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a b s t r a c t

We propose a wearable hybrid interface where eye movements and mental concentration directly
influence the control of a quadcopter in three-dimensional space. This noninvasive and low-cost
interface addresses limitations of previous work by supporting users to complete their complicated tasks
in a constrained environment in which only visual feedback is provided. The combination of the two
inputs augments the number of control commands to enable the flying robot to travel in eight different
directions within the physical environment. Five human subjects participated in the experiments to test
the feasibility of the hybrid interface. A front view camera on the hull of the quadcopter provided the
only visual feedback to each remote subject on a laptop display. Based on the visual feedback, the
subjects used the interface to navigate along pre-set target locations in the air. The flight performance
was evaluated by comparing with a keyboard-based interface. We demonstrate the applicability of the
hybrid interface to explore and interact with a three-dimensional physical space through a flying robot.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decade, various interface systems have been
explored that enable not only healthy but also physically impaired
people to immerse themselves in images or videos and interact
through voluntary movements such as moving their eyes in
various directions. Among the diverse approaches, eye tracking
techniques and brain–computer interfaces (BCIs) are those in the
spotlight. The two paradigms enable intuitive and natural inter-
action. This paper proposes a hybrid interface where users' eyes
and mental states directly influence control systems. In particular,
we present a noninvasive and low-cost wearable interface to
control a quadcopter in three-dimensional (3D) space.

When a human being is able to move their eyes voluntarily,
eye tracking is a promising interface scheme [1]. Eye move-
ment recording can be interpreted as control commands with-
out the need of a keyboard or mouse input. In contrast to
conventional inputs, eye tracking is wearable. Hence, it can be
advantageous for not only physically impaired people but also
healthy people in the sense that both hands are still available.
It has a high information transmission rate, short preparation
time, and omnidirectional controllability [2]. In most of the
previous eye movement based tracking work, they usually

track pupil contour and estimate eye gaze with a monocular
camera. Though such approaches may have been shown to be
effective in controllability in the two-dimensional (2D) space,
they are not necessarily able to be used in 3D space because
depth information is not extractable.

Among BCI approaches, electroencephalogram (EEG)-based
BCIs enjoy many advantages such as inexpensive equipment, less
environmental constraints, and noninvasive measurement [3].
In terms of classification accuracy, recent studies have demon-
strated EEG-based BCIs allow users to control machines with
multi-states classification [4–6]. Nevertheless, from the perspec-
tive of practical applications, consistently classifying multi-class
BCI is not easy because of the difficulty of human subjects in
maintaining mental concentration and the intensive training
required [7]. In this sense, two-class BCI classification is favorable
due to its relative simplicity, but has a limit of controllability. To
overcome the problem and improve practical applicability, the
hybrid BCI paradigm, which uses a brain activity-based interface
together with any other multimodal control device, has been a
popular topic of investigation [8]. The hybrid BCI paradigm is
expected to be a good choice for practical implementation with
feasible hardware [9]. Among various choices of control devices for
hybridization with BCI, eye-tracking devices are of particular interest
because of their omnidirectional controllability in the 2D space.

There were attempts [10,11] to attain enhanced interfaces by
hybridizing eye tracking and EEG-based classification. The two
schemes could be compensatory in function. These attempts were
made based on an idea that EEG-based classification can be a way
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of commanding selections while eye tracking is used to point at
target spots. However, its applications to date are limited to the 2D
physical space such as cursor control on a computer screen.

To further extend the hybridization's potential for asynchro-
nous interaction of the exploration of a subject's surroundings,
considering applications in a 3D physical environment are valu-
able. Furthermore, applications to challenging tasks such as con-
trolling the flight of an airborne object [12], which is not an easy
task evenwith a nominal interface, would be a more valid study. In
this study, fresh look at a hybrid interface combining eye move-
ment and brain activity is considered as way of extending control
commands for 3D physical applications; specifically in this study,
quadcopter flight control. The combination of eye movement and
mental concentration is mapped to all possible flight actuations of
a quadcopter. Hence, a human subject can control the quadcopter
remotely while simply looking at the computer monitor keeping at
a safe distance from its air space. The subject also obtains real-
time environmental information from a camera mounted on the
quadcopter. Therefore, he or she can make decisions on the flight's
direction based on this information.

