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Improving performance in motor imagery BCI-based control applications 
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A B S T R A C T   

Objective: Brain-computer interfaces (BCIs) based on motor imagery (MI) are commonly used for control appli
cations. However, these applications require strong and discriminant neural patterns for which extensive 
experience in MI may be necessary. Inspired by the field of rehabilitation where embodiment is a key element for 
improving cortical activity, our study proposes a novel control scheme in which virtually embodiable feedback is 
provided during control to enhance performance. 
Methods: Subjects underwent two immersive virtual reality control scenarios in which they controlled the two- 
dimensional movement of a device using electroencephalography (EEG). The two scenarios only differ on 
whether embodiable feedback, which mirrors the movement of the classified intention, is provided. After un
dergoing each scenario, subjects also answered a questionnaire in which they rated how immersive the scenario 
and embodiable the feedback were. 
Results: Subjects exhibited higher control performance, greater discriminability in brain activity patterns, and 
enhanced cortical activation when using our control scheme compared to the standard control scheme in which 
embodiable feedback is absent. Moreover, the self-rated embodiment and presence scores showed significantly 
positive linear relationships with performance. 
Significance: The findings in our study provide evidence that providing embodiable feedback as guidance on how 
intention is classified may be effective for control applications by inducing enhanced neural activity and patterns 
with greater discriminability. By applying embodiable feedback to immersive virtual reality, our study also 
serves as another instance in which virtual reality is shown to be a promising tool for improving MI.   

1. Introduction 

For brain-computer interface (BCI) applications that require active 
control, it is crucial for the neural activity patterns of different intentions 
to be distinguishable [1–4]. Without discriminability, BCIs are unable to 
deliver the user’s intentions to the devices they are connected to. Motor 
imagery (MI) is the go-to paradigm for such applications, as it not only 
focuses on active intentions unlike other BCI paradigms, which utilize 
reactive responses, but also promotes discriminability by inducing 
changes in neural patterns [5–8]. These changes, located in activated 
regions within the sensorimotor cortex, exhibit themselves in two 
distinct patterns: event-related desynchronization (ERD), or a blocking 
of oscillatory neural activity, and event-related synchronization (ERS), a 
recovery of oscillatory activity shortly after desynchronization [9–11]. 

With MI playing such an important role in BCI applications, much 

research on ways to enhance MI has been conducted. One such way is 
applying visual imagery in the form of action observation (AO), or the 
visualization of a virtual body part executing the imagined movement, 
to kinesthetic MI to enhance cortical activity [12–15]. Previous studies 
in the field of rehabilitation have not only suggested that AO may excite 
cortical activity corresponding to the visualized action due to the mirror 
neuron system, which is activated by perceiving or imitating the visu
alized action, but also claimed that AO may help stroke patients induce 
rhythmical patterns such as ERD of the corresponding brain region 
[16–19]. AO has therefore been widely used along with kinesthetic MI to 
induce greater brain activity in patients as well as in healthy subjects 
who use BCI applications [20–23]. For example, Nagai et al. compared 
three different protocols for kinesthetic MI training: AO of the subject’s 
own hand executing a grasping movement, AO of someone else’s hand 
executing the movement, and no AO [24]. The protocols that provided 
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AO resulted in greater ERD compared to the no AO protocol. Another 
interesting result was that AO of the subject’s own hand resulted in even 
greater ERD compared to AO of someone else’s hand. 

Similar findings were also discovered for feedback methods, which 
inform subjects on how their neural activity is being classified during 
MI. Ono et al. experimented with four different feedback methods for 
binary classification of resting or movement of the dominant hand 
during MI training: no feedback, standard bar feedback, incongruent 
feedback in which a virtual hand executing the classified movement was 
shown at eye level, and congruent feedback in which the virtual hand 
was provided as an overlay over the subjects’ hands [25]. The congruent 
feedback exhibited the greatest improvement in MI performance in 
terms of both ERD ratio and classification accuracy. Various studies have 
investigated this phenomenon and concluded that ownership over 
visualized movement may influence MI performance, providing evi
dence that improvements in performance result from embodiment of the 
mirrored movement [26,27]. 

