Hz and 90Hz after ap-
plying 60Hz notch filter, the batch size was set to 32. Adam
optimizer was used to train models with a learning rate of
0.00001. ShallowConvNet was trained for 1000 epochs and
EEGNet was trained for 2000 epochs as EEGNet tended
to train slowly. Once the training was finished, the dense
layer of ShallowConvNet and EEGNet was replaced with the
proposed MLP to build a proposed model. Before fine tuning
the model, all of the trained layers from the first training
were frozen. This left only the newly replaced MLP to be
trained in the fine tuning step. Fine tuning was done for
100 epochs with the same dataset used in the initial training.
ShallowConvNet and EEGNet after the first training were
considered baseline models and the classification performance
of fine tuned MLP-ShallowConvNet and MLP-EEGNet were
compared against each of its baseline models. Dataset of a
paradigm not used in the training process was used to evaluate
the 5-class subject identification performance of each model as
well as the performance of task classification of the paradigm
used during the training.

Fig. 2: Subject identification accuracy using SI (left) and VI
dataset (right).

III. RESULTS AND DISCUSSION

Figure 2 shows the result of subject identification done with
speech imagery and visual imagery EEG. The plot on the left
evaluation result of the subject identification performance of
the models that were trained with the VI dataset using the SI
dataset. The plot on the right evaluates the VI dataset subject
identification performance of the model trained with SI dataset.
The original model refers to ShallowConvNet and EEGNet,
each denoted as Shallow and EEG in the plot, whereas the
proposed model refers to MLP-ShallowConvNet and MLP-
EEGNet.

The result indicates that cross-paradigm 5-class subject
identification classification accuracy improved when the pro-
posed model was used. When the model was first trained
with VI dataset, SI subject identification accuracy of MLP-
ShallowConvNet increased by 2.17% compared to Shallow-
ConvNet while MLP-EEGNet has shown 4.42% improvement
in accuracy in comparison to EEGNet. When the model was
first trained with SI dataset, MLP-ShallowConvNet showed
accuracy higher than that of ShallowConvNet by 7.64% and
MLP-EEGNet has observed a 3.88% increase in accuracy from
EEGNet.

While the proposed architecture improved subject classifi-
cation accuracy, it is also crucial to ensure that the model is
capable of classifying user-state as accurately as the baseline
models. Thus, user-state accuracies of VI and SI by the
baseline models and the proposed models were examined.
Although the accuracies have decreased in general, the change
was no larger than 0.94% and observed accuracies were above
chance level (25%). Relatively low accuracies might have been
from training the models on 20-class dataset, which may have
affected the performance. In addition to that, it is likely that the
bandpass filter range used in both datasets was not the optimal
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Fig. 3: The classification accuracy of 4-class SI (left) and VI
(right) dataset. The black horizontal line marks the random
chance level.

bandpass filter range for each paradigm since the same range
of passband was applied to both VI and SI dataset.

It is generally known that multi-layer perceptron is advan-
tageous over single-layered perceptron in the sense that it
allows for the recognition of not linearly separable patterns
[12]. The result implies that the proposed model may extract
more useful subject-specific features than the baseline models
while keeping the user-state classification accuracy. However,
there remains an issue that is yet to be explained.

Figure 2 clearly shows that the subject identification ac-
curacy differs when trained with different paradigms. The
SI subject identification accuracies of the models trained
with VI dataset ranged from 80% to 90% while the VI
subject identification accuracies of the models trained with
SI dataset ranged from 34% to 50%. Such a difference could
have originated from the difference in activated regions when
performing each paradigm. The difference in regions related
to each paradigm could have affected the model to focus on
specific regions, which may not provide useful information
in the subject identification of certain paradigms. However,
the reason why subject identification accuracy differs remains
unknown and will need further investigation.

IV. CONCLUSION AND FUTURE WORKS

In this paper, a method of attaching multi-layer perceptron
to ShallowConvNet and EEGNet has been proposed. Such
an adjustment allowed each model to identify subjects using
SI data with higher accuracy when trained with VI data and
vice versa. This may reflect the enhanced ability to capture
generalized subject-specific features present in a different
paradigm as a result of the adjustment. Further investigation
of the proposed method will need to be made to apply the
model to the domain adaptation network in the future.
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