The other consideration of this study is the interface's practical
applicability [13,14]. Currently, standard eye trackers and EEG
acquisition systems are very expensive and bulky. They are still
mainly used in laboratory environments. To enhance real-life
usability, we prepare a low-cost hybrid interface for the present
study. In addition, the hybrid interface aims to be easily wearable.
Hence, the aim of this study is the development of a low-cost and

easy-to-use hybrid interface that interprets eye movements and
brain mental activity to allow real-time control of applications in
3D environment. Therefore, the contribution of the proposed
system, as an alternative to existing work, is a new interface that
addresses the limitations of the previous systems in a single
system. The main contributions of this work are two-fold:

1. Easy-to-learn and easy-to-use system: hybridizing eye tracking
and EEG-based classification allowing users to complete their
tasks easily with various commands in 3D physical space.

2. Not only low-cost but also a convenient wearable device:
people can control their flight naturally in everyday life.

The rest of this paper is organized as follows: Section 2
presents a detailed method of this proposed work. Sections
3 and 4 present experimental setup and results. Section 5 presents
some conclusions and discussion.

2. Methods

2.1. Hybrid interface system

Fig. 1 shows the overview of our proposed hybrid interface.
It consists of an EEG acquisition headset and a custom-built eye
tracker based on previous studies [14,15]. The eye tracker's total
cost was less than $40USD. The eye tracker consists of two

Fig. 1. The overview of our proposed hybrid interface.

Fig. 2. Layout of the software architecture.
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components: an infrared camera, and light-emitting diodes (LEDs).
Five LEDs are fixed around the lens of the infrared camera that is
connected to the frame of a pair of glasses about 8 cm away from
the left eye. When a subject wears the glasses, the camera is
pointed toward the left eye to capture its image. LEDs illuminate
the eye to enhance the contrast between the pupil and the iris. The
camera captures eye images sequentially with a spatial resolution
of 640�320 pixels at sampling rate of 33 Hz and the image stream
is transmitted to a computer via a USB. From the sequential eye
images, eye gaze is estimated on the computer.

A low-cost commercial EEG acquisition headset (Emotiv Epoc,
US), which is also shown in Fig. 1, is combined with the eye
tracker. The headset is significantly less expensive in comparison
with the state-of-art EEG acquisition systems. Its reliability as an
EEG acquisition system has been studied in some previous papers
[9,11,16,17]. The EEG acquisition headset consists of 14 electrode
channels plus CMS/DRL references around the sensorimotor cor-
tex. In this study, EEG signals from the headset are used to classify
a subject's mental concentration.

The combination of the low-cost eye tracking and EEG acquisi-
tion systems comprises the hybrid interface, which takes advan-
tages from the two systems. Fig. 2 shows the layout of the software
architecture in this study. The lowest layer is formed by the
hardware layer, which generates raw data in the form of a
video stream, image sequences, and EEG signals from devices.
This information is then processed by the kernel space layer. Its
task is to generate a stream of eye position from the raw image
data and filtered brain signals from EEG signal data. Note that this
layer includes transformation from device to screen coordinates,
but a perspective transformation such as a calibration procedure is
excluded. The final part of our framework is the user space layer. In
this layer, in order to interpret eye movement and mental states,
calibration phases and classification procedures are conducted.
The user space layer also has the task of generating visible output
for the user via a Graphical User Interface (GUI). It receives events
from Drone SDK, Emotiv SDK, and Gaze Tracker as well as displays
its output on a monitor. Implementation of this layer has been
programmed in C# under the .NET framework.

2.2. Algorithms

Once the camera initially grabs an image, our eye-tracking
algorithm proceeds based on previous studies [14,15]. First, the
image is binarized, and then eye features such as points inside
detected contour between the pupil and iris are extracted. Apply-
ing a RANSAC procedure to eliminate outliers, the center of the
pupil is determined at the center of an ellipse fitted into the
feature points. These points are then mapped to eye gaze through

a calibration process. In the calibration process the coefficients for
interpolating gaze points on horizontal and vertical axes are
calculated using a second-order polynomial [18]. Nine points on
the top-left, top, top-right, left, center, right, bottom-left, bottom,
and bottom-right are displayed on the screen. The user is
instructed to fixate his/her gaze on each of the 9 target points in
sequence. Each time, the location of the center of the pupil is
recorded. Given the 9 corresponding points from the center of the
pupil, the pupil vectorp¼ ðxp; ypÞt is transformed to a screen
coordinate s¼ ðxs; ysÞt as follows:

xp ¼ ða0þa1xsþa2ysþa3xsysþa4x2s þa5y2s Þ
yp ¼ ða6þa7xsþa8ysþa9xsysþa10x2s þa11y2s Þ

where ai are the coefficients of this second order polynomial. From
the above equation, an over-determined linear system with 18
equations is obtained. The coefficients of the system can be solved
using a least squares method.

