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Abstract
Objective. In this paper, an around-ear EEG system is investigated as an alternativemethodology to
conventional scalp-EEG-based systems in classifying human affective states in the arousal-valence
domain evoked in response to auditory stimuli.Approach.EEG recorded from around the ears is
compared to EEG collected according to the international 10–20 system in terms of efficacy in an
affective state classification task. Awearable device with eight dry EEG channels is designed for ear-
EEG acquisition in this study. Twenty-one subjects participated in an experiment consisting of six
sessions over three days using both ear and scalp-EEG acquisitionmethods. Experimental tasks
consisted of listening to an auditory stimulus and self-reporting the elicited emotion in response to the
said stimulus. Various features were used in tandemwith asymmetrymethods to evaluate binary
classification performances of arousal and valence states using ear-EEG signals in comparison to
scalp-EEG.Main results.Weachieve an average accuracy of 67.09%± 6.14 for arousal and
66.61%± 6.14 for valence after training amulti-layer extreme learningmachinewith ear-EEG signals
in a subject-dependent context in comparison to scalp-EEG approachwhich achieves an average
accuracy of 68.59%± 6.26 for arousal and 67.10%± 4.99 for valence. In a subject-independent
context, the ear-EEG approach achieves 63.74%± 3.84 for arousal and 64.32%± 6.38 for valence
while the scalp-EEG approach achieves 64.67%± 6.91 for arousal and 64.86%± 5.95 for valence. The
best results showno significant differences between ear-EEG and scalp-EEG signals for classifications
of affective states. Significance.To the best of our knowledge, this paper is thefirst work to explore the
use of around-ear EEG signals in emotionmonitoring. Our results demonstrate the potential use of
around-ear EEG systems for the development of emotionalmonitoring setups that aremore suitable
for use in daily affective life log systems compared to conventional scalp-EEG setups.

1. Introduction

Affective state, or emotion, is one of the most
challenging topics in cognitive neuroscience. While it
is difficult to define emotion exactly, it is evident that
emotions play an important role in humans, including
personality [1], decision-making [2], and various
social activities [3]. As such, affective computing has
attracted much interest in enabling better interactions
between humans and computer systems by involving

emotions [4]. Emotion recognition is an essential part
of creating an emotion-aware system [5].

Given the subjective nature of emotion, it is
difficult to quantify emotional values for classification.
Previous studies have employed two types of affective
space models for this task: discrete and dimensional
models [6]. Discrete emotional models divide emo-
tions into several core emotions that form the basis of
more complex emotions, such as ‘joy’, ‘sadness’,
‘surprise’, ‘fear’, ‘anger’ and ‘disgust’. Dimensional

RECEIVED

10April 2023

REVISED

4August 2023

ACCEPTED FOR PUBLICATION

17August 2023

PUBLISHED

25August 2023

© 2023 IOPPublishing Ltd

https://doi.org/10.1088/2057-1976/acf137
https://orcid.org/0000-0002-6074-711X
https://orcid.org/0000-0002-6074-711X
https://orcid.org/0000-0002-5935-9662
https://orcid.org/0000-0002-5935-9662
https://orcid.org/0000-0003-1517-8381
https://orcid.org/0000-0003-1517-8381
https://orcid.org/0000-0003-3374-0876
https://orcid.org/0000-0003-3374-0876
https://orcid.org/0000-0002-7618-362X
https://orcid.org/0000-0002-7618-362X
mailto:bhyung@inha.ac.kr
mailto:shjo@kaist.ac.kr
https://crossmark.crossref.org/dialog/?doi=10.1088/2057-1976/acf137&domain=pdf&date_stamp=2023-08-25
https://crossmark.crossref.org/dialog/?doi=10.1088/2057-1976/acf137&domain=pdf&date_stamp=2023-08-25


models partition the affective space with two or more
fundamental dimensions. One of the most commonly
used dimensional models is the valence-arousal
circumplex model [7], where the affective states are
defined with two measurements: valence and arousal,
each forming an axis of the circumplex. Valence
provides a measure of how pleasant, or unpleasant,
and arousal how intense, or calming, the emotional
experience is. The core emotions in discrete emotional
models can be superimposed over the dimensional
models; for instance, the feeling of ’anger’ would be
divided into low valence and high arousal, while
ʼsadness’ would be defined by low valence and low
arousal.

Emotion recognition can be performed with
various types of input, such as facial images or
physiological signals. Common signals used include
heart rate variability (HRV) [8], electrodermal activity
(EDA) [9, 10], respiration rate (RR) [11], skin
temperature (SKT) [12, 13], and electromyography
(EMG) [14]. Many existing works also suggest
electroencephalography (EEG) as a reliable signal to
recognize emotion [15]. It has been previously shown
that EEGdisplays distinctive patterns of spectral power
in different brain areas in response to specific
emotional states. For example, Choppin [16] reported
high power in the EEG alpha wave in the frontal area
and high power in the EEG beta wave in the right
parietal area for affective states with high valence.
Ramirez et al [17] observed a positive correlation
between the EEG beta band in the frontal lobe with
arousal. Zheng et al [18] reported higher activities in
the beta and gamma bands of the temporal area for
activities with high valence, while higher activities in
the delta band in parietal and occipital areas andhigher
activity in the gamma band in the prefrontal area were
seen for emotions with low valence. Together with the
developments of signal processing and deep learning
techniques, it is possible to translate human affective
state from the EEGdatawith high precision [19–21].

There are several ways to measure EEG signals
effectively. Most commonly used systems involve
electrodes positioned over the scalp based on the
international 10-20 systems. Several works demon-
strated that high-quality EEG signals measured from
the scalp can effectively be used for emotion recogni-
tion [18, 22–25]. However, conventional scalp-based
EEG acquisition methods are uncomfortable to use
over a long period of time, which may lead to
frustration and evoke negative emotions over the
session. To solve this problem, wearable systems were
proposed to aid the emotion recognition process in a
daily life environment with a user-friendly EEG
acquisition device [26, 27]. Another solution to this is
using ear-EEG systems instead. Ear-EEG refers to an
EEG acquisition method that acquires EEG centered
around the user’s ears [28] Li et al [29] and Athavipach
et al [30] both demonstrated above-chance level results
for binary classification of affective states using

electrodes attached to memory foam or flexible ear-
buds as an in-ear-EEG acquisition sensor. However,
no further comparisons have been made between ear-
EEG and scalp-EEG devices to properly validate the
effectiveness of ear-EEG for use in emotion
recognition.