Consequently, there have been recent attempts to increase body 
ownership and enhance MI performance by providing both AO and 
feedback in virtual reality (VR) environments [28–31]. With their ability 
to realistically present virtual scenarios while concealing the real sur
rounding environment, immersive head-mounted displays have proven 
to be a useful tool for increasing embodiment [32–35]. For instance, 
Škola and Liarokapis found that using an immersive head-mounted 
display during training to provide AO of and feedback on forward arm 
movement led to a higher ERD ratio and classification accuracy than 
when training with the standard bar paradigm through a monitor 
display [36]. 

However, with current research mainly focusing on applications to 
rehabilitation or MI training, no evidence of whether embodiable 
feedback is also effective for control scenarios yet exists. Unlike reha
bilitation applications, which mainly focus on the presence of cortical 
activity during scenarios within a fixed, static environment, control 
scenarios not only exhibit dynamic changes in the surrounding envi
ronment while the device is controlled but also require multiple degrees 
of freedom in movement mapped to different MI tasks, resulting in 
greater perceptual complexity. Whether utilizing embodiable feedback 
for an unembodiable device is appropriate and how the usage of 
embodiable feedback in the context of greater perceptual complexity 
may affect desired neural activation are other warranted questions that 
have not been answered by current literature. Although some studies 
have used virtual reality environments for control applications [37,38], 
our study further investigates the actual effect that immersive VR-based 
embodiable feedback has on controlling devices. 

In this study, we therefore propose a novel control scheme in which 
virtually embodiable feedback is provided not only during MI training, 
but also while controlling unhuman devices. To verify the hypothesis 
that our control scheme improves performance, we constructed a VR 
control scenario in which the subject controls the two-dimensional 
movement of a virtual device with MI in first-person perspective. 
Repeated left hand grasping MI, repeated right hand grasping MI, and 
resting state were mapped to left rotation, right rotation, and forward 
movement, respectively. Subjects participated in two experimental 
sessions, with each session consisting of three different phases: a training 
phase using AO followed by two control phases, both of which used our 
control scenario. Electroencephalography (EEG) was used to analyze 
neural activity and patterns during the three phases, and with the data 
collected during the training phase, a machine learning classifier was 
created to predict the subjects’ intentions during the control phases. The 
two control phases differ solely on whether embodiable feedback is 
given: one only provides information on the device’s movement, while 
the other provides not only information on the device’s movement but 
also embodiable feedback in the form of virtual hand movements, which 
mirror the classifier’s predictions of the subjects’ intentions. 

2. Experiment 

2.1. Subjects 

Fourteen healthy subjects aged between 21 and 30 were recruited for 
this experiment. Twelve of these subjects were right-handed, while the 
remaining two were left-handed. Six subjects had prior experience with 
MI-based studies, while the rest did not. None of the subjects had 
experience with BCI-based control applications. All subjects had prior 
experience with using immersive head-mounted displays. All subjects 
went through two experimental sessions, where each session consisted 
of a training phase followed by two consecutive control phases. All 
subjects were warned that each session would take more than an hour 
and were therefore also recommended to get enough rest before each 
session. This study was approved by the Korea Advanced Institute of 
Science and Technology Institutional Review Board. All subjects gave 
their written consent prior to the experiment. 

2.2. Experiment design 

Our immersive virtual reality scenario was implemented using the 
Unity game engine (Unity Technologies, San Francisco, CA, USA). As 
seen in Fig. 1, the scenario setting is a track containing seven forward 
stretches, three left turns, and three right turns, with the starting and end 
positions colored in red. The subject starts off at the track’s starting 
position, facing forward in first-person perspective. The subject’s 
perspective is fixed relative to a drone-shaped virtual device that is 
above and slightly ahead of them. Two virtual hands, which are 
shoulder-width apart from each other, are also below and slightly ahead 
of the subject such that they would have similar positions to the subject’s 
actual hands when resting while seated. Three signs, one each of a left 
arrow, a right arrow, and a cross, are also placed in front of the subject, 
with at most one of them visible at a time to indicate that the subject is 
expected to perform left hand grasping, right hand grasping MI, or 
resting imagery, respectively. 