Collected brain activity signals are processed in real-time to
classify two mental states: intentional concentration and non-
concentration states. To discriminate the two states, we use the
Common Spatial Pattern (CSP) algorithm [17]. CSP is a technique to
analyze multichannel data based on recordings from two classes.
Let XAℝL�M be a segment of an EEG signal where L is the number
of channels and M is the number of samples in a trial and xðtÞAℝL

be EEG signal at a specific time t. Hence X is a column concatena-
tion of x(t). Given two sets of EEG signals from intentional mental
concentration and non-concentration states, CSP yields decompo-
sition of the signal parameterized by a matrix WAℝL�L. The matrix
W projects the signal x(t) to x̂ðtÞ ¼WTxðtÞ. CSP filters maximize the
variance of the spatially filtered signal under one condition while
minimizing it for the other condition. The mathematical proce-
dures to find the spatial patterns are well formulated in previous
studies [17]. We use the Burg method based on an autoregressive
(AR) model to estimate the power spectrum of the projected
signals. Based on previous reports, we fix the model order of the
AR model to be 16 and set the power values of a feature vector
between 11 and 19 Hz. According to the literature [19,20], brain
activity during mental concentration or alertness comprises dis-
tinct rhythms over frontal areas in the beta wave band whereas it
has much weaker amplitude in the alpha wave band over the
occipital lobe with eyes closed. For optimally classifying feature
vectors acquired from training session, we use a Support Vector
Machine (SVM) algorithm, which is a supervised learning method
used for classification and regression. It is known to be good at
generalization and has popularly been used for EEG-based classi-
fication [21]. In this work, the linear kernel-based SVMwas applied.

For robust classification during real-time execution, data points
acquired from each 1 s time window with 125 ms increment are

Fig. 3. Quadcopter and its control windows. (a) Quadcopter's directions indicated by arrows. (b) Control window design in GUI. In mode A the central area of the GUI is
colored green and it carries out four movements: front, left, right, and back hover. On the other hand, in mode B, the area is colored yellow carrying out four movements:
ascend, descend, left turn, and right turn. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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used to classify a mental state. Furthermore, the final confirmation
of an intended state is made when an identical state is repeatedly
selected from two sequential windows after classification. There-
fore, a state selection confirmation takes 250 ms if the selection is
successful and the confirmation is used to update the selection of
the modes A and B.

2.3. Quadcopter flight control

We set the eight directions of the quadcopter as shown in
Fig. 3(a): up and down, left and right, forward and backward
translation, and left and right turns. Fig. 3(b) shows the GUI of our
system on the monitor. In the GUI window, visual feedback is
displayed in the central rectangular region. The top, bottom, left
and right regions are partitioned. A subject can cause the quad-
copter to take off by concentrating mentally with their eyes closed.
Once the quadcopter takes off, two control modes, A and B, can be
only altered by concentrating mentally while gazing at the central
area. The two modes are distinguished by the color of a selected
region in the GUI window. Its colors are green and yellow
respectively while the control modes A and B are selected. In
either control mode, a user can select one of the directions
through placing his/her eyes on the desired area on screen. In
control mode A, looking at the top and bottom areas in the GUI
windowmoves the quadcopter forward and backward respectively
while looking at the left and right areas moves it in the left and
right directions respectively without rotation. In control mode B,
looking at the top and bottom areas moves the quadcopter up and
down respectively while looking at the left and right areas makes
it turn to the left and right respectively. In each mode, our system
keeps the selected movement unless the user is looking at
different areas. A subject can land the quadcopter on the ground
by concentrating mentally with eyes closed while the quadcopter
floats up in the air. The quadcopter includes a three-axis accel-
erometer. Using the sensor, flight trajectory can be estimated.

3. Experiments

Our entire experimental process for controlling a quadcopter in
3D space is as follows: after initial calibration of the eye tracker,
subjects are asked to help train two modules separately. Then, the
subjects are tested whether they are ready to fly a quadcopter or
not using the proposed hybrid interface under specific criterion in
virtual environment. If they pass this test, they finally perform the
actual test trials.

3.1. Data acquisition and processing

Five healthy subjects (age 24.4473.02 (mean7SD) years)
without any prior experience with eye tracking and EEG-based
BCI were participated in experiments. They were informed about
the entire protocol and aims of the study, and they all signed
written informed consent forms. The KAIST Institutional Review
Board approved the proposed experimental protocol of this study.
Each participant was seated comfortably in a chair facing a
computer display, which was placed about 1 m in front of the
subject on a table. Each subject wore the hybrid interface. The
head mounted eye tracker captured images of eye movements
with a spatial resolution of 640�320 pixels at sampling rate of
33 Hz. The EEG acquisition headset records data at sampling
frequency of 128 Hz from a 14-channel layout (AF3, F7, F3, FC5,
T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4), which is shown in Fig. 4.

