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Abstract—Discriminating concentration of a user is one of
the few tasks that non-invasive BCIs can be applied in real-
life situations. To have EEG-based BCIs more accessible to users,
attempts have been made in terms of both hardware, where EEG
acquisition devices have been redesigned to be more affordable
and comfortable to wear, and software, where better algorithms
have been introduced to improve the interface’s performance.
For concentration discrimination, a task highly relevant to EEG
signals from the frontal lobe, using only electrodes in the forehead
has previously been proposed to further simplify the setup
required for EEG measurement. However, this requires careful
selection of ground and reference electrodes; having ground
and reference electrodes located on the forehead close to other
electrodes results in less discriminant signals, while placing them
on mastoids or other EEG neutral locations makes the interface
bulky to wear and more susceptible to various sources of artifacts,
such as ocular and facial muscle movements. Thus, in this
paper, we propose a reference bank multi-feature extraction
approach that aims to improve previous existing deep learning-
based models with multiple forms of re-referenced data. We
conducted an experiment using dry electrodes placed only on
the forehead to collect brain signals related to concentration and
resting state to evaluate our approach. Our method was applied
to three pre-existing CNN-based models, exhibiting an average
increase of 3.19% in their classification performance.

Keywords—brain-computer interface (BCI), electroencephalo-
gram (EEG), concentration discrimination, deep learning

I. INTRODUCTION

Brain-Computer interface (BCI) provides direct ways of ex-
changing information from the brain to the computer, allowing
users to control and communicate without any explicit actions
[1], [2]. This makes BCIs suitable for monitoring tasks such as
rehabilitation, sleep staging, or concentration detection, where
users may not be able to provide self-feedback while carrying
out experimental tasks [3]–[5]. These tasks are not only useful
for research purposes, but may also be used in real-life for
healthcare and self-monitoring purposes.

The design of brain-signal acquisition device is critical
when used for monitoring tasks in real-world settings [6]. The
acquisition device should be discrete and not obstruct the view
of the user. It should also be easy to wear alone and remain
comfortable over a long period of time. Amongst various
methods for measuring brain activities, electroencephalogram
(EEG) can satisfy these conditions. In addition to being non-
invasive and cost-effective, EEG signals are capable of provid-

ing high temporal resolution signals that can be collected using
dry electrodes. Previous works have studied collecting EEG
signals in different manners to make BCIs more accessible; in-
ear-EEG and around-ear-EEG have been developed to acquire
different brain patterns from in and around the ear using
earphone or headphone shaped devices [7], [8], while using
only electrode channels from the forehead have been studied
for sleep staging, detecting concentration levels and seizures
[9]–[11].

Convenient and useful as these methods are, there are still
several issues that require further examination. EEG collected
from both the forehead and the ear is prone to artifacts from
eye and other facial muscle movements [12]. Effective means
of denoising are required to enhance the performance of
BCIs using such configurations. A proper reference channel
can prevent these external artifacts [13]. However, electrode
channels, including both ground and reference, tend to be close
together in these layouts. While using reference channels in
this way may improve signal quality to some extent, it may
also lead to the loss of important neural activity signals.

Thus, in this paper, we propose a reference bank approach
to overcome this problem. By applying various re-referencing
methods to the EEG signals and combining the output signals,
we aim to construct an augmented EEG signal that removes
noise while avoiding loss of information. We conducted a
simple experiment involving mental arithmetic using our EEG
headband to test the efficiency of our proposed method for
detecting concentration using dry electrodes arranged on the
forehead. We analyzed the classification performance before
and after applying our methods to three commonly used deep
learning models in BCIs.

II. METHODS

A. Participants

Nine participants aged between 23 and 31, with no previous
neurological concerns, volunteered for our experiment. All
participants were informed of the detailed procedures prior
to the experiment. This study was approved by the Korea
Advanced Institute of Science and Technology Institutional
Review Board.
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Fig. 1: The timeline of a single EEG signal acquisition trial
consisted of a resting and concentration state. The retrieved
signals were divided into training, validation, and testing sets.

B. Data Acquisition

The experiment was conducted in a soundproof room to
minimize any unintended distractions. Participants were in-
structed to wear an EEG headband with a total of eight
electrodes arranged around the forehead, two of which were
the initial ground and reference electrodes, placed on the
middle of the forehead. The dry electrodes used in this study
were fabricated with silver conductive epoxy and the OpenBCI
Cyton board was used to measure EEG signals at a sampling
rate of 250 Hz. The data retrieved from the board resulted in
EEG signals from six total electrodes.