2.3. Training phase 

In the training phase, subjects were instructed to complete 20 
consecutive MI trials, with each trial consisting of three tasks in ran
domized order: one repeated left hand grasping, one repeated right hand 
grasping, and one resting task. 

Each task was a sequence of a 3-s preparation period, a subsequent 
10-s MI period, and finally a 3-s resting period. During the preparation 
period, subjects were shown one of the three signs to notify them of 
which task they were undergoing. During the MI period, the virtual 
hands executed the movement corresponding to the task. Subjects were 
instructed to observe the movement of the virtual hands and to imagine 
them to be their own as if they were executing the actions themselves. 
During the resting period, subjects were expected to stop the corre
sponding MI and were permitted to make slight movements such as eye 
blinking. EEG signals were recorded throughout the entire training 
phase in order to analyze the elicited brain patterns and construct a 
classification model for the two control phases. 

2.4. Control phases 

After the training phase, a classification model was created with the 
acquired EEG data. Subjects then underwent two control phases in 
which they were instructed to control a virtual device. For both phases, 
the device followed the same predetermined route on the track, with 
indicator signs informing the subject of how the device should move 
throughout the phases. The device moved if and only if the model 
classified the subjects’ neural signals to be the MI task mapped to the 
required movement of the device. Repeated left hand grasping and right 
hand grasping MI were mapped to left rotation and right rotation of the 
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device, respectively. Resting imagery was mapped to forward movement 
of the device, as a substantial amount of resting state data is required for 
computing the ERD ratios as well as for increasing user performance 
[39–41]. The virtual device moved asynchronously based on the 
real-time EEG signals as shown in Fig. 2, with the signals continuously 
classified every second throughout the whole control phase from start to 
finish. Prior to the control phases, subjects were made aware that the 
interface may misclassify their intentions. 

The two control phases only differ on whether they provide 
embodiable feedback. In one phase, virtual hands are shown and execute 
the movement that is classified (embodied feedback control scheme, 
referred to as EFCS). The other phase does not show the virtual hands 
(standard control scheme, referred to as SCS). Thus, the performances 
from the two control phases can be compared by analyzing each sub
jects’ classification accuracy and time to completion [42]. To prevent 
the possibility of the order of the two control phases affecting results, the 
treatments were randomized such that in one experimental session the 
EFCS came prior to the SCS and in the other session the SCS came prior 
to the EFCS, with the order of the two sessions randomized. 

2.5. Experimental setup 

The experiments were conducted in a dark, soundproof room to 

prevent distractions. Subjects were seated in a comfortable chair, wore 
an EEG cap and an Oculus Go (Oculus VR, Menlo Park, CA, USA), and 
were asked to place their hands on the desk in front of them as shown in 
Fig. 3. To maximize embodiment, subjects were asked to place their 
hands such that the virtual hands were in appropriate positions for 
embodiment. 

EEG data was obtained with BrainProducts’ actiChamp and actiCAP 
(BrainProducts, Munich, Germany) at a sample rate of 500 Hz. Including 
ground (AFz) and reference (Fz), a total of 16 electrodes were used (F3, 
F4, FC5, FC1, FC2, FC6, C3, C4, CP5, CP1, CP2, CP6, P3, P4) according 
to the international 10–20 system. The impedance of each electrode was 
kept under 10 kΩ. The electrodes were carefully placed under the Oculus 
Go such that slight head movements could not cause significant noise in 
the data. The data was band-pass filtered between 8 and 36 Hz. 

2.6. Questionnaires 

After each experimental session, subjects were asked to complete a 
questionnaire, which aimed to gather information on the subjects’ ex
periences and their opinions on how helpful virtual hand feedback was 
for MI performance. The full questionnaire is shown in Table 1. 

The questionnaire included measures of embodiment (body owner
ship) and presence (spatial), which were prepared based on previous 

Fig. 1. Setup and design of the experiment. (a) Our VR scenario in which a simulated device is controlled on a track with left turns, right turns, and forward stretches. 
(b) A timeline of a single task during the training phase. 