Fig. 4 shows the paradigm and the statistical analysis of the BCI
control. The subjects sat comfortably in an armchair, facing a
computer screen. The duration of each trial was 8 s. As shown in

Fig. 4(a), during the first 4 s, while the screen was blank, the
subject was in the non-concentrated state. Immediately after these
first 4 s, a visual cue (two crosses) was presented on the left and
right side of the screen, indicating the concentration task to be
performed during 4 s. Once the visual cue disappeared, one trial
was completed. As indicated in Fig. 4, 0–4 s and 4–8 s segments in
a trial were selected to represent intentional non-concentration
and concentration states, respectively. During the two states, the
subjects are required not to move their eyes, so that the electro-
oculogram (EOG) artifacts are minimized as much as possible. For
each subject, CSP was performed on the data under the two states
separately. For each state, data of all trials were concatenated to a
40-s (10 trials � 4 s) long data segment. CSP resulted in two sets
of spatial filters corresponding to the concentration and non-
concentration states. Fig. 4(c) visualizes brain activity between
concentration and non-concentration states over frequencies with
respect to power spectrum density (PSD) per subject at a
frequency band between 11 and 19 Hz, in which feature vectors
were assigned. Each plot was obtained by averaging brain activity
of each state. Each density difference at a particular electrode spot
is visualized. It explains how brain activity is different at different
frequencies on different lobes of the brain as described in Section
2. Brain signals related to the non-concentration state from most
subjects were activated in the alpha wave frequency band between
11 and 13 Hz displaying colors between blue and green over the
occipital lobe. In contrast, the concentration state-related signals
are activated in the beta wave frequency band between 13 and
19 Hz displaying colors between red and orange over the frontal
lobe. For example, brain signals of subjects S1, S2, S3, and S4 have
relatively activated at low frequencies between 11 and 13 Hz over
the occipital lobe during the non-concentration state while the
signals increase over the frontal area at relatively high frequencies
between 16 and 19 Hz. However, these brain phenomena related
to the two states are not always common among all subjects. In
the case of subject S5, it is not easy to distinguish the difference
visually in the frequency band over the frontal lobe. We overcome
the inter- and intra-subject variability of brain signals through
analyzing them statistically. Fig. 4(b) shows the statistical analysis
for a subject. It explains how CSP works in 2D and SVM discrimi-
nates the two mental states. In the figure, the distribution of
samples after the filtering is also shown and the solid line
separates two mental states with maximum margin.

The eye tracker was calibrated to each participant according to
the standard procedures. This requires the user to look at 9 points
on the screen, and it takes less than one minute to perform. Before
conducting experiments, the eye tracker and mental concentration
parts of our hybrid systemwere examined to estimate their accuracy
individually. Table 1 summarizes the evaluation results. Over five
subjects, an average error of 0.512 cm with the angular error of
0.2841 is reported. These results are on par with commercially
available eye tracking systems such as the binocular eye-tracker
EyeLink II($25,000USD) which was reported to be less than 0.51 [22].
In the case of mental concentration accuracy, the classification
success rate was above 91.67%. At the center area of the screen,
periods of concentration and non-concentration were repeated 12
times randomly with green and yellow colors respectively.

Finally, prior to controlling a quadcopter in the real world,
subjects were asked to familiarize themselves to the proposed
hybrid interface by way of 3D control tasks until they achieved 80%
or more accuracy. In the 3D control tasks, one of the eight tasks
was randomly chosen and appeared in the center of the control
window. The subject was instructed to perform the task within 5 s.
One session consists of 10 trials, which lasted up to 45 s. Subjects
were attended for three days and they were given a maximum of
five sessions each day. They should complete at least eight out of
10 trials in a session in order to show their readiness. If they failed
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to satisfy this criterion, the users were required to repeat their
training of mental concentration, calibration of their eye move-
ments, and testing of 3D control tasks. EMG contamination arising
from cranial muscles was often present early in BCI training and
early target-related EMG contamination might be the biggest
reason for unsuccessful trials [23]. However, this EEG contamina-
tion of all participants gradually waned over the 5 sessions in
these 3D control tasks. Note that we also have some discussion
about this EMG contamination in the discussion session. As well as
EMG, and EOG artifacts in the frontal electrodes were also

considered due to eye movements. In our experiments, instead
of using filtering algorithms, we let subjects fail trials if EOG
artifacts were significantly present in the given trials since we
already required the subjects not to move their eyes.

