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Background and Objective: This paper investigates a novel way to interact with home appliances via
a brain-computer interface (BCI), using electroencephalograph (EEG) signals acquired from around the
user’s ears with a custom-made wearable BCI headphone.
Methods: The users engage in speech imagery (SI), a type of mental task where they imagine speaking
out a specific word without producing any sound, to control an interactive simulated home appliance. In
this work, multiple models are employed to improve the performance of the system. Temporally-stacked
multi-band covariance matrix (TSMBC) method is used to represent the neural activities during SI tasks
with spatial, temporal, and spectral information included. To further increase the usability of our pro-
posed system in daily life, a calibration session, where the pre-trained models are fine-tuned, is added
to maintain performance over time with minimal training. Eleven participants were recruited to evaluate
our method over three different sessions: a training session, a calibration session, and an online session
where users were given the freedom to achieve a given goal on their own.
Results: In the offline experiment, all participants were able to achieve a classification accuracy signifi-
cantly higher than the chance level. In the online experiments, a few participants were able to use the
proposed system to freely control the home appliance with high accuracy and relatively fast command
delivery speed. The best participant achieved an average true positive rate and command delivery time
of 0.85 and 3.79 s/command, respectively.
Conclusion: Based on the positive experimental results and user surveys, the novel ear-EEG-SI-based BCI
paradigm is a promising approach for the wearable BCI system for daily life.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

A brain-computer interface (BCI) records and translates brain
activity into digital commands. It works as a gateway between the
human brain and external devices, enabling users to communicate
or control environments solely with thoughts, which greatly bene-
fits physically challenged individuals such as those who suffer from
amyotrophic lateral sclerosis (ALS) [1]. Most BCIs rely on brain
activities acquired from users while performing a specific men-
tal task. For example, P300-based BClIs detect an event-related po-
tential (ERP) from simultaneously monitored electroencephalogram
(EEG) to identify the target that a user is mentally concentrating at
[2,3]. Motor-imagery (MI) is one of the most popular types of men-
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tal tasks employed in BCI systems. During a MI task, a user actively
imagines a body movement without actually moving, which causes
changes in brain activity in the specific parts of the motor cortex
that can be detected by BCI systems [4,5].

Speech-imagery (SI) is a relatively new paradigm in BCI re-
search. Similar to MI, SI tasks involve imagining speaking some
specific words without actually producing any sound [6]. Unlike
other mental tasks that are commonly used in BCIs, SI tasks are
more intuitive to most people which makes SI-based BCls easier
to use with less practice time. It can also be more straightfor-
ward; the speech commands can be selected to match their se-
mantic meaning with the actual output commands. For instance,
users can imagine the word “Power” to turn on a television. There
are two brain regions located in the left cerebral hemisphere that
are commonly associated with different language processing func-
tions: Broca’'s and Wernicke’s areas, where the former is involved
in language production and the latter in language comprehension
[7,8]. Analysis of brain activities in previous works has indicated
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Fig. 1. Overview of the proposed ear-EEG Sl-based BCI system for home appliances control. Users initially perform a training session to train the classification models.
Subsequently, users can carry out a shorter calibration session to fine-tune the trained models.

an increment in the brain activities in these areas during SI tasks
[9,10], suggesting that both phonetic and semantic components of
the imagined word influence brain patterns during SI tasks. Vari-
ous researches have been carried out in an offline setting to show
the effectiveness of SI as a potential paradigm for BCI systems,
using different types of speech. Some studies focused on using a
single phoneme with no semantic meaning [11-13], while others
analyzed the classification performance for words with the same
or different number of phonemes [10,14-16]. These previous re-
searches demonstrated the potential of SI to be used as a paradigm
in BCI systems.

Among brain monitoring techniques, EEG is most commonly
employed in non-invasive BCIs due to its temporal resolution, ver-
satility, and cost-efficiency. EEG is conventionally acquired using
wet electrodes, with electrolyte gel applied to decrease impedance
between the scalp and the electrodes. However, such methods
are unsuitable for daily life due to several reasons including their
time-consuming preparation process and unpleasant user experi-
ence [17]. To solve this issue, there are various ways to adjust EEG
acquisition techniques to make BCI wearable. First, wet electrodes
that are sticky to the user’s hair and skin can be replaced by dry
electrodes. AgCl spike-shape dry electrodes are commonly used to
ensure contact with the user’s scalp even in the presence of hair.
Second, the equipment can be made wireless and portable, which
is preferable for daily life where users normally have to move
around. Third, instead of using an EEG cap, the equipment can be
aesthetically redesigned to be worn easily and less socially awk-
ward. Examples of companies that offer commercial-grade wear-
able EEG headsets include NeuroSky (MindWave headset), Emotiv
(offer various types of EEG headset), and InteraXon (Muse head-
band).

In addition to the above techniques, ear-EEG has been gain-
ing more attention in the wearable BCI research field over the re-
cent years. Ear-EEG is an EEG acquisition technique that monitors
EEG from around [18] or inside the user’s ears [19]. It is more
discreet than the conventional scalp-EEG methods. Moreover, the
skins around (and inside) the user’s ears are not covered with hair;
thus, it is easier to ensure the contact between electrodes and
the user’s skin for both dry and wet electrodes. Previous studies
have proven that ear-EEG is a reliable EEG acquisition method for
many types of BCI systems including P300 [18,20], SSVEP [20,21],
auditory-steady-state response (ASSR) [20], sleep staging [18], and
emotion recognition [22].

Considering the merits of both the SI mental tasks and ear-
EEG acquisition method, we propose a novel BCI system that com-
bines SI mental tasks and wearable ear-EEG equipment to further
develop BCI for daily life. In our previous work [23], multi-class
SI experiments were conducted while recording both conventional
scalp-EEG (32 channels) and ear-EEG (6 channels) simultaneously.
The results of the offline experiments indicated no significant dif-
ference between the performance of the scalp-EEG and ear-EEG in
most of the participants, showing that ear-EEG can be used as an
alternative EEG acquisition method in Sl-based BCls. This current
work builds on the previous work to develop a SI-based BCI system
with wearable ear-EEG equipment that can be used for control. The
system is evaluated with experiments in both offline and online
manner. Ear-EEG is monitored in eight channels positioned around
the user’s ears using a fully-wearable device shaped similarly to a
headphone. The system extracts features from the ear-EEG by ap-
plying common spatial pattern (CSP) filters and Riemannian tan-
gent space projections to the covariance matrices calculated from
ear-EEG. A multilayer extreme learning machine (MLELM) is then



N. Kaongoen, J. Choi and S. Jo

used to translate the data into corresponding output commands.
The proposed system and the experimental protocols are described
in detail in the following section.