In this work, we present a custom-made wearable
around-ear EEG device and demonstrate the efficacy
of the said device in comparison to the conventional
scalp-EEG device in emotion recognition tasks. We
perform six sessions of affective state experiments
based on the international affective digital sounds
(IADS) [31] for twenty-one subjects and analyze the
performance of different feature extraction and
classification techniques. To the best of our knowl-
edge, this is the first work to explore a wearable
around-ear EEG system in affective state classification
tasks.

2.Methods

2.1.Data acquisition
2.1.1. Ear-EEG
EEG signals are acquired from around the ear from
eight channels positioned around both ears of the
subject as shown in figure 1(a). The channels are
labeled L1, L2, L3, L4 for electrodes around the left ear,
and R1, R2, R3, R4 for the electrodes around the right
ear. The reference (REF) and ground (GND) electrodes
are positioned on the middle of the back of the user’s
neck to avoid imbalances in the neural activities from
the left and right channels. Additionally, photo-
plethysmography (PPG) sensor is also included in the
right headphone below the R1 sensor. However, PPG
data is excluded from study due to the experimental
design.

For the electrodes around the ear, flexible brush-
type electrodes made from a conductive elastomer
with Ag-AgCl coating (LAXTHA Inc) are used to
ensure contact between the electrodes and the skin in
presence of hair. For GND and REF, flat electrodes
made of the same material are used instead. EEG
signals are acquired from these electrodes using an
OpenBCI Cyton biosensing board, with a sampling
rate of 250 Hz. Throughout the experiment, the
electrodes show and maintain impedance below 20k.
The device is easily wearable without external help,
and generally takes less than a minute to setup for
experiment.

As shown in figure 1(b), our device is designed as a
wearable headphone, with the biosensing board, a
rechargeable 3000mAh lithium-ion battery, and other
circuitry encased inside the ear cups. The frame of the
headphone was manufactured using PLA filaments on
a 3D printer. The device operates wirelessly through a
BLE connectionwith a personal computer. This device
is an extended version of the one presented in our
previous study [32], which was validated for its
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efficiency in a different BCI paradigm. Importantly,
our device was developed at a production cost of less
than 1500 USD, making it more cost-effective than
some of the other commercial options available.

2.1.2. Scalp-EEG
EEG signals are acquired from the scalp using
BrainVision actiCHampwith an EEG cap consisting of
32 Ag/AgCl electrodes placed around the scalp
according to the 10–20 international system as shown
in figure 2. The FCz channel is used as the ground
channel, and the signal is referenced using the FPz
channel. Electrolyte gel is inserted between the

electrodes and the scalp to ensure that the impedance
level of the electrodes remains below 10 kΩ during
preparation time, which took around 30 minutes to
finish. The signals are collected at a sampling rate of
500 Hz.

2.2. Experiment
2.2.1. Participants
In this study, twenty-one subjects, 20–29 years of age
with no previously reported neurological or hearing
impairments were recruited. Eighteen of the recruited
participants were male. Seven participants had no
prior experience with participating in EEG

Figure 1. (a)Arrangements of electrodes placed around the ear, with the dryAg-AgCl electrodes shown in detail. (b)Actual
photograph of thewearable around-ear EEG acquisition device.

Figure 2. 32 electrodes chosen for the study according to the 10-20 international system. Fpz and FCz electrodeswere used as the
ground and reference channel respectively.
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experiments. All subjects gave written informed
consent. The KAIST Institutional Review Board
approved the experimental protocol of this study
(KH2021-172).

2.2.2. International affective digital sounds (IADS
In this study, sounds from the IADS-E dataset [33]
were used as stimuli to evoke affective responses. The
original IADS is a standardized auditory stimulus
database developed by the NIMH Center of Emotion
and Attention at the University of Florida. The latest
version of IADS, IADS-2, includes 167 digital sounds,
each labelled with arousal, valence, and dominance
values. IADS-E further builds upon this dataset to
provide wider coverage of the affective space, contain-
ing a total of 935 sounds rated by 207 participants.

For each session of our experiment, fifty auditory
stimuli were randomly sampled from the IADS-E
database. The provided valence and arousal labels were
considered during sampling to maintain a balanced
ratio of high and low affective values of the stimuli.

2.2.3. Experiment protocol
A total of six sessions of emotion recognition
experiment were carried out over three consecutive
days. On each day, the participants carried out one
session using the scalp-EEG device, and another
session using the ear-EEG device. The participants
were divided into two groups based on a 2× 2 Latin
square, with one group performing the ear-EEG
session first, and the other scalp-EEG session first. The
order of the sessions was kept identical for all
three days.

Before the first session, each participant was
thoroughly informed of the concept of the valence-
arousal circumplex model of the affective state.
Participants were initially instructed to perform a
tutorial task, where they listened to four exemplary
auditory stimuli from each quadrant of the circum-
plex. They were then given an opportunity to practice
using the experiment interface; the auditory stimuli
used here were excluded from the main experiment.
The participants were given enough time to get used to
the interface and the task before starting the
experiment.

The participants performed fifty affective tasks per
session. The experimental protocol is shown in detail
in figure 3. In each task, the participants were initially
shown a black screen for five seconds. A beep cue that

lasted for 0.5 s was then delivered to prepare the
participant for the task. One second after the beep, an
auditory stimulus was played over six seconds. Two
seconds after the auditory stimulus stopped playing, a
popup window was displayed on the screen for the
participants to report their affective state. They were
given a circumplex chart with two axes: valence and
arousal, each ranging from –9 to 9. They were
instructed to mark a point that best corresponded to
their affective state during the auditory stimulus. Once
selected, they were given options to confirm, reselect,
or skip the reporting process, in case they were unsure
of their choice. Overall, one session lasted around 15
to 18minutes. After six sessions, a total of 300 samples
of EEG data and its corresponding self-reported
affective state were acquired from every participant,
half of which were collected using scalp-EEG and the
other half ear-EEG.

