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Background and Objective: This paper investigates a novel way to interact with home appliances via 

a brain-computer interface (BCI), using electroencephalograph (EEG) signals acquired from around the 

user’s ears with a custom-made wearable BCI headphone. 

Methods: The users engage in speech imagery (SI), a type of mental task where they imagine speaking 

out a specific word without producing any sound, to control an interactive simulated home appliance. In 

this work, multiple models are employed to improve the performance of the system. Temporally-stacked 

multi-band covariance matrix (TSMBC) method is used to represent the neural activities during SI tasks 

with spatial, temporal, and spectral information included. To further increase the usability of our pro- 

posed system in daily life, a calibration session, where the pre-trained models are fine-tuned, is added 

to maintain performance over time with minimal training. Eleven participants were recruited to evaluate 

our method over three different sessions: a training session, a calibration session, and an online session 

where users were given the freedom to achieve a given goal on their own. 

Results: In the offline experiment, all participants were able to achieve a classification accuracy signifi- 

cantly higher than the chance level. In the online experiments, a few participants were able to use the 

proposed system to freely control the home appliance with high accuracy and relatively fast command 

delivery speed. The best participant achieved an average true positive rate and command delivery time 

of 0.85 and 3.79 s/command, respectively. 

Conclusion: Based on the positive experimental results and user surveys, the novel ear-EEG-SI-based BCI 

paradigm is a promising approach for the wearable BCI system for daily life. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

A brain-computer interface (BCI) records and translates brain 

ctivity into digital commands. It works as a gateway between the 

uman brain and external devices, enabling users to communicate 

r control environments solely with thoughts, which greatly bene- 

ts physically challenged individuals such as those who suffer from 

myotrophic lateral sclerosis (ALS) [1] . Most BCIs rely on brain 

ctivities acquired from users while performing a specific men- 

al task. For example, P300-based BCIs detect an event-related po- 

ential (ERP) from simultaneously monitored electroencephalogram 

EEG) to identify the target that a user is mentally concentrating at 

 2 , 3 ]. Motor-imagery (MI) is one of the most popular types of men-
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al tasks employed in BCI systems. During a MI task, a user actively 

magines a body movement without actually moving, which causes 

hanges in brain activity in the specific parts of the motor cortex 

hat can be detected by BCI systems [ 4 , 5 ]. 

Speech-imagery (SI) is a relatively new paradigm in BCI re- 

earch. Similar to MI, SI tasks involve imagining speaking some 

pecific words without actually producing any sound [6] . Unlike 

ther mental tasks that are commonly used in BCIs, SI tasks are 

ore intuitive to most people which makes SI-based BCIs easier 

o use with less practice time. It can also be more straightfor- 

ard; the speech commands can be selected to match their se- 

antic meaning with the actual output commands. For instance, 

sers can imagine the word “Power” to turn on a television. There 

re two brain regions located in the left cerebral hemisphere that 

re commonly associated with different language processing func- 

ions: Broca’s and Wernicke’s areas, where the former is involved 

n language production and the latter in language comprehension 

 7 , 8 ]. Analysis of brain activities in previous works has indicated 

https://doi.org/10.1016/j.cmpb.2022.107022
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http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2022.107022&domain=pdf
mailto:shjo@kaist.ac.kr
https://doi.org/10.1016/j.cmpb.2022.107022


N. Kaongoen, J. Choi and S. Jo Computer Methods and Programs in Biomedicine 224 (2022) 107022 

Fig. 1. Overview of the proposed ear-EEG SI-based BCI system for home appliances control. Users initially perform a training session to train the classification models. 

Subsequently, users can carry out a shorter calibration session to fine-tune the trained models. 
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n increment in the brain activities in these areas during SI tasks 

 9 , 10 ], suggesting that both phonetic and semantic components of 

he imagined word influence brain patterns during SI tasks. Vari- 

us researches have been carried out in an offline setting to show 

he effectiveness of SI as a potential paradigm for BCI systems, 

sing different types of speech. Some studies focused on using a 

ingle phoneme with no semantic meaning [11–13] , while others 

nalyzed the classification performance for words with the same 

r different number of phonemes [ 10 , 14–16 ]. These previous re- 

earches demonstrated the potential of SI to be used as a paradigm 

n BCI systems. 