2. Method and experiment
2.1. System overview

In this work, we propose a novel wearable ear-EEG Sl-based BCI
for controlling home appliances. Interactive simulated television is
made and used as the target home appliance for the experiments.
The user is provided with three different ways to control the tele-
vision, which can be selected by moving the mouse cursor into the
respective circle. The user can change the channel (left circle, by
performing SIs of words "next" and "back"), change the volume
(right circle, by performing SIs of words "up" and "down") and
turn the TV on and off (bottom circle, by performing SI of word
"power"). Three different classification models are used for each
control task. Initially, the user has to perform a training session to
train these models, which takes approximately 20 min to complete.
For subsequent use, the user can carry out an additional calibra-
tion session instead, which takes around 9 min. Fig. 1 depicts the
system overall.
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The process of our ear-EEG SI-based BCI system begins with ac-
quisitions of ear-EEG data using a custom-made wearable ear-EEG
headphone. The ear-EEG data are then preprocessed and bandpass
filtered into multiple frequency bands after which the CSP algo-
rithm is applied to spatially filter the data from each frequency
band independently. Subsequently, covariance matrices are calcu-
lated from the resulting EEG data and projected into the corre-
sponding tangent space according to their Riemannian geometry.
Finally, a feature vector is constructed from the transformed co-
variance matrices and classified using a MLELM model to give an
output command that controls the target. Fig. 2 summarizes the
whole process of our system in a schematic diagram.

2.2. Participants

Eleven individuals (Nine males and two females) of age ranging
from 20 to 30 years old were recruited to participate in this study.
All participants were healthy and did not have any neurological,
visual, or auditory disorders. Nine participants have prior experi-
ences using BCI systems and six of them have previously partici-
pated in a Sl-based BCI experiment. All participants gave written
consent and the institutional review board (IRB) has approved the
study.
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Fig. 2. The schematic diagram of our ear-EEG SI-based BCI system. Ear-EEG data is acquired using a custom-made ear-EEG headphone. The data are processed using mutiple
bandpass and CSP filters. The feature extraction is based on Riemannian tangent space projection of the EEG covariance matrix. MLELM is used as the classifier that outputs

a command that controls the state of the target.
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(b)

Fig. 3. The front-view (a) and side-view (b) of the custom-made wearable ear-EEG headphone.

(@)

(b)

Fig. 4. The positions of the ear-EEG electrodes at both ears (a) and the actual photo of the headphone cups with electrodes attached to the left cup (b). The reference and
ground electrodes are located at the bottom-most position of the right and left ear-EEG electrodes, respectively.

2.3. Wearable ear-EEG headphone

The wearable ear-EEG equipment is designed in the shape of a
headphone to avoid users feeling socially awkward when worn in
daily life. The headphone case is printed with a 3D printer using
polylactic (PLA) plastic as a material. The equipment can be eas-
ily worn due to the flexible headphone frame that is adjustable in
size. The right cup of the headphone contains a Li-ion recharge-
able battery (3000 mAbh, lasts for at least eight hours for continu-
ous EEG recording), a charger, a switch (to switch between operat-
ing mode and charging mode), and the OpenBCI's Cyton Biosensing
Board (www.OpenBCl.com) which is used as the EEG acquisition
board. The wearable device weighs approximately 400 gs. It is con-
nected wirelessly to a personal computer via Bluetooth with a USB
dongle. The ear-EEG is acquired with a sampling rate of 250Hz.
The headphone cups are 7 x9 cm in size, which is large enough
to cover the user’s ears. A flexible silicone mold emblemed with
sockets for snap-type electrodes is attached to the cushion of each
headphone cup. Fig. 3 shows the prototype of the custom-made
ear-EEG headphone.

The wearable ear-EEG headphone monitors EEG in eight chan-
nels positioned around the user’s ears. For the sake of simplicity,
we name four channels located around the left ear, from top to
bottom, as L1, L2, L3, and L4, and the other four channels around
the right ear as R1, R2, R3, and R4. The reference (REF) and ground
(GND) electrodes are positioned below the R4 and L4 channels, re-

spectively. Fig. 4 illustrates the positions of the ear-EEG electrodes.
Foam-type solid-gel snap electrodes (3M Red Dot 2239) cut to
14mm in diameter are used in this study for EEG acquisition. This
type of electrode is ready-to-use without the application of electri-
cally conductive gel. They are soft and do not leave any unpleasant
marks or scents on the user’s skin. The electrodes have impedance
below 15 kQ and it remains at the same level throughout the ex-
periment.

2.4. Experiment I: training session

The training session involves collecting subjects’ ear-EEG data
during their rest-condition and five different SI tasks, including SI
of the words “power”, “up”, “down”, “next”, and “back”. In this ses-
sion of the experiment, subjects are shown an interactive simula-
tion of a television that is displayed on a computer screen. There
are five blocks of tasks in the experiment. Each block consists of
five SI tasks (one for each word) and two rest tasks in a random-
ized order. Before each task, subjects are informed on which word
to imagine, and how that SI task would affect the simulated tele-
vision. The SI task of the word “power” would turn the simulated
television on and off, the words “up” and “down” would change
the volume of the television, and the words “next” and “back”
would change the television channel. The volumes and channels
of the television range from zero to ten. A real television sound is
played from minimum to maximum volume with a 10% increase
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Fig. 5. Experimental procedure of Experiment [: training session. Five SI tasks: “Next”, “Back”, “Up”, “Down”, “Power”, and a “rest” task were given in a block-randomized

manner.

in volume for each level, and a distinct image is shown for each
television channel. Depending on the instruction cue, subjects are
told to look at a certain side of the television image (“power”: bot-
tom, “up” and “down”: right, “next” and “back”: left). A red focus
circle is then shown in that region for two seconds, during which
the subjects are instructed to perform the SI. The state of the tele-
vision is then updated to reflect the SI. The same SI is carried out
ten times consecutively in a SI task, with 2.5 s interim between
each SI. Resting EEG data is collected by showing the subjects a
fixation cross on a blank screen for twelve seconds. The first two
seconds of the data are discarded when training the system. With
this experimental procedure, we obtained 50 samples of EEG data
for each SI and rest class. The procedure of Experiment I is illus-
trated in Fig. 5.