3.2. Experimental set-up and task

Two sets of experiments were conducted navigating a
commercial quadcopter (Parrot AR drone 2.0, Parrot SA., France).
In the first set of experiments, the keyboard-based interface
system was tested; in the second set of experiments, the focus of
the tests was the hybrid component. The flying robot is equipped
with a forward facing HD camera (720p, 30ftps) that provides
visual feedback to a subject. The real-time video stream from the
camera is transmitted to our system via Wi-Fi and actuation
control signals from our system are sent to the quadcopter
wirelessly so that it moves following the user's commands.

In order to conduct air vehicle flight control experiments, an
adequately large physical space was required. We set up the
experimental environment in a school gymnasium. Fig. 5 illus-
trates the layout of the physical environment. Balloons were used
because they are safe against collisions and easy to handle. In the

16.5 17 17.5 18 18.5 19 19.5
17

17.5

18

18.5

19

19.5

20
1 (training)
1 (classified)
2 (training)
2 (classified)
Support Vectors

Fig. 4. Experiment paradigm and statistical analysis for the brain–computer interface component. (a) BCI experimental paradigm for single trial. (b) An example of SVM
classification after CSP filtering in 2D. (c) Visualization of brain activity difference between the non-concentration and concentration state per electrode over the frequency
band from 5 subjects.

Table 1
Accuracy of the eye tracking and BCI systems of the hybrid interface.

Subject Eye calibration
error (cm)

Angular eye calibration
error (1)

BCI classification
accuracy (%)

1 0.66 0.36 91.67
2 0.58 0.32 83.33
3 0.49 0.27 100
4 0.31 0.18 91.67
5 0.52 0.29 91.67
Average 0.512 0.284 91.67
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air, seven helium-filled balloons were hung at different heights,
which were aimed to test vertical movements of the quadcopter.
As shown in Fig. 5(a), the balloons were located properly so that
users could draw a figure-eight trajectory flight path. Drawing a
figure-eight trajectory flight path was requested in order to test
horizontal movements of the quadcopter including its turns. Its
entire flight plan is set as follows. First, the quadcopter took off at
one meter away from the starting point (indicated as 0 in Fig. 5) of
the gymnasium. It passed the first three balloons (indicated as 1, 2,
and 3 respectively in Fig. 5) that were hung at 3, 5, and 3 m off the
ground respectively. Then, it headed back to its starting point.
Second, it passed the next three balloons (indicated as 4, 5, and
6 respectively in Fig. 5) with the same heights as the first three
balloons. Finally, the journey was finished once the quadcopter
landed on the initial departing spot (indicated as 0 in Fig. 5).
One practical problem came from the fact we only provide visual
feedback to each user. Due to limited field of view, it was difficult
for users to drive their quadcopter toward a target naturally with
vertical and horizontal movements at the same time. To overcome
this problem, users should climb in straight vertical flight so as to
secure a clear view toward their next target, and then move
forward. Relative distances of the balloons are indicated in Fig. 5
(a). Human subjects were seated in front of a computer, facing
away from the quadcopter, wearing the hybrid interface one meter
away from the flight environment. They could not directly observe
the flight, instead, they had to control the flight based only on the
video stream displayed on the monitor. The front view HD camera
mounted on the quadcopter provided the visual information on its
environment as mentioned previously.

While considering their current environment, human subjects
generated desired commands by looking at the designated regions
on the monitor and concentrating mentally through the hybrid
interface. Corresponding to confirmed commands, the quadcopter
was actuated via wireless communication in real-time.

3.3. Performance evaluation

To evaluate the flight trials taken using the hybrid interface, we
not only referred to the experimental control and performance
analysis in [4] as a baseline comparison, but also we adopted six
evaluation methods: travelled distance, total time taken, normalized
path length, Area Under the Curve, Speed of control, and Success rate
for evaluation purposes. These are used to measure users’ sensi-
tivity of controllability in terms of agility and smoothness respec-
tively. Our goal was to test whether the proposed system
sufficiently would track eye movements and classify mental states
simultaneously as a user carried out complicated tasks to control

their flight. Note that we also provide some discussion between
the previous study [4] and us in the discussion section. We first
calculated traveled distance (TD) of the flight trajectory and its total
time taken (TT) until it arrived at the final destination. Two
measurements were used to assess the performance of how fast
each user finished the whole voyage in each experiment. This
reflects the capability of users to identify targets properly and
move the robot toward the targets quickly.