2.3. Emotion recognition
2.3.1. Data processing
The scalp-EEG data were first downsampled to 250 Hz
to match that of the ear-EEG data. A notch filter of
60 Hz was applied to all EEG data to remove power
line noise. A fourth-order Butterworth bandpass filter
with 1 to 60 Hz cutoff frequency was further applied to
clean the data, after which the signal was segmented
into epochs of six seconds from the onset of each
auditory stimulus, each with their corresponding
arousal and valence values reported by the partici-
pants. Samples that the participants skipped were
removed, along with EEG epochs with unnaturally
high amplitude exceeding±100 μV to remove con-
taminated data samples

2.3.2. Data resampling
We developed two binary classification models to
classify data into high or low-value states for valence
and arousal, respectively. Although we chose auditory
stimuli in a balanced manner, some subjects’ self-
reported values were imbalanced, which could lead to
biased models. To overcome this issue, we used the
clustering-based undersampling algorithm [34] to
balance the dataset. We generated N clusters for the
majority class using the K-Means algorithm, where the
smaller class contained N samples. We then selected
the resulting N clusters as the new samples for that
class. By grouping similar data samples into the same
clusters and using cluster centers to represent the

Figure 3.Timeline of a single affective self-reporting task in the experiment. Participants carried out fifty affective tasks per session,
with a total of six sessions over three days.
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majority class, this method reduces the risk of losing
useful data from themajority class, especially when the
data is not distributed equally among the classes.
Previous studies [34] have shown that this approach
outperforms other state-of-the-art data resampling
techniques, such as the random undersampling (RUS)
method [35] and synthetic minority oversampling
(SMOTE) [36], in both small-scale and large-scale
datasets. The resampling step was only applied to the
training data and was performed separately for the
arousal and valence values.

2.3.3. Feature extraction
Two different feature extraction methods commonly
used in EEG emotion recognition were selected for
comparison: power spectral density (PSD) and differ-
ential entropy (DE) to represent the band power and
asymmetry for each EEG channel. PSD describes the
power of a time series in the frequency domain
computed using the Fourier transform [37]. In
information theory, DE measures the randomness or
complexity of a random variable; it differs from
normal entropy in that the random variable can be
continuous [38]. It has been shown in previous works
that DE can be effectively used as a feature extraction
method for the emotion recognition process [39].
Assuming that a time series X obeys the Gaussian
distributionN(μ,σ2), theDE is defined as:
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Once the different features were acquired, two types of
asymmetry features: differential asymmetry (DASM),
and rational asymmetry (RASM), were computed for
each of the band-power methods for the hemispheric-
opposite channel pairs [39]. DASM and RASM are
defined as:

( )= -DSLM B B 2LR L R

( )=RASM B B 3LR L R

where B represents the band power, L is the EEG
channel in the left hemisphere and R is the opposite
EEG channel located in the right hemisphere.

The detailed feature extraction steps are as follows:
First, PSD and DE of each channel (eight and thirty-
one channels for ear-EEG and scalp-EEG, respectively)
were calculated in multiple frequency bands ranging
from the frequency of 1, 4, 8, 12, 16, . . . , 60 Hz to cover
all basic frequency bands of EEG. This process was also
performed with a different temporal window length
and step size to include the temporal information in
the features. Then, in addition to the extracted
features, DASM and RASM were further acquired,
using four channel pairs in the ear-EEG and fourteen
channel pairs in the scalp-EEG. In summary, six
different feature extraction methods including two
band-power methods: PSD and DE of all EEG

channels, two methods that combine PSD of all
channels with asymmetry features based on PSD:
PSD-DASM and PSD-RASM and two methods that
combine DE of all channels with asymmetry features
based on DE: DE-DASM and DE-RASM were
computed and compared.

2.3.4. Feature selection
Due to the large dimension of the feature vectors, the
extra trees classifier was used as the feature selection
method. This feature selection method ranks the
featureʼs importance based on the Gini index of each
feature obtained from the construction process of the
extra trees [40]. The extra trees were constructed based
on the training set only, with a number of features set
to 256. If the size of the initial feature vector was less
than 256, the feature selection method was not
applied.

2.3.5. Classification algorithm
Our classificationmodel utilized amulti-layer extreme
learning machine (MLELM). MLELM is a type of
extreme learning machine (ELM) that has been
stacked to create a multi-layer architecture [41].
Unlike traditional deep neural networks, MLELM
assigns random weights and biases to each layer,
making trainingmuch faster.MLELMhas been shown
to have good generalizability and is effective at
handling noisy and non-stationary data, such as EEG
signals [42]. These characteristics make MLELM a
suitable choice for wearable EEG systems that aim for
daily life applications. In previous studies, MLELM
outperformed conventional models such as Shallow-
Net in EEG classification with a similar sample size to
the current study [43]. To determine the optimal
number of hidden nodes in each layer, MLELMs with
three hidden layers were employed, and a grid search
method was used to test values ranging from 2 to 256.
For a more comprehensive understanding of the
MLELM algorithm and its implementation, please
refer to [42].

Because of the imbalanced testing dataset, the
hyper-parameters were optimized based on the
geometricmean (G-mean) defined as:

( )= ´Gmean sensitivity specificity 4

In this work, evaluations using both subject-
dependent and subject-independent strategies were
conducted to validate the effectiveness of the ear-EEG
acquisition method in the emotion recognition
experiment. For the subject-dependent strategy, we
performed a 5-fold cross-validation for each partici-
pant. In the subject-independent strategy, we used the
leave-one-subject-out (LOSO) validation approach,
where the data samples from one participant were
used as the testing data, and the remaining data from
all other participants were used as the training data for
the classificationmodel.
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The classification accuracies of the ear-EEG and
scalp-EEG data in all feature extraction and evaluation
strategies were compared. Furthermore, we computed
confusion matrices to check the potential bias of our
models. This comprehensive approach enabled us to
thoroughly validate the effectiveness of the ear-EEG
acquisition method in the emotion recognition
experiment.

2.4. Visualization
To examine the differences in the neural activity
during each affective state, low valence (LV), high
valence (HV), low arousal (LA), and high arousal
(HA), we computed the PSD values of all channels for
different frequency bands and averaged them across all
subjects. For each frequency band, the averaged PSD
values of all channels from both low and high affective
states were then normalized and scaled to values
between 0 and 1. To better understand affective
activations, we also visualized the time-frequency
response (TFR). Time-frequency analysis was con-
ducted using the Morlet wavelet transform [44] using
different groups of channels to better analyze the
effects of affective states at regions of interest. For ear-
EEG, channels were grouped based on the side of the
ear where the electrodes were placed, with L1, L2, L3,
and L4 channels in one group, and R1, R2, R3, and R4
in the other. For scalp-EEG, channels were chosen
based on the activities observed in the PSD plots. FT9,
T7 and TP9 channels were chosen from the left
hemisphere and FT10, T8 and TP10 were chosen from
the right hemisphere. The TFR values of the channels
on the right ear are subtracted from the values of the
channels on the left ear for ear-EEG, and the TFR
values of right hemisphere channels are subtracted
from the values of the left hemisphere channels for the
scalp-EEG to better display affective lateralizations.