2.5. Data preprocessing

EEG data acquired from Experiment I are used to construct the
classification models for the system. A 60Hz notch filter is first
applied to the whole data to remove the line noise. We then ap-
ply multiple bandpass filters to separate EEG signals into multiple
time series lying in different frequency ranges. Seven fourth-order
Butterworth bandpass filters ranging from 15Hz to 120 Hz with an
increment step and bandwidth of 15Hz are used in this work. The
frequency bands are chosen based on the offline analysis of our
previous work which showed that the features from higher fre-
quency ranges are the most significant ones in classifications of SI
tasks [23]. The ear-EEG data are then segmented into 1.5-second
EEG epochs and labeled with their corresponding class. CSP algo-
rithm is then applied to the preprocessed EEG samples to spatially
filter the data. This process is performed for data from each fre-
quency band independently.

2.6. Feature extraction
2.6.1. Temporally-stacked multi-band covariance matrix

Features based on EEG covariance matrix have been shown in
previous works to be effective in classifications of SI tasks [10,23].

EEG covariance matrix provides spatial information of an EEG
epoch in the form of covariance values between each EEG chan-
nel. On the other hand, the spatiotemporal analysis of the EEG
during SI tasks in previous works has shown distinctive tempo-
ral characteristics between different SI tasks. Thus, the incorpo-
ration of temporal information into the EEG covariance matrix is
required to fully interpret the SI tasks from EEG data. To accom-
plish this, we introduce the temporally-stacked multi-band covari-
ance matrix (TSMBC) method that includes all spatial, temporal,
and spectral information to represent the neural activities during
SI tasks. TSMBC method slices EEG epochs from multiple frequency
bands into overlapping smaller windows and computes the covari-
ance matrix separately for each window. The covariance matrices
from each epoch are then subjected to further feature extraction
steps before stacking them together as one feature vector that rep-
resents the EEG sample data.

Given an EEG sample in a time domain, e ¢ R *T where CH
denotes the number of EEG channels and T denotes the number of
time points, its covariance matrix, P ¢ RHxH s defined as:

1 T
T3 ee' . (1)

The covariance matrices are computed for all windows of all
preprocessed EEG epochs acquired using the methods described
in Section 2.5. In this work, the window-sliding procedure is per-
formed with a window length of 1 s and a step length of 250 mil-
liseconds, resulting in a total of three data windows for an EEG
epoch. Since we use seven frequency bands, this procedure yields
a total of twenty-one covariance matrices per one EEG sample.
The resulting covariance matrices P are symmetric positive-definite
(SPD).

P=

2.6.2. Tangent space projection

The EEG covariance matrices representing each EEG epoch are
projected into their corresponding tangent space before they can
be used effectively as input features in the classification step. This
approach is based on the Riemannian geometry of the SPD matri-
ces, which causes them to be ineffective when they are vectorized
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or used directly as features for classification algorithms based on
projections into hyperplanes [24]. Tangent space projection is a lo-
cal approximation of the Riemannian manifold. The resulting tan-
gent space vectors from the projection are in Euclidean space and
locally homeomorphic to the Riemannian manifold of the SPD ma-
trices; thus, the Riemannian distance in the manifold of SPD matri-
ces can be well approximated by computing the Euclidean distance
between the tangent space vectors.

In this work, the Riemannian tangent space projections are cal-
culated separately for each of the seven frequency bands. Each pro-
jection process is computed using the covariance matrices from all
EEG windows of the training data samples. Given a covariance ma-
trix P, its tangent space vector, s € R™, where m = % is
defined as:

S = upper(PR_%logPR (P)PR_%>. (2)

The operator upper(X) takes only the upper triangular part of
the matrix X and vectorizes it by applying unity weight to the di-
agonal elements and +2 weight elsewhere. The operator logp, (P)
is the logarithmic mapping of matrix P using the reference point
Pg, defined as:

logp, (P) = P? log(P? PP )Py (3)

where Py is the Riemannian mean of the M covariance matrices,
{Pq, P,,...Py}, extracted from all EEG windows of the EEG epochs
in the training dataset (i.e., M equals the number of EEG win-
dows x the number of training EEG samples). In the current work,
Pg is computed using the geometric mean [25] defined as follows:

M
Pr= argmin 82(P', P). (4)
Pe(Pr.Py.... PM}; &(P.R)

The Riemannian distance, 8, between two SPD matrices is de-
fined as:

2

E
Sr(P, Py) =log (P{'Ry) = | " log” (1) (5)

i=1

where A; is the it" eigenvalue of P{le. A detailed description of
the Riemann geometry properties of the SPD matrices and the tan-
gent space projection process can be found in [25].

To summarize our feature extraction process, one EEG sample is
filtered into seven frequency bands, then the EEG epoch from each
band is sliced into three overlapping windows. Consequently, the
covariance matrix and its tangent space vector are calculated for
each EEG window, resulting in a total of twenty-one (seven fre-
quency bands x three EEG windows) tangent space vectors for one
EEG sample. Because the number of EEG channels (CH) is eight,
the number of features in a tangent space vector is thirty-six (from
m= %). The final feature vector representing an EEG epoch
is then constructed by concatenating all twenty-one tangent space
vectors, concluding the total feature number of 756 (twenty-one
tangent space vectors x thirty-six features).

2.7. Classification

2.7.1. Multilayer extreme learning machine

Extreme learning machine (ELM) refers to a variation of a sin-
gle layer feed-forward neural network (SLFN). In ELMs, the weights
of the input layer and the bias values of the hidden layers are
first randomly initialized, which are then frozen through the model
training process [26]. Due to this, ELMs are much faster to train
when compared to other neural networks while producing good
generalization performance; hence, ELMs are well-suited for use in
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BCI systems which may require a frequent system calibration pro-
cess considering the non-stationary nature of EEG signals.

For distinct samples (x;,y;), where X;=[X;;.Xp..., Xip]T € R7,
Vi=WiYizr Viell € RS i=1, ..., N, N is the number of training
samples, n is the number of input nodes (i.e., the number of input
features) and c is the number of output nodes (i.e., the number of
output classes), an ELM with N hidden nodes can be mathemati-
cally modeled as:

N
Zng(ajxi + b]) =Yi (6)
j=1

where g(x) is the activation function, j=1,..., N, Vi =[Vj1,Yj2e-s

vi]T e R¢ is the output weights connecting the jthidden node
and the output nodes, a;=[g;;,q;,..., ajn]T e R" is the input
weights connection the j™hidden node and the input nodes, and
b;=[bj1.bjp...., bjy]" € R" is the bias of the j'"hidden node. Con-
sidering all N training samples, the N number of Eq. (6) can be
written compactly as

HV =Y 7)
where
[ g(a1xq +by) --- g(agx; + by)
H= R ,
| g(@xy +b1) - g(agxn+by) |y 5
(v - Ve yu - Yie
V= A , andY =
LU Viied fixe N1 UNed e

H is called the hidden layer output matrix of the ELM where
each column of H is the j™ hidden node output with respect to
inputs Xq,..., xy. V is the output weight matrix containing all the
output weights from each hidden node to output nodes. Y is the
output matrix containing all N samples of the output nodes.