The normalized path length (NPL) was introduced to measure
how users can control their flight smoothly [24]. It indicates how
straight a trajectory is. In other words, we calculated how different
a trajectory was from the line segment connecting its extremes. As
indicated in Fig. 6, this difference can be measured by simply
comparing the path lengths of the trajectory l1 and l2 with the
straight-line segments d1 and d2.

NPL¼ 1
n�1

∑
n�1

i ¼ 1

li;j1 þ li;j2
di;j1 þdi;j2

;

where i and j are the indices of the starting and target positions
respectively and n is the number of targets. The normalized path
length was defined as the ratio of the two. The closer the similarity
to 1, the better.

We used the Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) to assess the performance of the
machine-learning component of our system. Based on the trade off
between false positive and false negative the AUC essentially
characterizes the behavior of a classifier. An AUC score is 1 when
a perfect classifier is one that produces zero false positive and false
negative. On the other hand, a random classifier would have an
AUC of 0.5. So, the closer the AUC is to 1, the better classifier it is. In
our work, prior to controlling the quadcopter in physical 3D space,
subjects were instructed to conduct one test in a virtual environ-
ment. Control commands were randomly chosen at every four

Fig. 5. Experimental set-up. (a) The layout of the experimental set-up. (b) Real experimental set-up in a school gymnasium.

Fig. 6. Normalized path length.
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seconds from the eight commands that are available in our system.
Subjects should complete the command within four seconds and
then our system classified their behavior. A total of 15 control
commands were given during 1 min. The results of classification
were used to calculate the AUC using the efficient method
proposed in [25].

Success rate (SR) was assessed by calculating the number of target
passed within the limited time divided by the total number of
targets. Limited timewas given by dividing the distance between two
points by the given constant forward velocity of the quadcopter. If
the subject successfully controlled the quadcopter to pass a target
within the limited time, one target arrival was awarded. The SR was
evaluated to demonstrate how many tasks were completely perfect
during one flight. The SR was calculated by

SR¼Number of targets passed within the limited time
Total number of targets

4. Results

In this section, we describe the experimental validation of our
interface comparing with the results obtained by a keyboard-based
interface. Table 2 summarizes the results over the five subjects.

4.1. Sensitivity of controllability in virtual environment

Table 2 reports the values of the AUC score resulted from one
test in a virtual environment using the hybrid interface.

The achieved results ranged from 0.78 to 0.93 and they showed
the performance of our proposed interface would be an efficient
method of control in 3D space. Generally, subjects who had
achieved high AUC demonstrated a high sense of controllability
in terms of other metrics. However, some users such as subject
3 who could not control the quadcopter in the physical space as
much as what he/she had done in a virtual environment. Com-
pared with subjects 2 or 4 who had a similar AUC as subject 3,
subject 3 reported a much lower SR than the other two subjects.
The ability to adapt to new environments would be one reason
why this occurs. Fig. 7 reports experimental results over three
consecutive sessions. Subject 3 initially suffered from an inability
to adapt to new environments in order to control the quadcopter,
but his/her sense of controllability in 3D physical space increased
over consecutive experimental sessions. Hence, in the last experi-
mental session, subject 3 achieved a similar SR as subjects 2 or 4.

4.2. Subject operational agility

The SR in Table 1 reports that all five subjects were able to
control the quadcopter quickly and smoothly compared to the
keyboard-based interface. On average, subjects showed 85.55% of
the SR that was acquired via the keyboard-based interface system.
Therefore, the SR also shows how our system can be an alternative
solution with respect to usability. For the purpose of this study, the
velocity of the flying robot for forward movement was set to a
constant. However, rotating and adjusting the altitude of the
quadcopter changes its velocity [4]. For example, the velocity
increased when making large turns in a single direction but
decreased when temporarily changing directions. In the case of
subjects 2 and 5, the differences between two SRs are small, but
TTs are relatively large. These differences indicate that subject
2 carried his/her flight with large turns with less hesitancy than
subject 5.