Fig. 2. An overall flow chart of the two control phases. The EEG signals were classified real-time, resulting in an asynchronous BCI control of a virtual device.  
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studies regarding measures of different perceptions of virtual reality 
environments [33,43,44], along with self-evaluations related to sub
jects’ MI performances, action observation, and the provided feedback. 

The responses to embodiment, presence and MI performance were 
measured on a 11-point numeric scale (0: extremely negative response 
and 10: extremely positive response). The responses to the survey and 
the evaluation questions regarding action observation and embodied 
feedback were multiple choice (was rather distracting, neither, was 
helpful) and a 11-point numeric scale (− 5: was very distracting and 5: 
was very helpful), respectively. 

3. Methods 

3.1. Classification model for control scheme 

Prior to constructing the classification model, we first preprocessed 
the acquired data from the training phase by applying data augmenta
tion: each 10-s EEG data from the MI period of each trial was augmented 
by splitting it into 2-s time windows with a stride of 0.1 s, resulting in 81 
samples. With 20 trials, there was therefore a total of 1620 samples per 
task. A Filter-Bank Common Spatial Pattern (FBCSP) was then used on 
these samples to extract the CSP features of 4 Hz windows ranging from 
8 to 36 Hz, which resulted in 7 different filter bands with 4 components 
each [45]. The multi-class classification model was then constructed 
using the Bayesian formulation of Fisher’s linear discriminant analysis 
(LDA) on the features [46]. 

3.2. Control performance 

Subjects’ performances during the two control phases were 
compared in terms of both the time to completion and the classification 
accuracy. Classification accuracy was determined by the percentage of 
times that the classification model correctly predicted the subjects’ 
signals to be the task corresponding to the indicator sign shown to the 
subject. We first applied a two-way ANOVA, with the usage of 
embodiable feedback and the order of control phases as the two factors, 
on the time to completion to investigate whether the performances be
tween the two control phases were statistically different and whether the 
order of the control phases influenced performance. 

To measure the performances of subjects during the training phase, 
which were considered as baseline measures for their performances 
during the two control phases, we performed 4-fold cross-validation 
using FBCSP on the training phase data. To analyze and compare the 
classification accuracies during each phase, we applied the Mann- 
Whitney U test along with Bonferroni correction for multiple compari
son tests. Furthermore, the classification accuracies for each MI task 
during the two control phases were separately examined and compared 
using the same procedure. 

3.3. ERD performance 

To investigate ERD performance of subjects for both left hand and 
right hand grasping MI, data from electrode positions C3 and C4 were 
analyzed to measure the ERD ratio [47,48]. For all three phases, we first 
categorized the EEG data into the three imagery tasks and computed the 
mean power spectrum of each task using the following equation: 

PSD(task) =
1

ntask

∑ntask

t=1
P(task, t)

task ∈ {left, right, rest}

(1)  

where task is one of the three MI tasks (left, right, and resting), ntask 
represents the number of times that task was performed during a single 
phase, and P(task, t) represents the power spectrum of the tth time the 
task was performed. 

To measure the ERD ratios of subjects for each phase, the mean 
power spectrum of the resting task was used as a baseline. Thus, the ERD 
ratios of left hand and right hand MI were calculated with the following 
equation: 

ERD(m) =
PSD(rest) − PSD(m)

PSD(rest)
× 100(%)

m ∈ {left, right}
(2)  

where m indicates left or right hand MI, and rest represents resting state. 
As previous studies have indicated that each individual’s brain activities 
vary between different frequency bands [49,50], the frequency band 

Fig. 3. (a) Experimental setup of subjects using the head-mounted display. (b) Electrode positions used in the experiment to measure EEG data.  

Table 1 
Questionnaire for self evaluation.  

Category Question 

Embodiment During training, to what extent did you feel the virtual hands to be 
your own? 

Presence To what extent did you feel surrounded by the simulated virtual 
environment? 

Evaluation 
(MI) 

Disregarding the results, please self-rate how well you could 
imagine movements during the control phase without virtual hand 
feedback. 