The process of training an ELM model is simple. First, the input
weights a and bias b are randomly initialized to values between 0
and 1, from which we can derive the matrix H. We can then calcu-
late the output weight as V=H!Y where H! is the Moore-Penrose
generalized inverse of the matrix H. By using input as output of
the ELM network, we can construct an auto-encoding ELM (ELM-
AE). ELM-AE models are trained identically to normal ELM models.

MLELM is a deep-learning variation of an ELM, which is imple-
mented by stacking multiple ELM-AEs. It uses multiple ELM-AEs
to train the input for each hidden layer [27]. Our previous work
[23] has shown that MLELMs trained using Riemannian tangent
space projections of EEG covariance matrices as input features out-
perform other methods commonly used in BCI systems in classifi-
cation accuracy.

Given a MLELM model with k hidden layers, the " hidden
layer is built with an ELM-AE that receives the output values of
the I— 1" hidden layer as input. The I hidden layer of a MLELM
model can be expressed as:

H; =g((V)"Hp_y) (8)

where H; is the output matrix of the I hidden layer, V; is the out-
put weight matrix of the I hidden layer learned from the I*" ELM-
AE. It should be noted that when =1, Hy is the input layer of the
MLELM model. The output weights that connect the last hidden
layer to the output layer are then learned in the same manner as
the original ELM. Please refer to [27] for detailed description on
how a MLELM model is constructed.
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2.7.2. Model training

To train the SI classification models for each subject, a five-fold
cross-validation method is first applied to the data from Experi-
ment 1. There are three hidden layers in the MLELM models; a grid
search method is applied to find the optimal number of hidden
nodes in each hidden layer, ranging from 50 to 500 with an incre-
mental step of 50. The CSP filters and the tangent space projections
are trained using only training data in each iteration of the cross-
validation. Three MLELM models are trained for each subject. The
first model performs classification between the “rest” and “power”
class, while the second and third models perform classification be-
tween “rest”, “up” and “down”, and “rest”, “next” and “back”, re-
spectively. Since MLELM’s performance can fluctuate depending on
the random initialization of the parameters, random seed (from
Python’s NumPy library) is recorded to reproduce the same param-
eter initializations in the later step. After the cross-validation step,
all three models are trained again using the optimal parameters
and their corresponding random seed using the whole data from
Experiment .

2.8. System evaluation

In the previous sections, we have shown how the classification
model is built to classify different SI tasks using the data obtained
from Experiment I. The average classification accuracy of the five-
fold cross-validation process is used to evaluate the offline perfor-
mance of the system. To further evaluate the system in an online
manner, we perform two more experiments: (1) an online test and
model calibration experiment, and (2) a real-world scenario exper-
iment. The online system evaluation is based on the classification
accuracy of the trained model and its performance in specific tasks.
After the experiments, survey questions regarding the SI tasks, our
ear-EEG wearable device, the experiment, and the system protocol
are also handed to the participants after they finish the experi-
ments. The survey questions are designed to help us better under-
stand how the system could be improved in the future. The survey
questions are provided in Supplementary Material A. The objective
and experimental protocol of each experiment are described in the
following subsections.

2.8.1. Experiment II: online test and model calibration

After the model is trained using the training data, we carry out
Experiment II to evaluate model performance in an online setting.
The data acquired during the experiment is then used to further
calibrate the model. Similar to Experiment I, a simulated televi-
sion is shown, but with three green circles on the bottom, left
and right sides of the television. In one session of Experiment II,
participants are given six different types of tasks: increase or de-
crease the volume by one, increase or decrease the channel by one,
turn on or turn off the television, and rest. The subjects are in-
structed with written words on a popup screen that participants
can close by pressing the Enter key. To perform the instructed SI
tasks, participants are told to move the mouse cursor (using nor-
mal mouse movement with a hand) into the corresponding green
circle located at the right, left, and bottom of the television to in-
dicate which mode of control they intend to perform: the right
circle for volume control, the left circle for channel control, and
the bottom circle for power control. When the cursor enters a cir-
cle, the color of the circle changes from green to red for two sec-
onds. Subjects would then imagine the appropriate word to con-
vey their desired command to the simulated television according
to the given task while the circle remains red. EEG signals are
collected during the first 1.5 s to be used in the classification of
the user’s intention. It should be noted that only the pre-trained
MLELM model and algorithms (e.g., CSP filters and tangent space
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projection) which are corresponded to the selected mode of con-
trol are applied to the EEG signals. The state of the simulated tele-
vision is adjusted according to the given task regardless of the clas-
sification result. Simple visual feedback (a checkmark or a cross
mark) is then displayed for 500 milliseconds to inform the par-
ticipants of the result for each task. For the rest task, participants
are instructed to relax and watch the current state of the televi-
sion continuously displayed for five seconds. The tasks are given
randomly but the “Power” tasks are arranged so that the other SI
tasks are not given while the simulated television is off. Each dis-
tinct task is performed for ten trials in one session of Experiment
1.

After the participants finish a session of Experiment II, the true
positive rate (TPR) of each task is reported. We then use the data
obtained from the current session to calibrate our classification
models. By using the grid search method, we find the new set of
parameters that give the optimized classification accuracy for the
new data. Finally, all models are retrained using both data from Ex-
periment I and the current session of Experiment II. Experiment II
is performed three times in total, with each session taking approx-
imately nine minutes. Fig. 6 depicts the process of Experiment IL
The average TPRs from the last session of Experiment II are used to
measure the performance of the proposed online ear-EEG SI-based
BCI system for each participant.

2.8.2. Experiment III: real-world scenario

Participants who achieve high performance in Experiment II are
reinvited to participate in Experiment Il to further evaluate the
robustness of our system. Experiment IIl takes place after at least
seven days from Experiment II. The objective of this experiment
is to test the performance of the system in a real-world scenario.
Furthermore, conducting Experiment IIl on a different day helps
us test the generalizability and robustness of our models, which is
an important property for systems that deal with a non-stationary
signal such as EEG. Participants are first asked to carry out Experi-
ment Il once again using the pre-trained model from the previous
session of Experiment II. The newly acquired online data are then
used to recalibrate the models before performing the tasks in Ex-
periment III. Unlike Experiment II, Experiment III is designed to al-
low participants to have complete control of the operations in the
simulated television. Participants are given freedom over how they
want to achieve their goal task. Participants control the interactive
simulated television by moving the cursor into one of the three
green circles; upon entry, the circle color changes to red, and the
system starts translating the user’s ear-EEG into the corresponding
SI command. To reduce the false-positive rate, ear-EEG data of 1.5 s
window is classified every 100 ms, and the final result command
is output if and only if three consecutive classification results are
identical. After an output command is produced, the state of the
simulated television is changed accordingly, with 1.5 s interim be-
fore the next classification. Participants can freely move the cursor
out of the focus circle to stop the current operation whenever they
want as well.