4.3. Subject operational smoothness

Subjects were only given visual feedback for controlling the
quadcopter in 3D space. Therefore, in order to navigate their flight
in a physical space, users’ flight smoothness is important. From the
results of NPL, our proposed interface demonstrated a 26.75%

Table 2
The summarized performance of the keyboard-based interface and the hybrid
interface.

subject Keyboard-based interface Our hybrid interface

TD TT NPL SR TD TT NPL AUC SR

1 1.17 1.23 1.14 0.95 1.54 1.71 1.44 0.93 0.90
2 1.46 1.53 1.31 0.90 2.12 2.11 1.89 0.78 0.85
3 1.89 2.79 1.52 0.71 2.54 2.76 2.11 0.81 0.56
4 1.52 1.67 1.48 0.90 2.33 2.32 2.04 0.79 0.66
5 1.57 1.53 1.53 0.90 2.07 2.31 2.09 0.83 0.76

Fig. 7. Experimental performance metrics of the subjects over three consecutive sessions. The closer the similarity to 1, the better.
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Fig. 8. Flight trajectories of five subjects using keyboard-based interface and our hybrid interface. (a) Flight trajectories in the horizontal plane (Top view). (b) Flight
trajectories in the vertical plane (Side view). For each subject, red solid lines show his/her trajectories using our hybrid interface over three sessions. Blue lines indicate
trajectories using the keyboard interface over three sessions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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deviation averaged over the five subjects from the trajectories that
were achieved via keyboard control, which indicate good perfor-
mance in terms of reliability for an alternative interface. Fig. 8
shows flight trajectories for five participants with different views.
As shown in Fig. 8(b), most users were able to smoothly change
their altitude whereas as some of them could not navigate as
smoothly in the horizontal plane as shown in Fig. 8(a). This seems
to be obvious because navigating the quadcopter vertically
requires only two movements in mode B, but it requires six
movements in both modes A and B in order to control the
quadcopter within a horizontal plane. In particular, most users
turned the quadcopter in a stuttering fashion when they needed to
face their quadcopter towards the next target. This is in contrast to
simply going forward towards the target which was relatively
smoother. This is more than likely due to multiplexing the use of
gaze as both a control mechanism as well as a searching mechan-
ism. The subject, while turning the quadcopter would be also
actively searching for the next target within the displayed video.
This would turn their gaze away from the control area, stopping
the turn in progress. After unsuccessfully finding the next target
within the video, they would resume the turn by looking at the
control area again. This cycle would cause turns to stutter.

4.4. Experimental control results

Fig. 9 shows the ratios of average performance metrics for our
proposed hybrid interface system compared to the keyboard-
based interface system. This figure shows our proposed hybrid
interface system would, overall, be a good alternative interface
compared with keyboard-based interfaces. In particular, our
system demonstrated its robustness with respect to completeness
of tasks (SR) by achieving 85.55% of the success rate that was
achieved via the keyboard-based system. Fig. 8 indicates the there
is a greater difference between the ratios of TT, TD, and NPL than
SR. TT, TD, and NPL increased when the subjects became disor-
iented and lost their bearings while going to the next target. In the
experiments when they made mistakes during the flight, it took
some time to reorient the quadcopter toward the next target
again. Moreover, with respect to mind control, when the subjects
missed their next target, they usually started to suffer from
anxiety, so it became difficult for them to concentrate on the
hybrid interface. As shown in Fig. 7, most subjects were able to

increase their flight accuracy from three consecutive sessions. This
raises some questions as to whether additional training could
result in our hybrid interface having timings that are more similar
to those of the keyboard-based interface.

4.5. Real-time performance

Both the quadcopter and the eye tracker captured images at
33 Hz. On the other hand, EEG signals were retrieved every
125 ms, while retaining 1 s worth of previous data. The mental
concentration requires an identical classification result from two
sequential data windows. Therefore, a state selection confirmation
takes 250 ms if the selection is successful. We stress that our
system is capable of real-time operation: the average processing
needed in each of the eye tracker and mental concentration is
117 ms and 84 ms on a dual-core 2.80 GHz CPU, which is less than
the average EEG signal period.

5. Discussion

The results from this study demonstrated that only using eye
movements and mental concentration without formal body move-
ments was still good enough to execute a challenging task: flight
control of a quadcopter within a 3D physical space. Self-developed
software and hardware except the EEG acquisition headset found
that an inexpensive interface was possible. It was observed that
the hybrid interface achieved compatible performances to nominal
keyboard controlled cases. It is obvious that the present interface
is easily applicable to other 3D environmental applications.

We want to remark that eye movements and concentration are
natural and intuitive. Because the hybrid interface is based on these
natural actions, its usage can feel just as second nature as people get
used to wearing the device. In particular, the present scheme is
beneficial for physically disable people. EEG- based binary classifica-
tion is simple and trainable with few complications.