3. Results

3.1. Classification results
3.1.1. Subject-Dependent classification results
Tables 1 and 2 show the subject-dependent classifica-
tion results using ear-EEG and scalp-EEG respectively.
Classifications were carried out using different feature
extraction and asymmetry calculation methods, with
different window and step sizes.

When using ear-EEG signals, different features
performed best for arousal and valence classifications.
For arousal, DE-DASM features extracted using a
three-second window with a 0.5-second step size
showed the best performance at 67.09± 6.14%, while
for valence, PSD features outperformed the other
features with an average accuracy of 66.61± 6.14%
when used with three-second window size and one-
second step size.

With scalp-EEG, DE-based methods showed
better performance for both arousal and valence

classifications. DE-DASM features with a three-
second window size and one-second step size resulted
in the highest classification accuracy at 68.59± 6.26%
for arousal. For valence classification, DE features
using a three-second window size and 0.5-second step
size were the best with an accuracy of 67.10± 4.99%.
Figure 4 shows the boxplots of best performing
features for arousal and valence classification using
subject-dependent strategy. Comparing the best fea-
tures for ear-EEG (DE-DASM for arousal and PSD for
valence), differences in performance between ear and
scalp-EEG are not significant using a paired t-test at
0.01 significance level.

3.1.2. Subject-Independent classification results
Tables 3 and 4 show the subject-independent classifi-
cation results using ear-EEG and scalp-EEG respec-
tively. Similarly to subject-dependent classifications,
different features and asymmetry methods were used
and compared. Subject-independent classifications
showed generally inferior performance in comparison
to subject-dependent classifications.

In the case of ear-EEG signals, PSD features with
no asymmetry calculations applied were the best for
both arousal and valence classifications. For arousal, a
window size of three seconds and a step size of one
second showed the best performance at
63.74± 3.84%; similarly, the best classification result
for valence was acquired using PSD features with a
window and step size of one second at 64.32± 6.38%.

Different features performed well for scalp-EEG
signals. When classifying arousal, DE-RASM features
with a window length of six seconds outperformed
othermethods with an accuracy of 64.67± 6.91%. For
valence, PSD-RASM features with a window length of
six seconds showed best performancewith an accuracy
of 64.86± 5.95%. Figure 5 shows the boxplots of best
performing features for arousal and valence classifica-
tion using a subject-dependent strategy. Similar to the
subject-dependent classification results, the results
acquired using the best features for ear-EEG (PSD for
both arousal and valence) are not significantly
different from that acquired from using scalp-EEG at a
confidence level of 0.01.

3.1.3. Confusionmatrix
In addition to the classification accuracy, confusion
matrices for different classification cases were also
plotted. Figures 6(a) and (b) show the confusion
matrices of both ear-EEG and scalp-EEG methods in
the subject-dependent and subject-independent strat-
egy classifications, respectively, where the row of the
confusion matrices represents the true class and the
column represents the predicted class. It should be
noted that the classification accuracies computed from
the confusion matrices are not the same as shown in
tables 1 to table 4 due to the difference in the number
of class distributions between participants. Results
from the confusionmatrices display the balance results
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Table 1.The average classification results (%) of ear-EEGusing subject-dependent strategy with different features andwindow lengths. Results are shown as a ±b,where a is the average classification accuracy and b the standard deviation.
Boldnumbers represent the best results of arousal and valencemodels.

Window Step
DE-basedmethods PSD-basedmethods Average

length size
DE DE-DASM DE-RASM PSD PSD-DASM PSD-RASM

(s) (s) Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence

6 — 65.13 ± 4.74 65.35 ± 5.52 65.21 ± 5.14 65.36 ± 5.31 66.26 ± 5.66 64.86 ± 5.66 64.77 ± 3.17 63.64 ± 4.96 65.77 ± 4.69 64.61 ± 5.52 64.34 ± 3.90 64.25 ± 3.89 65.25 ± 4.57 64.68 ± 5.11

3 1 66.04 ± 6.21 64.75 ± 4.73 66.20 ± 5.92 64.05 ± 4.07 66.66 ± 6.02 64.81 ± 4.22 64.48 ± 2.82 66.61 ± 6.14 66.85 ± 5.16 65.49 ± 6.12 63.72 ± 4.34 64.19 ± 5.40 65.66 ± 5.24 64.98 ± 5.15

0.5 66.45 ± 4.73 65.22 ± 4.37 67.09 ± 6.14 64.26 ± 4.12 66.68 ± 5.80 64.06 ± 4.79 65.68 ± 3.20 65.34 ± 4.97 65.42 ± 5.27 65.83 ± 5.30 63.51 ± 4.04 64.44 ± 4.63 65.80 ± 5.01 64.86 ± 4.66

1 1 64.85 ± 4.53 65.61 ± 3.39 65.94 ± 4.90 64.90 ± 4.30 65.67 ± 5.24 66.20 ± 6.84 63.99 ± 3.93 65.58 ± 4.47 65.01 ± 4.20 64.49 ± 2.91 63.07 ± 3.66 63.53 ± 4.18 64.75 ± 4.46 65.05 ± 4.51

0.5 65.88 ± 5.05 65.21 ± 4.74 65.09 ± 5.08 65.39 ± 5.03 64.72 ± 5.11 64.87 ± 4.91 65.37 ± 3.58 65.98 ± 5.01 66.10 ± 4.90 66.01 ± 6.50 62.97 ± 3.71 63.86 ± 3.07 65.02 ± 4.64 65.22 ± 4.93

Average 65.67 ± 5.03 65.23 ± 4.52 65.91 ± 5.40 64.79 ± 4.54 65.60 ± 5.52 64.96 ± 5.30 64.86 ± 3.35 65.43 ± 5.14 65.83 ± 4.80 65.29 ± 5.35 63.52 ± 3.89 64.05 ± 4.23
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Table 2.The average classification results (%) of scalp-EEGusing subject-dependent strategy with different features andwindow lengths. Results are shown as a ± b,where a is the average classification accuracy and b the standard
deviation.Bold numbers represent the best results of arousal and valencemodels.