Evaluation 
(MI) 

Disregarding the results, please self-rate how well you could 
imagine movements during the control phase with virtual hand 
feedback. 

Survey (AO) Did the virtual hands help you imagine hand movements during 
the training phase? 

Evaluation 
(AO) 

Please answer the above question with a numeric scale. 

Survey (EF) Did the virtual hands help you imagine hand movements during 
the control phase? 

Evaluation 
(EF) 

Please answer the above question with a numeric scale. 

Survey (EF) Did the virtual hands help you control the device during the 
control phase? 

Evaluation 
(EF) 

Please answer the above question with a numeric scale.  
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used in FBCSP that had the maximum elicited ERD ratio from the two 
experimental sessions was selected for each subject for analysis. 

As left hand and right hand MI are two distinguishable tasks, the ERD 
ratios from the two hand grasping MI were separately investigated. To 
compare the changes in ERD ratios between the training phase and the 
two control phases, we applied Mann-Whitney U test and Bonferroni 
correction for multiple comparisons. 

4. Results 

4.1. Control performance and classification results 

As shown in Fig. 4, three comparisons were made to analyze control 

performance: time to completion between the two control phases, 
classification accuracies of all three MI tasks between each phase, and 
the classification accuracies of each task between the two control 
phases. 

The two-way ANOVA showed that the EFCS exhibited a significantly 
lower time to completion (F (1,26) = 18.096, p < 0.001) compared to 
the SCS (387.26 ± 152.20 s with embodiable feedback and 492.66 ±
131.43 s without). On the other hand, no statistical significance was 
observed for the order of the two phases (F (1,26) = 1.690, p > 0.2). 

The classification accuracies from the two control phases (53.27 ±
13.21 for the EFCS and 39.99 ± 10.47 for the SCS) both exhibited a 
significant degradation in performance compared to the cross-validated 
accuracies of the training phase (75.04 ± 11.11). Statistical analysis 

Fig. 4. Control scheme results. (a) Time to completion during the two control phases. (b) Comparison of 4-fold cross-validation training accuracy and classification 
accuracy results of the two control phases. (c) Comparison of classification accuracy of each task between the two control phases (**p< 0.01, ***p < 0.001, ****p <
0.0001, ns indicates no significance, error bars in bar plots represent standard deviation). 

Fig. 5. ERD ratio results for the three phases. (a) Averaged topomap of per-subject best ERD ratios for left hand and right hand MI from each phase. (b) Comparison 
of per-subject best ERD ratios of left and right hand MI between the phases (*p< 0.05, **p < 0.01, ****p < 0.0001, ns indicates no significance, error bars in bar plots 
represent standard deviation). 
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using the Bonferroni-corrected Mann-Whitney U test further showed 
that the SCS had a greater effect size on the decrease in performance (p−
adj < 1e-08, u = 769) compared to the EFCS (p − adj < 1e-06, u = 711). 
There were also significant differences in accuracy between the two 
control phases themselves, with the EFCS having significantly higher 
accuracy than the SCS (p − adj < 0.001, u = 165). 

No significant difference was observed for resting performance be
tween the two control phases using the Bonferroni-corrected Mann- 
Whitney U test (p − adj > 0.9, u = 414), with the accuracies of the EFCS 
and SCS at 53.59 ± 16.99 and 55.39 ± 18.24, respectively. However, 
significant differences were observed for the other two MI tasks (p− adj 
< 0.001, u = 167 for left hand and p − adj < 0.01, u = 183 for right hand 
MI), with the EFCS exhibiting a much greater accuracy (61.65 ± 22.45 
and 64.25 ± 17.98 for left and right hand, respectively) than the SCS 
(37.21 ± 19.26 and 46.08 ± 18.99 for left and right hand, respectively). 

4.2. ERD ratio results 

Fig. 5 shows the averaged ERD topomap of all subjects for left hand 
and right hand MI across all three phases. The topomap indicates that 
the ERD ratios were observed mostly from the electrode positions C4 and 
C3 of each individual’s representative frequency band. 