Among brain monitoring techniques, EEG is most commonly 

mployed in non-invasive BCIs due to its temporal resolution, ver- 

atility, and cost-efficiency. EEG is conventionally acquired using 

et electrodes, with electrolyte gel applied to decrease impedance 

etween the scalp and the electrodes. However, such methods 

re unsuitable for daily life due to several reasons including their 

ime-consuming preparation process and unpleasant user experi- 

nce [17] . To solve this issue, there are various ways to adjust EEG 

cquisition techniques to make BCI wearable. First, wet electrodes 

hat are sticky to the user’s hair and skin can be replaced by dry 

lectrodes. AgCl spike-shape dry electrodes are commonly used to 

nsure contact with the user’s scalp even in the presence of hair. 

econd, the equipment can be made wireless and portable, which 

s preferable for daily life where users normally have to move 

round. Third, instead of using an EEG cap, the equipment can be 

esthetically redesigned to be worn easily and less socially awk- 

ard. Examples of companies that offer commercial-grade wear- 

ble EEG headsets include NeuroSky (MindWave headset), Emotiv 

offer various types of EEG headset), and InteraXon (Muse head- 

and). 
2 
In addition to the above techniques, ear-EEG has been gain- 

ng more attention in the wearable BCI research field over the re- 

ent years. Ear-EEG is an EEG acquisition technique that monitors 

EG from around [18] or inside the user’s ears [19] . It is more

iscreet than the conventional scalp-EEG methods. Moreover, the 

kins around (and inside) the user’s ears are not covered with hair; 

hus, it is easier to ensure the contact between electrodes and 

he user’s skin for both dry and wet electrodes. Previous studies 

ave proven that ear-EEG is a reliable EEG acquisition method for 

any types of BCI systems including P300 [ 18 , 20 ], SSVEP [ 20 , 21 ],

uditory-steady-state response (ASSR) [20] , sleep staging [18] , and 

motion recognition [22] . 

Considering the merits of both the SI mental tasks and ear- 

EG acquisition method, we propose a novel BCI system that com- 

ines SI mental tasks and wearable ear-EEG equipment to further 

evelop BCI for daily life. In our previous work [23] , multi-class 

I experiments were conducted while recording both conventional 

calp-EEG (32 channels) and ear-EEG (6 channels) simultaneously. 

he results of the offline experiments indicated no significant dif- 

erence between the performance of the scalp-EEG and ear-EEG in 

ost of the participants, showing that ear-EEG can be used as an 

lternative EEG acquisition method in SI-based BCIs. This current 

ork builds on the previous work to develop a SI-based BCI system 

ith wearable ear-EEG equipment that can be used for control. The 

ystem is evaluated with experiments in both offline and online 

anner. Ear-EEG is monitored in eight channels positioned around 

he user’s ears using a fully-wearable device shaped similarly to a 

eadphone. The system extracts features from the ear-EEG by ap- 

lying common spatial pattern (CSP) filters and Riemannian tan- 

ent space projections to the covariance matrices calculated from 

ar-EEG. A multilayer extreme learning machine (MLELM) is then 
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sed to translate the data into corresponding output commands. 

he proposed system and the experimental protocols are described 

n detail in the following section. 

. Method and experiment 

.1. System overview 

In this work, we propose a novel wearable ear-EEG SI-based BCI 

or controlling home appliances. Interactive simulated television is 

ade and used as the target home appliance for the experiments. 

he user is provided with three different ways to control the tele- 

ision, which can be selected by moving the mouse cursor into the 

espective circle. The user can change the channel (left circle, by 

erforming SIs of words "next" and "back"), change the volume 

right circle, by performing SIs of words "up" and "down") and 

urn the TV on and off (bottom circle, by performing SI of word 

power"). Three different classification models are used for each 

ontrol task. Initially, the user has to perform a training session to 

rain these models, which takes approximately 20 min to complete. 

or subsequent use, the user can carry out an additional calibra- 

ion session instead, which takes around 9 min. Fig. 1 depicts the 

ystem overall. 
ig. 2. The schematic diagram of our ear-EEG SI-based BCI system. Ear-EEG data is acquir

andpass and CSP filters. The feature extraction is based on Riemannian tangent space pr

 command that controls the state of the target. 