Since our hybrid system fuses eye movements and mental
concentrating, signals from eye movements (EOG) and some
cranial muscle movements (EMG) can be orders of magnitude
larger than brain-generated electrical potentials. Furthermore it
can be one of the main sources of artifacts in EEG data. In our
study, as already described in the experimental section, these
artifacts are dealt with by discarding contaminated trials. On the
other hand, there are some other alternatives to remove the
artifacts such as blind source separation, which is a signal-
processing methodology that includes independent component
analysis (ICA) for removing electroocular artifacts from EEG data.
The idea behind this approach analysis is to generate distinct
components between neural and non-neural activity such as
externally generated noise or an ocular artifact. These produced
components are not related to signal propagation or head models,
which means the data are blindly processed. The advantage of this
algorithm is that it is not affected by errors in head propagation
models. The disadvantage is that there is no guarantee that any
algorithm of this method can capture the individual signals in its
components. So far, the algorithm cannot yet separate individual
signal components perfectly. In other words, there are still some
leakages between the ocular and non-ocular components even
though the algorithm separates the ocular activity cleanly. Some
eye motions may be reflected in several components representing
the ocular sources. Therefore, a distribution of sources falls in the
vicinity of the eyes, rather than on the eyes themselves when the
components are mapped geometrically.

In each of the two different standalone EEG-based and eye
tracking-based systems, a lot of research has been done to achieve
multiple classification [5,6]. Despite their own advantages, both

Fig. 9. The ratios of average performance metrics for our hybrid interface system
compared with the keyboard-based interface system.
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systems are not yet ready to work in everyday life with respect to
usability. In [4], authors demonstrated the possibility of control-
ling a quadcopter in 3D space using an EEG-based standalone
system. The major advantage of their system compared with ours
is they have less possibility to have contaminated EEG data by EOG
and EMG since they only used EEG signals retrieved from a high
cost system. However, it requires intensive training in order to
classify multiple states accurately. In particular, this could become
more a serious problem when current wearable BCI devices that
have a relatively small number of channels are used for practical
applications. Furthermore, classifying multiple states using sen-
sorimotor rhythms is not always available for everyone [26].
Therefore, EEG standalone systems are less suitable than ours
with respect to usability.

In the case of eye tracking-based systems, it has a distinctive
advantage that it can quickly determine where the user's interest
is focused automatically. However, this approach cannot be used
for depth directional navigation in 3D. There might be also an
alternative way through replacing bi-state classification/discrimi-
nation (concentrated and non-concentrated) by other eye move-
ments, such as blinking. However, in this case, safety issues should
be considered for controlling a quadcopter.

While EMG and EOG act as artifacts in EEG data physically,
unstable mental states due to anxiety, fatigue, and frustration
produce psychological artifacts causing inconsistent EEG patterns
[27,28]. In our experiments, users who suffered from anxiety also
had difficulty concentrating on the hybrid interface. One of the
main reasons was because the viewing angle through the camera
was too narrow to give the user good situational awareness.
One possible way to overcome the problem is obviously to provide
a wide-angle view to users from multiple cameras. The multiple
cameras would help participants find their missing target quickly
and this would reduce anxiety. The other way is to analyze eye
movements for detecting excessive anxiety. People tend to move
their eyes rapidly and abnormally when they feel anxious.
Therefore, modelling abnormal eye movements would be a potential
solution to detect users’ anxiety. Researchers have been trying to apply
different signal processing techniques for BCIs in an attempt to
improve the signal-to-noise ratio of the input signal [29]. Other studies
train users to control their EEG patterns through extensive and
resource demanding neuro-biofeedback training [30,31].

6. Conclusion

In this paper, we proposed a wearable hybrid interface which
tracks eye movements and interprets mental concentration at the
same time. The proposed interface enables both disabled and fully
capable people to complete their tasks with various commands in
3D physical space. Through this low-cost and easily wearable
device, people can control their flight naturally and easily in
everyday life. From the results of our study, we have also success-
fully demonstrated the potential of hybrid control with potential
applications for hands-free control in both disabled and fully
capable people. For further application of the hybrid interface
with eye tracking and brain activity, integrating various neural
signal responses such as P300-based potentials [32], sensorimotor
rhythms [33], or steady-state visual evoked potentials (SSVEP)
[34]. Sawith eye tracking will be attempted in the future.

7. Summary

The proposed hybrid interface enables users to navigate their
quadcopter in three-dimensional space with movement of their
eyes and mental concentration. The hybrid system is low cost and

easily wearable, hybridizing eye tracking and EEG-based classifica-
tion. It sufficiently tracks and interprets two inputs to augment the
number of control commands to enable the quadcopter to travel in
eight different directions within the physical environment. In
experiments, we demonstrate the feasibility of the hybrid interface
compared with a keyboard-based interface. The results from this
study show our proposed interface would, overall, be a good
alternative interface compared with keyboard-based interfaces.
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