In each trial of Experiment III, the simulated television is ini-
tially shown to be off. When the television is turned on, the chan-
nel and volume are set to five. There are two sub-tasks for the par-
ticipants to perform. The first sub-task is to turn on the television,
and then increase the volume and the channel to ten. The second
sub-task is to decrease the volume and the channel back to its ini-
tial state of five and turn the television off. The participants are
informed that they can freely choose the order of SI commands to
accomplish the sub-tasks. Fig. 7 illustrates the procedure of Exper-
iment IIl. The total session time, average command delivery time,
the misstep number, and the total step number to achieve the goal
are used as evaluation metrics; when calculating these metrics, the
“rest” command is not considered as a command step due to the
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Fig. 6. Experimental procedure of Experiment II: online testing and model calibration session. The trained models are tested in an online experiment. The classification
results are reported and the online-test data are used to calibrate the models to further improve the performance of the system.
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Fig. 7. Experimental procedure of Experiment IIl: real-world scenario session. Participants were given two sub-tasks to complete. The first subtask is to turn on the interactive
simulated TV and change its channel and volume to ten. The second subtask is to change the channel and volume back to five and turn off the TV. Participants were given

a complete control on how they want to finish the tasks.

fact that “rest” command does not affect the state of the simulated
television. Experiment Il and Experiment III are carried out con-
secutively for a total of three sessions to acquire a more accurate
insight into the performance of our system.

3. Results and discussions
3.1. Experiment I: training session

Although the main objective of Experiment I is to gather data
to train the models, the average classification accuracy from the of-
fline cross-validation process can give us information on how well
each participant performs the SI tasks. Table 1 shows the classifica-
tion accuracies of each model (case 1 model classifies “power” and
“rest” class, case 2 model classifies “up”, “down”, and “rest” class,
and case 3 model classifies “next”, “back”, and “rest” class). From
the results, all participants achieved the average classification ac-
curacies significantly higher than the chance level (50% for case 1
model, 33.3% for case 2 and 3 models) according to the one-tailed
t-test (p < 0.01) for all types of models. The average classification
accuracies across all participants were 84.9%, 64.9%, and 64.5% for
case 1, 2, and 3 models, respectively. Participant P2 performed ex-

ceptionally well among other participants with an average accu-
racy across all models of 97.9% while participant P8 performed the
worst with an average accuracy of 55.9%.

3.2. Experiment II: online testing and calibration

Table 1 also shows the TPRs of each task during Experiment
Il which is used as an evaluation measure for the online perfor-
mance. The average TPRs across all tasks of all participants for first,
second and final sessions were 0.44, 0.45, and 0.59, respectively.
Participant P2, who showed the best performance in the offline
analysis of Experiment I, achieved the highest average TPR across
all tasks (TPR=0.85 in the last session) with TPR values higher
than 0.5 in all tasks in the final session of Experiment II. In con-
trast, participant P5 showed the worst performance with an aver-
age TPR of 0.32 in the last session.

The result from Experiment II also shows an increase in online
performance with more calibration process; the average TPR in the
third session is significantly greater compared to the average TPR
in the first session according to the one-way ANOVA (p < 0.05),
with exceptions of participant P5 and P7 whose TPR decreased in
the final session. There is no significant difference between the TPR
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Table 1
The numerical results of Experiment I and Experiment II.

Computer Methods and Programs in Biomedicine 224 (2022) 107022

Partici-pant Experiment I: Training session (acc%)

Experiment II: Online testing (TPR)

case 1 case 2 case 3 Session Power Up Down Next Back Rest AVG
P1 100.0 87.3 76.0 #1 0.6 0.1 0.6 0.4 0.0 0.4 0.35
#2 1.0 0.0 1.0 1.0 0.0 0.3 0.55
#3 0.4 0.8 1.0 0.6 0.9 0.9 0.77
P2 99.0 98.7 96.0 #1 1.0 0.6 0.8 0.6 0.5 0.6 0.68
#2 1.0 0.7 0.9 0.7 0.4 0.5 0.70
#3 1.0 0.9 1.0 0.8 0.6 0.8 0.85
P3 70.0 52 50.7 #1 0.0 0.0 0.0 0.2 0.5 1.0 0.28
#2 0.3 0.1 0.0 0.0 0.9 0.8 0.35
#3 0.7 0.7 0.2 0.3 0.5 0.9 0.55
P4 89.0 63.3 69.3 #1 0.4 0.0 0.9 0.0 0.8 0.8 0.48
#2 0.1 0.4 0.5 0.0 0.8 1.0 0.47
#3 0.9 0.8 0.4 0.5 0.6 0.7 0.65
P5 75.0 52.0 50.7 #1 1.0 0.0 1.0 0.0 0.7 0.1 0.47
#2 0.8 0.2 0.0 1.0 0.0 0.1 0.35
#3 0.3 0.1 0.0 0.9 0.0 0.6 0.32
P6 81.0 53.3 59.3 #1 0.4 0.9 0.0 0.1 0.0 0.8 0.37
#2 0.7 0.0 0.0 0.4 0.0 0.0 0.18
#3 0.5 0.8 0.4 0.4 0.1 0.7 0.48
P7 67.0 50.0 51.3 #1 0.5 0.0 1.0 0.2 0.6 0.5 0.47
#2 0.5 0.3 0.6 0.4 0.2 0.1 0.35
#3 0.6 0.3 0.3 0.6 0.2 0.5 0.42
P8 71.0 48.7 48.0 #1 0.2 0.4 0.3 0.6 0.0 0.7 0.37
#2 0.0 0.0 0.4 0.0 0.0 0.9 0.22
#3 0.3 0.1 0.9 0.4 0.0 0.9 0.43
P9 90.0 75.3 62.0 #1 1.0 0.0 1.0 0.0 1.0 0.1 0.52
#2 0.9 0.6 0.4 0.0 0.7 0.8 0.57
#3 1.0 0.5 0.8 0.3 0.9 0.6 0.68
P10 92.0 56.7 58.0 #1 0.2 0.4 0.2 0.0 1.0 1.0 0.47
#2 0.0 0.3 0.2 0.8 0.6 0.8 0.45
#3 0.7 0.0 0.7 0.6 0.9 0.5 0.57
P11 100.0 76.7 88.7 #1 0.0 0.3 0.9 0.0 0.5 1.0 0.45
#2 1.0 0.6 0.9 0.8 0.4 0.8 0.75
#3 0.8 0.7 1.0 0.6 0.8 1.0 0.82
AVG 84.9 64.9 64.5 #1 0.48 0.25 0.60 0.19 0.51 0.64 0.44
#2 0.57 0.29 0.45 0.46 0.36 0.55 0.45
#3 0.65 0.52 0.61 0.55 0.50 0.74 0.59
Table 2
Results of Experiment III.
Online test and model calibration session (TPR) Real-world scenario task
Participants Session # Task
Power Up Down Next Back Rest  Average Time (s) #steps #missteps Time (s) #steps #missteps
P1 #1 0.5 0 0.9 0.1 0.8 1 0.55 - - - 50.37 11 0
#2 1 0.6 1 0.7 0.5 0.9 0.78 49.95 13 1 58.59 15 2
#3 1 1 0.9 1 0.6 0.8 0.88 131.14 23 6 53.45 15 2
P2 #1 1 0.9 1 1 1 0.5 0.90 58.01 15 2 61.28 17 3
#2 1 0.5 1 1 0.8 1 0.88 49.41 13 1 52.12 15 2
#3 1 0.9 0.6 0.6 0.5 1 0.77 52.60 13 1 42.71 11 0
P4 #1 0.7 0 1 1 0 1 0.62 73.60 17 3 - - -
#2 0.8 0.1 0 0.5 0.7 1 0.52 - - - - - -
#3 0.5 0 1 0.1 0.4 1 0.50 - - - - - -
P9 #1 0.1 0.1 0 0 0.1 1 0.22 - - - - -
#2 0.3 0.5 0.4 0.2 1 0.9 0.55 119.57 21 - - -
#3 0.8 0.8 0.1 0.4 0.2 0.7 0.50 178.34 39 14 138.08 17 3
P11 #1 1 0.8 0.7 0.4 0.9 0.6 0.73 78.67 17 3 - - -
#2 0.1 0.9 0.4 0.8 0.7 0.8 0.62 60.00 15 2 69.30 15
#3 1 0.9 0.3 0.7 1 0.5 0.73 - - - - - -