3 
The process of our ear-EEG SI-based BCI system begins with ac- 

uisitions of ear-EEG data using a custom-made wearable ear-EEG 

eadphone. The ear-EEG data are then preprocessed and bandpass 

ltered into multiple frequency bands after which the CSP algo- 

ithm is applied to spatially filter the data from each frequency 

and independently. Subsequently, covariance matrices are calcu- 

ated from the resulting EEG data and projected into the corre- 

ponding tangent space according to their Riemannian geometry. 

inally, a feature vector is constructed from the transformed co- 

ariance matrices and classified using a MLELM model to give an 

utput command that controls the target. Fig. 2 summarizes the 

hole process of our system in a schematic diagram. 

.2. Participants 

Eleven individuals (Nine males and two females) of age ranging 

rom 20 to 30 years old were recruited to participate in this study. 

ll participants were healthy and did not have any neurological, 

isual, or auditory disorders. Nine participants have prior experi- 

nces using BCI systems and six of them have previously partici- 

ated in a SI-based BCI experiment. All participants gave written 

onsent and the institutional review board (IRB) has approved the 

tudy. 
ed using a custom-made ear-EEG headphone. The data are processed using mutiple 

ojection of the EEG covariance matrix. MLELM is used as the classifier that outputs 
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Fig. 3. The front-view (a) and side-view (b) of the custom-made wearable ear-EEG headphone. 

Fig. 4. The positions of the ear-EEG electrodes at both ears (a) and the actual photo of the headphone cups with electrodes attached to the left cup (b). The reference and 

ground electrodes are located at the bottom-most position of the right and left ear-EEG electrodes, respectively. 
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.3. Wearable ear-EEG headphone 

The wearable ear-EEG equipment is designed in the shape of a 

eadphone to avoid users feeling socially awkward when worn in 

aily life. The headphone case is printed with a 3D printer using 

olylactic (PLA) plastic as a material. The equipment can be eas- 

ly worn due to the flexible headphone frame that is adjustable in 

ize. The right cup of the headphone contains a Li-ion recharge- 

ble battery (30 0 0 mAh, lasts for at least eight hours for continu- 

us EEG recording), a charger, a switch (to switch between operat- 

ng mode and charging mode), and the OpenBCI’s Cyton Biosensing 

oard ( www.OpenBCI.com ) which is used as the EEG acquisition 

oard. The wearable device weighs approximately 400 gs. It is con- 

ected wirelessly to a personal computer via Bluetooth with a USB 

ongle. The ear-EEG is acquired with a sampling rate of 250 Hz. 

he headphone cups are 7 × 9 cm in size, which is large enough 

o cover the user’s ears. A flexible silicone mold emblemed with 

ockets for snap-type electrodes is attached to the cushion of each 

eadphone cup. Fig. 3 shows the prototype of the custom-made 

ar-EEG headphone. 

The wearable ear-EEG headphone monitors EEG in eight chan- 

els positioned around the user’s ears. For the sake of simplicity, 

e name four channels located around the left ear, from top to 

ottom, as L1, L2, L3, and L4, and the other four channels around 

he right ear as R1, R2, R3, and R4. The reference (REF) and ground 

GND) electrodes are positioned below the R4 and L4 channels, re- 
4 
pectively. Fig. 4 illustrates the positions of the ear-EEG electrodes. 

oam-type solid-gel snap electrodes (3 M Red Dot 2239) cut to 

4 mm in diameter are used in this study for EEG acquisition. This 

ype of electrode is ready-to-use without the application of electri- 

ally conductive gel. They are soft and do not leave any unpleasant 

arks or scents on the user’s skin. The electrodes have impedance 

elow 15 k Ω and it remains at the same level throughout the ex- 

eriment. 

.4. Experiment I: training session 

The training session involves collecting subjects’ ear-EEG data 

uring their rest-condition and five different SI tasks, including SI 

f the words “power”, “up”, “down”, “next”, and “back”. In this ses- 

ion of the experiment, subjects are shown an interactive simula- 

ion of a television that is displayed on a computer screen. There 

re five blocks of tasks in the experiment. Each block consists of 

ve SI tasks (one for each word) and two rest tasks in a random- 

zed order. Before each task, subjects are informed on which word 

o imagine, and how that SI task would affect the simulated tele- 

ision. The SI task of the word “power” would turn the simulated 

elevision on and off, the words “up” and “down” would change 

he volume of the television, and the words “next” and “back”