Fig. 5 also shows the comparisons between the ERD ratios from 
electrodes C4 and C3 during left and right hand MI, respectively, of each 
phase. The ERD ratios were much greater during the training phase than 
during either of the control phases for both left hand and right hand MI 
(37.06 ± 15.73 and 35.50 17.89, respectively). Statistical analysis 
further showed that for both left hand and right hand MI, the SCS (13.63 
± 22.28, p − adj < 0.0001, u = 652 and 19.60 ± 16.76, p− adj < 0.01, u 
= 588 for left hand and right hand, respectively) has a greater effect size 
on the decrease in ERD ratio than the EFCS (25.47 ± 12.44, p− adj <
0.01, u = 576 and 23.99 ± 13.87, p − adj < 0.05, u = 547 for left hand 
and right hand, respectively). A significantly greater ERD ratio was 
observed for the EFCS compared to the SCS for left hand MI (p− adj <
0.05, u = 238), while a greater but not significant ERD ratio for the EFCS 
(p − adj > 0.82, u = 325) was observed for right hand MI. 

4.3. Questionnaire results 

The questionnaire results are described in Fig. 6. With scores out of 

10, subjects expressed the extent to which they were able to embody the 
virtual hands with a score of 6.71 ± 1.89, and the extent to which they 
felt immersed in the virtual reality environment with a score of 8.14 ±
1.12. Furthermore, subjects reported that they were able to perform MI 
better during the EFCS in which embodiable feedback was provided 
(7.00 ± 1.87) than during the SCS in which feedback was absent (5.714 
± 1.31) with statistical significance (p < 0.01, u = 573.5). 

The questionnaire further shows that over 90% and over 85% of the 
subjects found the virtual hands to be helpful for performing MI during 
the training phase and during the EFCS, respectively. About 75% of the 
subjects reported that they found the virtual hands to be helpful for 
controlling the drone during the EFCS. The average scores for the above 
three questions regarding the virtual hands were 3.46, 2.29, and 1.5, 
respectively, indicating that the embodiable feedback provided in the 
form of virtual hands was, on average, beneficial to the subjects for 
performing MI as well as for completing the EFCS. 

5. Discussion 

Previous research has shown that providing embodiable feedback 
that mimics the MI task during rehabilitation or clinical treatments may 
improve brain activity [25,27,36]. However, such cases have limited 
complexity, as they mostly focus on enhancement of cortical activation 
during training while performing MI in a static environment. To the best 
of our knowledge, we are the first to explore the usage of embodiable 
feedback in control scenarios to enhance performance. Furthermore, 
although many studies have used virtual reality environments for their 
visual scenarios, few have used immersive head-mounted displays to 
display them. In this study, we hypothesized that virtually embodiable 
feedback, provided through immersive VR head-mounted displays, may 
also improve cortical activation as well as spatial discrimination during 
MI in control scenarios despite their increased complexity relative to 
rehabilitation applications. We tested this by creating an immersive 
virtual reality scenario in which subjects had to control a device in 
first-person perspective either with or without virtual hand feedback. 

The results from our experiments indicate that subjects were able to 
finish the control scenario faster when provided with virtual hand 
feedback. To investigate how such feedback influenced performance, we 
analyzed the classification accuracy as well as the ERD ratios obtained 
during the experiments. Out of the three phases, the training phase had 

Fig. 6. Questionnaire results. (a) Responses regarding embodiment, presence, and self-rated MI performance while within our immersive virtual reality environment 
(**p< 0.01). (b) Results from the evaluation of action observation and embodied feedback in the form of virtual hands. 
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subjects both inducing the highest ERD ratio and achieving the highest 
classification accuracy for MI. Such results corroborate the claim of 
many preceding studies that action observation along with MI may 
amplify cortical activation of corresponding movement [14,21–23]. On 
the other hand, the two control phases both exhibited a decrease in ERD 
ratio as well as accuracy from the training phase baseline. Although both 
control phases resulted in a decrease in performance, a smaller decrease 
was observed for the control phase that provided feedback, indicating 
that users were able to better control the simulated device when virtual 
hands were present. With the classification model also classifying left 
hand and right hand MI more accurately in the EFCS than in the SCS, we 
have confirmed that subjects undergoing a control scenario were able to 
induce brain activity patterns of greater discriminability when virtual 
embodiable feedback was provided. To alleviate concerns that these 
results were due to other factors outside of MI such as noise, we further 

plotted Fisher ratios to verify that MI was the main influence of classi
fication accuracy. As shown in Fig. 7, we have confirmed that for all the 
three phases, the electrode positions that majorly affected the classifi
cation of the different MI tasks were C3 and C4, which are known to be 
the positions corresponding to right and left hand MI, respectively. 