of all SI tasks. Five participants including participants P1, P2, P4,
P9, and P11 achieved an average TPR higher than 0.65 and were
reinvited to participate in Experiment III.

3.3. Experiment III: real-world scenario

The results of Experiment III of the five participants (P1, P2, P4,
P9, and P11) are shown in Table 2. Out of the five subjects, par-

ticipants P2 and P11 achieved an average TPR higher than 0.65
in their first session of the online test without any model cal-
ibration process. Furthermore, participant P2 even outperformed
their performance in the final session of Experiment Il with an
average TPR of 0.90 in the first online test session. Participant
P1 outperformed their online testing result from Experiment II
after the second calibration session. Participants P4 and P9 all
showed performances lower than what they achieved in Experi-
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ment Il even after the calibration processes. Participant P1 showed
an increase in online test performance with each calibration ses-
sion while participants P2 and P4 showed a decreasing trend
instead.

In the real-world scenario task, all subjects except for P4 com-
pleted both sub-task 1 and sub-task 2 for at least one session. Par-
ticipant P2 succeeded in completing both sub-tasks in all three
sessions and showed the best performance among all five partic-
ipants. Participant P2 showed increased performance in the real-
world scenario tasks after each calibration process, which was sur-
prising given that their performance in the online testing part of
the calibration session decreased instead with each session. The
average performance time, the total number of steps and misstep
number to finish a sub-task of participant P2 were 52.69 s, 14,
and 1.5 missteps, respectively. The command delivery time was
3.79 s/command. Participants P1 and P11 completed both sub-
tasks after the second calibration. However, participant P11 failed
to finish both sub-tasks after the third calibration session while
participant P1’s performance got worse in the third session. The
command delivery time of participants P1 and P11 were 3.88
and 4.31 command/seconds, respectively. Participant P9 success-
fully finished only sub-task 1 after the second calibration session,
and finished both sub-tasks after the final calibration session but
with very low performance: average performance time, the total
number of steps, and misstep number of 158.21 s, 28, and 8.5, re-
spectively. Participant P4 completed only sub-task 1 of the second
session and failed all other subsequent tasks.

3.4. Discussions

Although the results from the experiments conducted in this
study show that all participants achieved classification accuracy
significantly higher than the chance level, only a few participants
were able to achieve accuracy high enough to effectively con-
trol the interactive stimulated television in the real-world sce-
nario tasks. Since most of the participants have prior experience
in the Sl-based BCI experiment, the reason for the difference
between the individual performance appears to be independent
of the user’s experience. Possible explanations include individual
anatomical and cortical differences that make neuro-activities dur-
ing SI tasks poorly detectable by the wearable ear-EEG device. Fur-
ther research is required to discover the exact reasons for the dif-
ferences in user performance.

In Experiment III, the results show that two out of five partic-
ipants achieved high TPRs in the online testing session that took
place more than one week after Experiment I & II prior to any
model calibration process. This suggests that, for these two par-
ticipants, our system showed good robustness overall, maintain-
ing high performance even after a period of time despite handling
non-stationary EEG signals.

While the results from Experiment Il show that the average
TPR of the last session is significantly higher than the first ses-
sion among all participants, there are some cases where the perfor-
mance got worse as the calibration process progressed, especially
in Experiment IIl. This might be due to bad EEG epochs from the
newly obtained calibration data. The bad EEG epoch could be in
form of an unexpected noise, motion artifact, or a user mistake
while performing the task. As the calibration process tunes the
models in favor of the newly acquired data, the calibrated mod-
els are more susceptible to poorly collected EEG samples, which
leads to worse classification performances. Therefore, an additional
process to check and remove the outliers from the calibration
data is necessary to make sure that the models are accurately
calibrated.

In our current online system, the optimal command delivery
time is 3.2 s/command, assuming perfect classification. This time
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could be shortened by reducing the length of an EEG epoch, step
size, and the interim between each output command to increase
the control speed; however, such measures are likely to decrease
the performance of the classification models. The tradeoff between
the command delivery time and the accuracy is needed to be con-
sidered as well.