Two distinct tasks were performed by the participants, with
the purpose of measuring brain activity while they were in
either a concentrated or resting state, as shown in Figure 1.
The experiment consisted of six trials, with each trial including
a 60-second resting period followed by a 60-second concen-
tration period. During the resting period, participants were
instructed to gaze at a monitor placed in front of them and
asked to relax with minimal movements, including eye blinks.
During the concentration period, participants were instructed
to solve single-digit multiplication problems displayed on
the monitor. One multiplication problem was presented each
second and displayed in such a way that participants could
see the problem by fixing their gaze at a specific position on
the monitor, reducing unnecessary eye or head movements. To
minimize user fatigue, participants were provided time to rest
in between the periods, during which slight movements were
permitted.

To consider brain signals related to concentration, we pre-
processed the acquired EEG data by applying a band-pass filter
with a frequency range between 0.1 and 45 Hz.

Fig. 2: Re-referencing methods used for reference bank multi-
feature extraction. The numbers written on the electrodes for
group-wise reference indicate the order of electrodes selected
as a new reference per group, resulting in three additional
distinct banks.

C. Methods for Reference Bank Construction

Our reference bank was constructed using three different
re-referencing methods designed to consider bilateral and
latitudinal differences in the positions of the electrodes, as
shown in Figure 2. In addition to the original pre-processed
signal, our method extracted and combined features from each
re-referenced signal bank for classification.

In order to investigate the effect of each electrode on
referencing, we first applied group-wise referencing. Here,
electrodes were separated into two groups, left and right hemi-
spheric groups, to reflect different ways in which concentration
can affect brain patterns of the participants [14], [15]. The
electrodes were re-referenced three times in total, where the
two groups were separately re-referenced from each electrode
of one group and its counterpart, respectively. A total of three
reference banks resulted when this method was applied to the
data from our experiment.

To examine EEG signals collected from different regions
of the forehead, we further constructed another instance of
reference bank. Here, the electrodes were split into three
groups based on location: upper, middle and lower forehead.
Each electrode was re-referenced using the average of its
corresponding group, and the resulting data from the groups
was combined to construct a single bank.

Lastly, we used Common Average Referencing (CAR),
where re-referencing was performed with the averaged EEG
signal from all six positions. The averaged signal was sub-
tracted from each electrode.

D. Reference Bank-Based Multi-Feature Extraction

Based on previous state-of-the-art CNN-based models,
which employ temporal and spatial filters to extract spectral
and spatial features, our reference bank-based approach uti-
lizes multiple spatial extractors after the temporal convolu-
tional layer. Similar to how multiple features from different
frequency bands are merged in the filter bank common spatial
pattern (FBCSP) algorithm, our model architecture concate-
nates the features extracted from each reference bank, as
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Fig. 3: The architecture of the model used for our reference bank-based multi-feature extraction method. Features were extracted
separately for each bank after a temporal filter. The last blocks for reference bank (RB) feature extractors, indicated in blue,
represent the remaining feature extractions after the spatial convolutional layer of each model used in this paper.

shown in Figure 3. By designing the architecture in this way,
our model tends to learn important information from a wider
range of extracted features.

To evaluate our reference bank-based multi-spatial feature
extraction approach, we applied our method to three different
CNN-based models that contain sequences of spectral and
spatial feature extractions. The models used in this paper are
Shallow ConvNet, EEGNet, and Deep ConvNet [16], [17],
which extract features with the following characteristics:

• Shallow ConvNet. Utilizes squaring nonlinearity and
logarithmic activations to behave similarly to the log-
variance measure of the FBCSP model.

• EEGNet. Uses depthwise and pointwise separable convo-
lutional layers to reduce the number of trainable param-
eters, resulting in a more compact model.

• Deep ConvNet. Contains multiple blocks to increase the
depth of the model, aiming to learn a wide range of
features inspired by the field of computer vision.

The effect of our approach was analyzed by comparing the
accuracy of the models before and after applying our method.