Window Step
DE-basedmethods PSD-basedmethods Average

length Size
DE DE-DASM DE-RASM PSD PSD-DASM PSD-RASM

(s) (s) Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence

6 — 66.65 ± 5.62 66.67 ± 4.98 67.08 ± 5.57 66.27 ± 5.96 66.40 ± 5.90 66.08 ± 5.75 66.23 ± 5.67 66.45 ± 4.38 67.00 ± 6.17 66.23 ± 5.50 66.67 ± 5.38 65.02 ± 4.10 66.67 ± 5.61 66.12 ± 5.08

3 1 66.41 ± 5.90 66.12 ± 4.89 68.59 ± 6.26 66.51 ± 4.50 66.52 ± 6.98 6.58 ± 4.16 65.89 ± 6.74 65.50 ± 5.21 66.91 ± 6.21 66.82 ± 5.82 66.50 ± 6.53 66.36 ± 5.89 66.80 ± 6.37 66.19 ± 5.03

0.5 67.94 ± 5.70 67.10 ± 4.99 66.44 ± 6.02 67.04 ± 5.07 66.84 ± 5.83 66.26 ± 5.66 66.63 ± 6.45 66.56 ± 5.28 67.40 ± 6.54 66.35 ± 4.38 66.90 ± 5.85 65.36 ± 4.95 67.02 ± 5.97 66.45 ± 5.00

1 1 66.17 ± 5.92 66.06 ± 5.28 66.86 ± 5.74 65.52 ± 4.94 67.31 ± 6.31 65.91 ± 4.36 66.89 ± 6.00 65.61 ± 3.20 67.32 ± 6.01 65.60 ± 4.96 66.96 ± 5.30 66.37 ± 4.12 66.92 ± 5.78 65.85 ± 4.45

0.5 66.85 ± 6.51 65.51 ± 4.32 66.93 ± 5.57 66.10 ± 4.37 66.63 ± 6.60 65.73 ± 3.85 67.90 ± 6.63 66.17 ± 4.20 66.33 ± 6.15 66.01 ± 4.78 67.53 ± 5.80 66.92 ± 4.91 67.03 ± 6.12 66.07 ± 4.35

Average 66.80 ± 5.85 66.29 ± 4.84 67.18 ± 5.77 66.29 ± 4.93 66.74 ± 6.23 65.96 ± 4.73 66.71 ± 6.23 66.06 ± 4.45 66.99 ± 6.11 66.20 ± 5.03 66.91 ± 5.69 66.01 ± 4.80

8

B
iom

ed.P
hys.E

ng.E
xpress9

(2023)055029
JC

h
oietal



in the true positive rate of all four classes in all
evaluation strategies. This indicates that our classifica-
tion model does not bias toward a specific class and
using the geometric mean as the evaluation criteria for
the model optimization process can solve the problem
of the imbalances in the dataset where both classes are
equally important.

3.2. Visualization of neural activities
3.2.1. EEG topographicmap
The EEG topographicmaps of the LV andHV affective
states are compared in figure 7 and the comparison
between the neural activity in the LA and HA affective
states is shown in figure 8. In the ear-EEG cases, each
colored circle represents the grand-averaged PSD
value for each ear-EEG channel: from top to bottom,
R1, R2, R3, and R4 channels in the right ear, and L1,
L2, L3, and L4 in the left ear. For scalp-EEG, each black
dot represents an EEG channel according to the
conventional 10–20 international system.

As we can see in figure 7(a), the most remarkable
difference between the LV and HV states of the ear-
EEGdata is that the LV state has a higher overall power
as compared to the HV state even though they share
similar patterns in the PSD values of all eight ear-EEG
channels. The difference in the power between the two
states is greater in the higher frequency bands
including alpha, beta, and gamma while the power
difference in the delta and theta bands is notable but
insignificant. Comparing the power in the left and
right ear-EEG, the average power in the left ear-EEG is
higher than the right ear-EEG in all frequency bands in
both LV and HV states, with the exception of the beta
band, which shows very similar average power
between the two sides of ear-EEG. Additionally, we
could observe the left/right power lateralization
between two affective states by comparing the average
left/right power ratio of the ear-EEG data. The HV
state shows a higher left/right power ratio in the delta,

theta, and gamma bands and the LV state shows a
higher left/right power ratio in the alpha band, while
the value from the beta band is very similar in both
states. Notably, the gamma band shows the highest
difference in the left/right power ratio between the LV
(approximately 1.4) and HV state (approximately 2.0)
which suggests that the HV affective state is associated
with the gamma power dominance in the left
hemisphere.

Some interesting points can be observed from the
scalp-EEG data (figure 7(b)). First, we can see a high
beta and gamma power in the area around the T7 and
T8 channels of both LV and HV states. These high-
power activities likely represent the activities in the
auditory cortex (located in the temporal lobe) which
were occurred in response to the auditory stimuli.
Both LV andHV states share a similar pattern of power
among all channels in all frequency bands, with no
significant power difference in the scalp-EEG channels
positioned around the ear between the low and high
valence states.

In the comparison between the LA and HA
affective states from the ear-EEG results (figure 8(a)),
we can see a higher overall alpha, beta, and gamma
power in the LA state; however, the power patterns
among all channels in the delta and theta bands are
almost identical in both states. Unlike the valence
states, the difference in the average left/right power
lateralization in all frequency bands between the LA
andHA states is very slight, with an exception of the L4
channel which has markedly higher gamma power in
the LA state.

For the scalp-EEG data, again, the power concen-
trated around the area where the auditory cortex is
located could be observed (figure 8(b)). Some differ-
ences in the power pattern can be seen between the low
and high arousal states. First, a lower delta, theta, and
alpha power in the parietal and occipital areas can be
observed in the HA state. Second, the beta and gamma

Figure 4.Box plot of best results using subject-dependent strategy for ear and scalp-EEG for (a) arousal and (b) valence classification.
The box plot shows the quartiles of the dataset with thewhiskers extended to show the rest of the distribution. Outliers aremarked by a
diamond.
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Table 3.The average classification results (%) of ear-EEGusing a subject-independent strategy with different features andwindow lengths. Results are shown as a ± b, where a is the average classification accuracy and b the standard
deviation.Bold numbers represent the best results of arousal and valencemodels.