As seen in the experimental results, the proposed system is not
yet ready to be used in a real-life scenario. Apart from the inade-
quate accuracy and command delivery speed, the current system
also lacks a method to select the target object and/or mode of
control. In this study, the experiments were conducted with par-
ticipants manually moving a mouse cursor to select the mode of
control of the simulated television. Ideally, this should be accom-
plished by SI tasks as well. Adding more SI classification modules
to the system would allow us to have more levels of control. For
example, there could be three levels of SI modules in which the
first, second, and third module would be used to let the user se-
lect the target home appliance (e.g., “TV” or “Light” SI tasks), mode
of control (e.g., “Volume” or “Channel” SI tasks), and control com-
mand (e.g., “Up” or “Down” SI tasks), respectively. Alternatively,
different levels of control could also be done by other types of BCI
components or a camera with an object recognition algorithm.

3.5. Survey results

In the first part of the survey, participants were asked ques-
tions regarding SI as a BCI paradigm. Participants were requested
to score SI from 1 to 10 considering three different criteria: intu-
itiveness, ease of use, and how well focused they were while us-
ing SI. Participants from both BCl-experienced and inexperienced
groups reported the SI tasks to be intuitive (average score of 8.4
and 7.0, respectively, with 10 being very intuitive). BCI-experienced
participants responded that SI is easy to use (average score of 7.3
with 10 being very easy to use) and somewhat easy to keep their
focus on the tasks throughout the experiment (average score of 6.4
with 10 being very easy to keep the focus). In contrast, the inex-
perienced group gave a neutral answer to both questions (average
score of 5.5 and 5.0). These results indicate that SI tasks are in-
tuitive and easy to use compared to other types of BCl. However,
people with no experience in BCI systems may require some time
to get familiar with the tasks.

The second part of the survey examines the participants’
thoughts on the wearable ear-EEG device with respect to weara-
bility, comfort, and applicability in real life. Most participants con-
sidered our device to be very easy to wear (average score of 8.6
with 10 being very easy). Participants also stated our device to be
comfortable to wear at the start (average score of 8.2 with 10 be-
ing very comfortable), but less so at the end of the experiments
(average score of 7.0). Three participants voted that they were not
willing to wear the device in real life. These participants com-
mented that the device was visually unappealing, causes sweat-
ing around the ears, and involved too much work to replace the
electrodes every day. However, they also said that the device was
much more comfortable to wear compared to the conventional
scalp-EEG acquisition tool. We believe that the issue of the de-
vice’s size and appearance can be easily fixed by customizing the
biosensing board to reduce the size. The problem with perspiration
may be solved by changing the material of the cushions or adding
some holes around the headphone to increase the airflow. Lastly,
the electrodes may be replaced with dry electrodes to solve the
need for frequent replacement of electrodes, in return for a possi-
ble decrease in signal quality.

In the last part of the survey, we asked the participants ques-
tions related to experiment protocols and our system. The partici-
pants claimed that they were able to keep their focus throughout
the experiment (average score of 7.6 with 10 being very focused)
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and that they felt somewhat exhausted after the experiment (av-
erage score of 4.4 with 1 being very exhausted). When questioned
about the time taken to acquire data and train the system, all par-
ticipants said that 20 min (the approximate running time of Ex-
periment I) was too long (average score of 9.0 with 10 being very
long) to spend every day before using the system. They were then
asked whether they were willing to spend 9 min (the approximate
running time of Experiment II) at the start of each day before us-
ing the system for calibration instead. The participants still consid-
ered our model-calibration process to be too long (average score of
7.1). In response to the question about the upper limit of time for
calibration for a real-life system that they were willing to use, we
received an average answer of 3.1 min. All participants responded
that the system was easy to understand and use (average score of
9.1 with 10 being very easy) but that they were not fully satisfied
with the experience of using the system overall (average score of
6 with 10 being very satisfied). Seven participants answered that
they would not use the system for controlling appliances in real
life, primarily due to its low speed and accuracy. Nevertheless, they
responded positively to using the system given that these issues
were resolved.

Based on the survey answers, the major issues with our cur-
rent systems are those involving preparation time and accuracy.
One way to decrease the calibration time is to change the proto-
col of the calibration process. In this current study, Experiment II
serves as both an online-testing session and a data gathering pro-
cess for the model calibration; hence, the experimental protocol is
designed to have a clear time margin between each task. For actual
calibration, the time between each task can be greatly shortened
by performing multiple numbers of an identical SI task consecu-
tively similarly to Experiment I. The time used to display instruc-
tions can also be decreased as the user gets used to the system.
Problems concerning accuracy require the development of better
algorithms. Further research on how SI is generated in the brain
is needed to better extract features that represent brain activities
during SI tasks, which would allow us to select an appropriate clas-
sification model to best classify these features.

4. Conclusion

In this study, we proposed a novel online BCI system using a
combination of SI tasks and a wearable ear-EEG headphone. In the
offline analysis from Experiment I, we found that all participants
were able to achieve classification accuracy significantly higher
than the chance level. We also found promising results from the
online experiments where a few participants were able to use the
proposed system to control the simulated television with high ac-
curacy and relatively fast command delivery time. Through a user
survey, we found that participants were mostly satisfied with the
Sl-based BCI system and the wearable ear-EEG headphone and
willing to use the system in real life given that the classification
accuracy and command delivery time are improved. Answers to
the survey questions also gave ideas and directions on how to fur-
ther develop the ear-EEG Sl-based BCI system. All things consid-
ered, we believe that the combination of the ear-EEG and SI tasks
provides a powerful method of control for BCI systems that aims
for daily-life use.

For future work, the development of better feature extrac-
tion and classification algorithms for SI tasks are required to in-
crease the performance of the system. Noise-canceling and artifact-
removal techniques should also be included in the system to en-
sure the quality of the EEG signal in a noisy real-world application
scenario. Apart from developments in algorithms for the system, an
embedded computing module or a connection between the device
and the user’s smartphone should be incorporated into the system
to increase its mobility.

1

Computer Methods and Programs in Biomedicine 224 (2022) 107022
Declaration of Competing Interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing in-
terests:

Sungho Jo reports financial support was provided by Institute of
Information and Communications Technology Planning and Grant
funded by the Korea Government (MSIT) Evaluation (IITP) under
Grant 2017-0-00432.

Acknowledgement

This work was supported by the Institute of Information and
Communications Technology Planning and Evaluation (IITP) Grant
funded by the Korea Government (MSIT) under Grant 2017-0-
00432.

References

[1] T. Milekovic, A.A. Sarma, D. Bacher, ].D. Simeral, J. Saab, C. Pandarinath,
B.L. Sorice, C. Blabe, E.M. Oakley, K.R. Tringale, E. Eskandar, Stable long-term
BCl-enabled communication in ALS and locked-in syndrome using LFP signals,
J. Neurophysiol. 120 (7) (2018) 343-360 Jul 1.