As seen from the questionnaire results, our subjects showed varying 
degrees of perceived embodiment and presence, with some perceiving 
the provided scenario to have negatively affected their performance. To 
investigate whether such differences of perception from each subject, 
despite their exposure to the same environment, may have correlated 
with their control performances, we further analyzed the effect of 
embodiment and presence on MI performance. As shown in Fig. 8, sta
tistically significant positive linear relationships between classification 
accuracy and both embodiment and presence were shown for device 
control with virtual hand feedback (r = 0.377, p = 0.048 for embodi
ment and r = 0.396, p = 0.036 for presence), while no statistically sig
nificant positive relationships were shown from device control without 
virtual hand feedback (r = 0.160, p > 0.415 for embodiment and r =
0.081, p > 0.681 for presence). The difference in significance for pres
ence was especially surprising, as the question only asked about the 
surrounding environment and not about the virtual hands. With previ
ous studies concluding that immersion is positively correlated with both 
embodiment and presence [51–53], we can infer that the increase in 
performance is due to increased immersion, which increased both 
embodiment and presence as well. A future study should be conducted 
to verify this inference. 

Although we have shown that users have greater control over a 
simulated device when provided with virtually embodiable feedback, 
our small sample size may have skewed results. A future study should 
investigate the effects of virtually embodied feedback on a larger sample 
of subjects. Furthermore, there is no guarantee that virtually embodiable 
feedback will positively affect device control in the real world. Real- 
world tests were avoided due to the potential of environmental factors 
adversely affecting results, but the difference in immersion between a 
virtual reality environment and the real world or some augmented re
ality cannot be ignored. To address this, we attempted to make our 
scenario as realistic as possible by making the virtual hands and envi
ronment realistic while also allowing subjects to move their head around 
freely to view the environment. Our control scheme also stops the device 
when the classification model determines the subjects’ intentions to be 
different from the required movement, which differs from navigation in 

Fig. 8. Effect of embodiment and presence on control performance.  

Fig. 7. Topomaps of Fisher ratios from the ERD ratio of all subjects on representative frequency bands.  
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the real world in which the device always moves in the classified di
rection. If we were to allow the control scheme to directly follow the 
classifications made by the classification model, there would exist the 
possibility of subjects never finishing the control phase, which we 
wanted to avoid. With the main focus of our study being the effect of 
embodiable feedback on MI during control scenarios, we thought a pre- 
determined route would be the fairest way to compare times to 
completion to analyze the effect on MI. We also mapped the resting MI 
task to the forward movement of the device, which is unusual for control 
scenarios. This was done to (1) gather enough resting state data between 
turns, which is a requirement for accurately calculating the ERD ratios, 
and (2) shorten training time for subjects by minimizing the number of 
classes such that subjects would be less affected by fatigue while using 
the head-mounted displays. Nevertheless, our study is the first to reveal 
the promising potential of virtually embodiable feedback to improve 
performance for real-life control applications. 

6. Conclusion 

In our study, we applied embodiable feedback to an immersive vir
tual reality environment to improve the performance of MI-based BCI, 
specifically in the case of control applications in which users are exposed 
to a dynamically changing environment and greater perceptual 
complexity. Our results suggest that embodied feedback may both 
enhance discriminability of spatial brain patterns and improve cortical 
activation of the desired MI when users use BCIs to control devices. Such 
findings could contribute to MI-based BCI systems by providing acces
sibility to users who may not have the extensive MI experience that was 
required for traditional systems and helping them learn to elicit desired 
neural patterns. 
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