Window Step
DE-basedmethods PSD-basedmethods Average

length Size
DE DE-DASM DE-RASM PSD PSD-DASM PSD-RASM

(s) (s) Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence

6 — 60.60 ± 4.66 60.31 ± 5.38 60.81 ± 5.09 62.04 ± 5.55 60.79 ± 4.59 60.68 ± 3.52 61.83 ± 5.99 62.33 ± 4.84 61.07 ± 4.61 63.14 ± 4.72 62.29 ± 5.28 62.15 ± 5.77 61.23 ± 5.00 61.77 ± 5.01

3 1 61.46 ± 5.94 61.52 ± 3.55 62.42 ± 6.28 61.72 ± 5.16 62.88 ± 4.96 62.44 ± 4.79 63.74 ± 3.84 62.68 ± 5.28 62.39 ± 3.90 63.06 ± 5.50 63.35 ± 4.52 62.81 ± 5.72 62.70 ± 4.95 62.37 ± 4.98

0.5 62.59 ± 5.02 61.47 ± 3.55 61.24 ± 4.20 62.64 ± 3.05 62.65 ± 4.68 62.18 ± 4.45 63.34 ± 5.43 62.52 ± 4.78 63.37 ± 6.21 62.22 ± 3.16 62.78 ± 5.44 61.59 ± 5.02 62.66 ± 5.15 62.10 ± 4.12

1 1 62.41 ± 5.94 61.79 ± 5.90 62.76 ± 5.87 61.72 ± 5.16 63.22 ± 3.91 62.86 ± 3.46 63.18 ± 4.08 64.32 ± 6.38 62.90 ± 3.80 63.07 ± 5.26 60.61 ± 3.10 63.97 ± 7.46 62.51 ± 4.57 62.95 ± 5.51

0.5 61.64 ± 3.43 63.02 ± 5.10 60.56 ± 4.11 62.82 ± 4.49 63.35 ± 6.33 62.39 ± 3.72 63.00 ± 4.83 62.78 ± 4.97 62.61 ± 5.46 63.82 ± 6.21 62.90 ± 5.54 63.24 ± 6.26 62.34 ± 5.03 63.01 ± 5.12

Average 61.74 ± 5.03 61.62 ± 4.88 61.56 ± 5.16 62.19 ± 4.40 62.58 ± 4.95 62.11 ± 4.02 63.02 ± 4.85 62.93 ± 5.23 62.47 ± 4.85 63.06 ± 5.00 62.39 ± 4.86 62.75 ± 6.04
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Table 4.The average classification results (%) of scalp-EEGusing subject-independent strategywith different features andwindow lengths. Results are shown as a ± b, where a is the average classification accuracy and b the standard
deviation.Bold numbers represent the best results of arousal and valencemodels.

Window Step
DE-basedmethods PSD-basedmethods Average

length Size
DE DE-DASM DE-RASM PSD PSD-DASM PSD-RASM

(s) (s) Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence Arousal Valence

6 — 64.57 ± 7.06 62.35 ± 3.91 64.13 ± 6.76 63.51 ± 3.87 64.67 ± 6.91 62.40 ± 3.74 63.42 ± 7.27 61.86 ± 2.27 62.89 ± 6.16 64.86 ± 5.95 63.89 ± 7.24 62.71 ± 2.85 63.93 ± 6.80 62.95 ± 3.98

3 1 62.63 ± 5.89 62.15 ± 4.39 63.89 ± 6.75 61.07 ± 3.48 63.00 ± 7.67 62.38 ± 2.86 64.38 ± 7.10 61.97 ± 4.51 63.47 ± 7.49 62.81 ± 3.79 63.49 ± 5.63 62.09 ± 3.92 63.48 ± 6.68 62.08 ± 3.82

0.5 63.40 ± 8.23 62.95 ± 4.17 63.87 ± 6.75 62.16 ± 4.91 64.61 ± 7.53 62.01 ± 3.96 63.90 ± 8.16 62.82 ± 4.48 63.64 ± 6.57 61.79 ± 3.92 63.25 ± 7.91 61.24 ± 4.07 63.78 ± 7.42 62.16 ± 4.22

1 1 64.50 ± 6.23 62.60 ± 4.09 63.64 ± 6.97 63.19 ± 4.02 63.15 ± 6.80 62.60 ± 3.56 63.68 ± 6.43 62.09 ± 3.39 63.23 ± 6.47 62.52 ± 3.34 64.23 ± 6.25 62.02 ± 3.72 63.74 ± 6.42 62.50 ± 3.64

0.5 63.17 ± 7.18 62.92 ± 5.28 62.41 ± 7.93 62.72 ± 4.42 63.16 ± 7.38 62.00 ± 4.74 62.91 ± 6.73 62.22 ± 4.30 63.79 ± 8.01 62.66 ± 4.21 63.16 ± 6.89 61.94 ± 4.42 63.10 ± 7.23 62.41 ± 4.50

Average 63.65 ± 6.87 62.60 ± 4.32 63.59 ± 6.94 62.53 ± 4.18 63.72 ± 7.17 62.28 ± 3.76 63.66 ± 7.04 62.19 ± 3.83 63.40 ± 6.85 62.93 ± 4.38 63.61 ± 6.71 61.70 ± 3.78
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powers in the area around the T7 and T8 channels are
higher in the HA state. Interestingly, unlike the results
from the ear-EEG data, we could observe a clear
difference in the beta and gamma left/right power
lateralization in the auditory cortex area between the
LA and HA states. In the beta band, the left power is
slightly higher than the right power in the LA state and
the right power is slightly higher than the left power in
the HA state. Also, the left/right power lateralization
in the gamma band is much greater in the LA state.
This again supports the theory that EEG in the gamma
band plays a very important part in the emotional
process of the brain.

3.2.2. Time-frequency analysis
The time-frequency plots show more detailed insight
into changes in spectral and temporal domains during
the emotional process. With regards to the HV state in
ear-EEG as shown in figure 9(a), while the right ear
briefly shows more activities at the one-second mark

from 10 to 50 Hz, the left ear shows predominantly
more activities when compared to the right ear
between 10 to 35 Hz overall. In frequencies above
40 Hz, both sides show similar activities, with the
exception of three-second and five-second points,
where activities in the left ear flare up. For the LV state,
the right ear shows more activities in the frequency
domain above 20 Hz after 0.5 s from the onset of the
stimulus, with some higher activities in the left ear seen
for frequency below 20 Hz sparingly.