[2] M. Arican, K. Polat, Pairwise and variance based signal compression algorithm
(PVBSC) in the P300 based speller systems using EEG signals, Comput. Meth-
ods Programs Biomed. 176 (2019) 149-157.

[3] N. Kaongoen, S. Jo, A novel hybrid auditory BCI paradigm combining ASSR and
P300, J. Neurosci. Methods 279 (2017) 44-51 Mar 1.

[4] S. Chaudhary, et al., A flexible analytic wavelet transform based approach for
motor-imagery tasks classification in BCI applications, Comput. Methods Pro-
grams Biomed. 187 (2020) 105325.

[5] J. Luo, et al., Motor imagery EEG classification based on ensemble support vec-
tor learning, Comput. Methods Programs Biomed. 193 (2020) 105464.

[6] L. Wang, et al., Analysis and classification of speech imagery EEG for BCI,
Biomed Signal Process. Control 8 (6) (2013) 901-908.

[7] L. Friedman, J.T. Kenny, A.L. Wise, D. Wu, T.A. Stuve, D.A. Miller, J.A. Jesberger,

J.S. Lewin, Brain activation during silent word generation evaluated with func-

tional MRI, Brain Lang. 64 (2) (1998) 231-256 Sep 1.

J.R. Binder, The Wernicke area: modern evidence and a reinterpretation, Neu-

rology 85 (24) (2015) 2170-2175 Dec 15.

L. Koessler, L. Maillard, A. Benhadid, J.P. Vignal, ]. Felblinger, H. Vespignani,

M. Braun, Automated cortical projection of EEG sensors: anatomical correlation

via the international 10-10 system, Neuroimage 46 (1) (2009) 64-72 May 15.

C.H. Nguyen, G.K. Karavas, P. Artemiadis, Inferring imagined speech using EEG

signals: a new approach using Riemannian manifold features, ]J. Neural. Eng. 15

(2017) 016002.

C.S. DaSalla, H. Kambara, M. Sato, Y. Koike, Single-trial classification of vowel

speech imagery using common spatial patterns, Neural Netw. 22 (2009)

1334-1339.

M. Matsumoto, ]. Hori, Classification of silent speech using support vector ma-

chine and relevance vector machine, Appl. Soft Comput. 20 (2014) 95-102.

[13] S. Deng, R. Srinivasan, T. Lappas, M. D'Zmura, EEG classification of imag-
ined syllable rhythm using Hilbert spectrum methods, J. Neural. Eng. 7 (2010)
046006.

[14] S. Martin, P. Brunner, I. Iturrate, ].D. Millan, G. Schalk, R.T. Knight, B.N. Pasley,
Word pair classification during imagined speech using direct brain recordings,
Sci. Rep. 6 (2016) 25803.

[15] M.N. Qureshi, B. Min, H.J. Park, D. Cho, W. Choi, B. Lee, Multiclass classifica-
tion of word imagination speech with hybrid connectivity features, IEEE Trans.
Biomed. Eng. 65 (2017) 2168-2177.

[16] ].S. Garcia-Salinas, L. Villasefior-Pineda, C.A. Reyes-Garcia, A.A. Torres-Garcia,
Transfer learning in imagined speech EEG-based BCls biomed, Signal Process.
Control 50 (2019) 151-157.

[17] AJ. Casson, D.C. Yates, SJ. Smith, ]J.S. Duncan, E. Rodriguez-Villegas, Wearable
electroencephalography, IEEE Eng. Med. Biol. Mag. 29 (3) (2010) 44-56 May
10.

[18] M.G. Bleichner, S. Debener, Concealed, unobtrusive ear-centered EEG acquisi-
tion: cEEGrids for transparent EEG, Front. Hum. Neurosci. 11 (2017) 163.

[19] V. Goverdovsky, et al., In-ear EEG from viscoelastic generic earpieces: robust
and unobtrusive 24/7 monitoring, IEEE Sens. J. 16 (1) (2015) 271-277.

[20] P. Kidmose, D. Looney, M. Ungstrup, M.L. Rank, D.P. Mandic, A study of evoked
potentials from ear-EEG, IEEE Trans. Biom. Eng. 60 (10) (2013) 2824-2830 May
29.

[21] JW. Ahn, et al., Wearable in-the-ear EEG system for SSVEP-based brain-com-
puter interface, Electron. Lett. 54 (7) (2018) 413-414.

[22] C. Athavipach, S. Pan-Ngum, P. Israsena, A wearable in-ear EEG device for emo-
tion monitoring, Sensors 19 (18) (2019) 4014.

[23] N. Kaongoen, ]J. Choi, S. Jo, Speech-imagery-based brain-computer interface
system using ear-EEG, J. Neural Eng. 18 (1) (2021) 016023.

[8

[9

(10]

(11]

[12]


http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0001
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0002
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0003
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0004
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0005
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0006
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0007
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0008
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0009
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0010
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0011
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0012
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0013
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0014
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0015
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0016
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0017
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0018
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0019
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0020
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0021
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0022
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0023

N. Kaongoen, J. Choi and S. Jo

[24] P. Gaur, et al., A multi-class EEG-based BCI classification using multivariate em-
pirical mode decomposition based filtering and Riemannian geometry, Expert
Syst. Appl. 95 (2018) 201-211.

[25] M. Moakher, A differential geometric approach to the geometric mean of sym-
metric positive-definite matrices, SIAM ]. Matrix Anal. Appl. 26 (3) (2005)
735-747.

12

Computer Methods and Programs in Biomedicine 224 (2022) 107022

[26] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: theory and ap-
plications, Neurocomputing 70 (1-3) (2006) 489-501.

[27] S. Ding, et al., Deep extreme learning machine and its application in EEG clas-
sification, Math. Probl. Eng. 2015 (2015).


http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0024
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0025
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0026
http://refhub.elsevier.com/S0169-2607(22)00404-7/sbref0027

	A novel online BCI system using speech imagery and ear-EEG for home appliances control
	1 Introduction
	2 Method and experiment
	2.1 System overview
	2.2 Participants
	2.3 Wearable ear-EEG headphone
	2.4 Experiment I: training session
	2.5 Data preprocessing
	2.6 Feature extraction
	2.6.1 Temporally-stacked multi-band covariance matrix
	2.6.2 Tangent space projection

	2.7 Classification
	2.7.1 Multilayer extreme learning machine
	2.7.2 Model training

	2.8 System evaluation
	2.8.1 Experiment II: online test and model calibration
	2.8.2 Experiment III: real-world scenario


	3 Results and discussions
	3.1 Experiment I: training session
	3.2 Experiment II: online testing and calibration
	3.3 Experiment III: real-world scenario
	3.4 Discussions
	3.5 Survey results

	4 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	References