E. Setups for Model Training and Evaluation

To measure the classification accuracy for each participant,
we used a six-fold cross-validation, where a single fold con-
sisted of the EEG data from a single trial. Of the five trial data
used for constructing the model, the last 12 seconds of data,
which corresponds to 20% of the recorded trial in terms of
time, was used for validation. Data augmentation was further
carried out to increase the number of data by segmenting the
training, validation, and testing sets with a window-size of 2
seconds and step-size of 500 miliseconds. Model training was
performed with a batch size of 32, and the adaptive moment
algorithm with weight decay (AdamW) optimizer was used
with an initial learning rate set to 0.001. We also applied
early stopping to our model training, where the model stopped
learning after no improvement in validation accuracy was seen
for over 100 epochs. The training was limited to 1000 epochs,
and the model with the greatest validation accuracy was chosen
for evaluating the test set for each fold.

III. RESULTS AND DISCUSSION

To analyze the performance of concentration classification
using CNN-based deep learning models, we compared the

Fig. 4: The classification performance of the models evaluated
with average cross-validated accuracy from all participants.
The bars colored in red and blue represent models with
and without our method applied, respectively. The error bars
indicate the standard deviation.

accuracy of a total of six models: three different previous
state-of-the-art CNN models with and without our reference
bank method. To further investigate how our reference bank
approach affected the performances of previous CNN models,
we conducted subject-wise accuracy comparisons when using
the three state-of-the-art models with and without our method.

A. Accuracy Comparison on the Used Models

Figure 4 shows the concentration classification accuracy
results of Shallow ConvNet, EEGNet, and Deep ConvNet,
along with their accuracy when our reference bank method was
further applied. Amongst the three previous models without
reference bank, Shallow ConvNet showed the greatest aver-
age accuracy of 67.12±15.32, followed by EEGNet with an
accuracy of 61.19±9.04. Deep ConvNet showed the lowest
accuracy with a value of 60.44±10.15.

Comparisons including the models using our reference bank
method show that the reference bank Shallow ConvNet showed
the highest average accuracy with a value of 72.02±15.18,
higher than when the reference bank was not applied to the
model. Improvements in average accuracy were also shown for
EEGNet and Deep ConvNet when the reference bank was ap-
plied, with their accuracy being 63.56±7.86 and 62.73±12.27,
respectively.
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Fig. 5: The change in cross-validation accuracy for each
participant. Lines colored in red and blue indicate whether
the performance improved or degraded when reference bank
was used, respectively.

Previous studies have claimed that concentration and resting
state are known to be related to oscillatory brain signals
from the frontal lobe [5], [15], [18]; this may explain why
Shallow ConvNet and our RB-Shallow ConvNet showed the
best performance overall in our experiment.

B. Subject-Wise Classification Accuracy Results

The changes in the classification accuracies for each par-
ticipant with and without our proposed approach are shown
in Figure 5. In the cross-validation results using Shallow
ConvNet, all nine participants showed improvements in classi-
fication performance when the reference bank was applied. In
the case of EEGNet, seven participants were able to elicit an
enhancement of accuracy when the reference bank was used.
Lastly, for Deep ConvNet, six out of nine participants showed
improvements in accuracy.

A few participants performed poorly with low accuracy
close to the random chance level. One possible explanation
may simply be that the participants’ brain signals displayed
no discriminant characteristics, commonly denoted as being
BCI illiterate. Another possible reason may be due to the
electrode positions used in our experiment and the lack of
variance between the measured brain activities in each channel
in response to the same task. While previous studies com-
monly used mastoids for reference and ground channels, we
used electrodes in the middle of the forehead instead, for
reasons concerning aesthetics and wearability, to increase the
accessibility of the device in real-life. The close proximity of
the ground and reference electrodes to the EEG acquisition
electrodes may result in a loss of relevant neural features
for participants who show little variation between channels,
leading to poor performance.

From our results, it is not yet known which re-referencing
method was the most effective in increasing performance.
Thus, further ablation studies will be carried out to examine
the effects of each method. We will also apply our proposed
method to BCI paradigms that have been shown to display
clear spatial brain patterns or hemispheric lateralization, such
as motor imagery and emotion.

IV. CONCLUSION

This study proposes a reference bank multi-feature ex-
traction approach for CNN-based deep learning models that
utilizes temporal and spatial convolutional layers. By applying
our method to the EEG data from our experiment, where
the concentration and resting state of users were measured
using only electrodes located on the forehead, we have shown
improvements in classification performance compared to using
previous CNN-based models alone. The approach introduced
in our paper may be used to improve detection of concentration
in users, highlighting its potential as an effective approach to
allow BCI systems to be more accessible for real-life usage.
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