Scalp-EEG TFR plots in figure 9(b) show slightly
different responses. For the HV state, until 2 s after the
onset of the stimulus, the right temporal channels
show higher activities between 10 to 35 Hz, with
higher activities in the left temporal channels for the
frequency range above that. After two seconds, higher
activities are seen in the left temporal channels
between 10 to 35 Hz until the end of the task. At the
three and five-second marks, left temporal channels
again briefly show higher activities at higher frequency

Figure 5.Box plot of best results using a subject-independent strategy for ear and scalp-EEG for (a) arousal and (b) valence
classification. The box plot shows the quartiles of the dataset with thewhiskers extended to show the rest of the distribution. Outliers
aremarked by a diamond.

Figure 6.Confusionmatrix of classification results using (a) subject-dependent and (b) subject-independent.
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Figure 7.Topoplots of (a) ear and (b) scalp-EEG for low and high valence states.

Figure 8.Topoplots of (a) ear and (b) scalp-EEG for low and high arousal states.
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ranges. For the LV state, both left and right temporal
channels show similar levels of activities, with a brief
spike in the left temporal channels at the 1.5-second
mark. At frequencies above 40 Hz, right temporal
channels show more activities until 1.5 s, after which
the left temporal channels show comparatively
stronger signals. After this, at three, four, and five-
secondmarks, the right temporal channels show some
spike of higher activities.

In figure 10(a), the TFR for ear-EEG during HA
and LA states can be seen. While both HA and LA
states show higher activations in the right ear at
frequencies above 10 Hz, the LA TFR shows higher
differences between the left and right ear. BothHA and
LA show higher left ear activity one second after the
onset of the stimulus, but at different frequency
ranges; HA states between 30 to 55 Hz and LA between
15 to 50 Hz. LA TFR plot also shows more frequent
spikes of higher activities in the left ear at frequency
ranges higher than 35 Hz comparatively.

For the scalp-EEG (figure 10(b)), HA state TFR
shows similar responses between left and right
temporal channels at frequency ranges between 10 to
35 Hz, with the left temporal channels briefly showing
higher activities 1.5 s after the start of the stimulus. At

frequencies higher than 40 Hz, left temporal channels
generally show higher levels of activities at all time
periodswith the exception of the 1–2 s range. In the LA
state TFR, left and right temporal channels show
similar values above 40Hz; below this, left temporal
channels tend to showhigher activities.

Overall, for both scalp and ear-EEG, TFR patterns
generally stabilized two seconds after the start of the
task. Such patternsmay be due to the affective stimulus
used; users may require some time for the auditory
stimulus to play sufficiently before being cognizant of
their affective response. The TFR plots suggest that at
least two seconds of audio needs to be played before a
proper affective response can be seen.

4.Discussion

4.1. Result discussion
4.1.1. Effectiveness of different features
DE-based features outperformed PSD-based features
for subject-dependent classifications. PSD did per-
form the best for ear-EEG classification of valence at
an accuracy of 66.61%, but DE-based features still
showed comparable performance, with DE-RASM at
66.20%. For subject-independent classifications, PSD

Figure 9.Time-Frequency Response of (a) ear and (b) scalp-EEG for low and high valence states. For ear-EEG, the difference between
left ear and right ear channels are shown, while for scalp-EEG, the difference between left temporal channels (FT9, T7, TP9) and right
temporal channels (FT10, T8, TP10) are shown.
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features showed higher accuracy, with the exception of
arousal classification using scalp-EEG, where using
DE-RASM features worked the best. Likewise, PSD
features still showed comparable performance to DE-
RASM features for this classification task. As for the
time window used, the three-second window size
showed the best performance overall for subject
dependent strategy. This suggests that emotional
response could be observed within three seconds.
Coupled with observations from the TFR plot,
emotional response may be mainly located between
two to five seconds during the six seconds of the
auditory stimulus. For subject-independent classifica-
tions using scalp-EEG, a six-second time window
perform the best, while for ear-EEG, three and one-
second windows show the best results for arousal and
valence respectively. The differences in subject-
independent classifications from subject-dependent
classifications may result from individual differences,
with different subjects having different delays in
responses to auditory stimuli.

4.1.2. Around-ear EEG performance on affective
decoding
In this study, our around-ear EEG method achieved a
classification accuracy of 67.09% and 66.61% for the

arousal and valence models, respectively, using a
subject-dependent strategy. However, our method
showed inferior performance than the in-ear EEG
study in [30], which reported an accuracy of 72.89%
and 71.07% for the arousal and valence models,
respectively. One reason for their superior results may
be that their experiments involved a longer stimula-
tion period of 30 s (pictures from IAPS database),
compared to our study, which used EEG while the
stimuli were presented for only 6 s. Additionally, they
used a 10-fold cross-validation method with forty
samples obtained from a single session to validate their
results, while our study performed cross-validation
with samples mixed from three different sessions
conducted on three different days. Considering the
non-stationary nature of the EEG signal, thismay have
contributed to the lower performance in our study.
For the subject-independent strategy, the study in [29]
achieved a significantly higher classification accuracy
of 94.1% for negative-vs-excited emotion binary
classification, compared to our classification accuracy
of approximately 64% using the same leave-one-
subject-out validation method. One possible explana-
tion for their exceptional accuracy, despite using a
common feature extraction and classificationmethod,
is that they used video clips as visual-auditory stimuli

Figure 10.Time-Frequency Response of ear and scalp-EEG for low and high arousal states. For ear-EEG, the difference between left
ear and right ear channels are shown,while for scalp-EEG, the difference between left temporal channels (FT9, T7, TP9) and right
temporal channels (FT10, T8, TP10) are shown.
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to induce emotion. The videos were four minutes in
length and had a story, whichmight stimulate emotion
better than the pure auditory stimuli used in our study.
However, a limitation of the study in [29] is that each
participant only performed one trial of the experi-
ment, resulting in only one EEG sample per type of
emotion. This limited the generalizability of their
results. Nevertheless, our results do not imply that
around-ear EEGmethods are inherently inferior to in-
ear EEG methods for affective BCI systems. While
there are clear advantages and disadvantages to each
method in terms of wearability and design, further
studies on affective decoding using both ear-EEG
methods, particularly ones that directly compare their
performance, are necessary to fully evaluate their
capabilities. One interesting observation in our results
is the differences in performance when changing from
subject-dependent to subject-independent classifica-
tions.While scalp-EEG showed slightly higher accura-
cies for both subject-dependent and independent
classifications of arousal and valence in comparison to
ear-EEG, ear-EEG showed significantly smaller
changes in performance between subject-dependent
and independent classifications, with some feature
methods outperforming scalp-EEG. Scalp-EEG
showed an average decrease of 3.28 in arousal and 3.72
in valence classification when changed to subject-
independent strategy, in contrast to 3.01% and 2.51%
decrease in ear-EEG performances. This may indicate
that ear-EEG features are more robust and better
suited for creating a subject-independent classification
system. These results could be due to the smaller
number of electrodes used in ear-EEG, resulting in the
classification model not learning features more
specific to individual participants. Scalp-EEG setups
also had electrodes in regions where we did not see
activities in response to affective states, which may
have caused the classification model to learn features
that are less relevant to the emotional processes of the
human brain.

4.2. Neural activities during affective responses
In the topographic map of ear-EEG of valence states in
figure 7a, we observed that the LV state has dominant
overall power in the alpha, beta, and gamma bands,
and that the left/right power lateralization, especially
in the gamma band, might be used as a factor to
discriminate the LV and HV state using the ear-EEG
data. This corresponds with the valence model
hypothesis of the brain lateralization of the emotional
process which states that the left hemisphere is
specialized for positive emotion and the right hemi-
sphere is specialized for negative emotion [45]. This
corresponds to the founding of the previous studies
[18, 23], which state that the higher frequency band
including the gammaband in the prefrontal, temporal,
and parietal areas which are close to ear-EEG
locations, highly correlates with the valence affective

state. In contrast, for arousal states, our results, as
shown in figure 8a, demonstrated smaller differences
between the left and right channels in the lower
frequency bands. These results suggest that the LA
state is associated with a higher power strictly in the
higher EEG frequency bands including alpha, beta,
and gamma, and the left/right power lateralization
might play a smaller part in differentiating the LA and
HA state in contrast to the valence state. The results of
TFR plots (figure 10) normally showed clear signs of
emotional lateralizations at frequency ranges above
15Hz, with some affective states showing different
responses above 40 Hz, also corresponding with the
earlier observations made with topographic maps.
Furthermore, our scalp-EEG topographic maps
(figures 7(b) and 8(b) indicate an absence of activity in
the frontal and central regions of the brain, which is
inconsistent with previous findings. One possible
explanation for this discrepancy is our use of Fpz as the
common reference point in our scalp-EEG acquisition
setup, which may have caused reduced activity in the
areas surrounding Fpz, including the frontal and
central regions, compared to other regions.

4.3. Futureworks
This work serves as a preliminary study that examines
the performance of a wearable ear-EEG acquisition
device in the emotion recognition process in compar-
ison to the conventional EEG acquisition method. In
this work, two binary classification models were used
to recognize the userʼs emotional state from the data
distinctively between the valence and arousal values,
allowing the categorization of four emotional states,
including LV-LA, LV-HA, LV-HA, andHV-HA, when
combined. Developing the work further with more
detailed labeling of valence and arousal values, such as
the ‘neutral’ class, would provide further insight into
emotional recognition using ear-EEG. Training a
regression model based on continuous values of the
affective states may also be an alternative to consider.
We found dominant neural activities in the temporal
areas of the brain during the stimulus observation
period, suggesting that the emotional process of the
human brain is dominant in the temporal areas. As
discussed in the previous section, this founding
corresponds to the results from the previous studies,
however, there is also a possibility that the dominant
neural activities in the temporal area that we
discovered came purely from the auditory information
processing of the auditory cortex which is also located
in the temporal area as well. Further studies are
required to validate the effectiveness of using ear-EEG
in emotional recognition tasks, especially with differ-
ent methods of eliciting affective responses. For
example, visual stimuli such as the IAPS database
might be used as an additional set of stimuli to
compare the EEG in response to the stimuli to confirm
the neural activity of the emotional process in the
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temporal area in the absence of auditory stimuli, or the
experimental protocol might be redesigned to
lengthen the period after the offset of the stimulus in
order to observe and compare the EEG data between
the period where the stimulus is presenting and after
the offset of the stimulus. Using video clips from films
that provide a longer duration of visual and auditory
stimuli with meaningful narratives could potentially
elicit a more robust emotional response in the
participants and thus provide a more rigorous test of
the proposed method. Techniques, such as data
augmentation [46], may also be applied to reduce or
maintain similar experimental time while collecting
sufficient samples. It would also be interesting to use
and observe the ear-EEG in a self-induced emotion
experiment that does not require any external stimuli
in the experimental process as well. These studies will
make sure that what we acquire from the EEG data is
the neural activity of the emotional process and not
purely from the cortical response to the given
stimulus. Lastly, while our study offers a valuable
comparison between conventional scalp-EEG and the
proposed around-ear EEG approach, the classification
performance of ourmethodwas comparatively subpar
to state-of-the-art algorithms. Therefore, future inves-
tigations should explore more advanced machine
learning techniques, such as those presented in [47]
and [48], to improve the robustness and accuracy of
our system. Despite this limitation, we maintain that
our findings remain credible and significant, as they
are consistent with the performance of other typical
algorithms utilized in similar experimental setups [15,
49, 50]. Nevertheless, we acknowledge the potential
for enhancement and will consider integrating these
advanced techniques in our future research to enhance
the overall performance of our system.

5. Conclusion

This work proposed ear-EEG as an alternative
acquisitionmethod to scalp-EEG for emotion recogni-
tion. The study conducted experiments to validate the
effectiveness of ear-EEG acquired by the proposed
wearable ear-EEG headphone by comparing its
performance with the conventional 32-channel scalp-
EEG. Using PSD and DE, and their brain asymmetry
features as the feature extraction methods and
MLELM as the classification model, the results show
that ear-EEG produced results in classification accur-
acy comparable to the scalp-EEG method. Statistical
tests were also performed to confirm that the
differences between the results of these two EEG
acquisition methods were not significant. Our results
show that the DE-based feature extraction method
gave the best classification accuracy compared to the
other two methods, and incorporating the brain-
asymmetry features can improve the results. Our
results also suggest that the around-ear EEG may be

better suited for subject-independent analysis when
compared to scalp-EEG. In the data analysis, the
topographic maps of both ear-EEG and scalp-EEG
data show some distinct patterns in neural activity
between each affective state and these distinctive
characteristics are dominant in the Gamma frequency
band, with time-frequency responses showing most
neural activities in between two and five seconds after
the start of the auditory stimulus. In conclusion, the
results of this study indicate that around-ear EEG can
be used as an alternative EEG acquisition method to
the conventional scalp-EEG, advancing the develop-
ment of wearable EEG systems for applications that
require a long period of neural activitymonitoring.
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