ould change the television channel. The volumes and channels 

f the television range from zero to ten. A real television sound is 

layed from minimum to maximum volume with a 10% increase 

http://www.OpenBCI.com
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Fig. 5. Experimental procedure of Experiment I: training session. Five SI tasks: “Next”, “Back”, “Up”, “Down”, “Power”, and a “rest” task were given in a block-randomized 

manner. 
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n volume for each level, and a distinct image is shown for each 

elevision channel. Depending on the instruction cue, subjects are 

old to look at a certain side of the television image (“power”: bot- 

om, “up” and “down”: right, “next” and “back”: left). A red focus 

ircle is then shown in that region for two seconds, during which 

he subjects are instructed to perform the SI. The state of the tele- 

ision is then updated to reflect the SI. The same SI is carried out 

en times consecutively in a SI task, with 2.5 s interim between 

ach SI. Resting EEG data is collected by showing the subjects a 

xation cross on a blank screen for twelve seconds. The first two 

econds of the data are discarded when training the system. With 

his experimental procedure, we obtained 50 samples of EEG data 

or each SI and rest class. The procedure of Experiment I is illus- 

rated in Fig. 5 . 

.5. Data preprocessing 

EEG data acquired from Experiment I are used to construct the 

lassification models for the system. A 60 Hz notch filter is first 

pplied to the whole data to remove the line noise. We then ap- 

ly multiple bandpass filters to separate EEG signals into multiple 

ime series lying in different frequency ranges. Seven fourth-order 

utterworth bandpass filters ranging from 15 Hz to 120 Hz with an 

ncrement step and bandwidth of 15 Hz are used in this work. The 

requency bands are chosen based on the offline analysis of our 

revious work which showed that the features from higher fre- 

uency ranges are the most significant ones in classifications of SI 

asks [23] . The ear-EEG data are then segmented into 1.5-second 

EG epochs and labeled with their corresponding class. CSP algo- 

ithm is then applied to the preprocessed EEG samples to spatially 

lter the data. This process is performed for data from each fre- 

uency band independently. 

.6. Feature extraction 

.6.1. Temporally-stacked multi-band covariance matrix 

Features based on EEG covariance matrix have been shown in 

revious works to be effective in classifications of SI tasks [ 10 , 23 ].
5

EG covariance matrix provides spatial information of an EEG 

poch in the form of covariance values between each EEG chan- 

el. On the other hand, the spatiotemporal analysis of the EEG 

uring SI tasks in previous works has shown distinctive tempo- 

al characteristics between different SI tasks. Thus, the incorpo- 

ation of temporal information into the EEG covariance matrix is 

equired to fully interpret the SI tasks from EEG data. To accom- 

lish this, we introduce the temporally-stacked multi-band covari- 

nce matrix (TSMBC) method that includes all spatial, temporal, 

nd spectral information to represent the neural activities during 

I tasks. TSMBC method slices EEG epochs from multiple frequency 

ands into overlapping smaller windows and computes the covari- 

nce matrix separately for each window. The covariance matrices 

rom each epoch are then subjected to further feature extraction 

teps before stacking them together as one feature vector that rep- 

esents the EEG sample data. 

Given an EEG sample in a time domain, e ∈ R 

CH × T , where CH 

enotes the number of EEG channels and T denotes the number of 

ime points, its covariance matrix, P ∈ R 

CH × CH , is defined as: 

 = 

1 

T − 1 

ee T . (1) 

The covariance matrices are computed for all windows of all 

reprocessed EEG epochs acquired using the methods described 

n Section 2.5 . In this work, the window-sliding procedure is per- 

ormed with a window length of 1 s and a step length of 250 mil-

iseconds, resulting in a total of three data windows for an EEG 

poch. Since we use seven frequency bands, this procedure yields 

 total of twenty-one covariance matrices per one EEG sample. 

he resulting covariance matrices P are symmetric positive-definite 

SPD). 

.6.2. Tangent space projection 

The EEG covariance matrices representing each EEG epoch are 

rojected into their corresponding tangent space before they can 

e used effectively as input features in the classification step. This 

pproach is based on the Riemannian geometry of the SPD matri- 

es, which causes them to be ineffective when they are vectorized 
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r used directly as features for classification algorithms based on 

rojections into hyperplanes [24] . Tangent space projection is a lo- 

al approximation of the Riemannian manifold. The resulting tan- 

ent space vectors from the projection are in Euclidean space and 

ocally homeomorphic to the Riemannian manifold of the SPD ma- 

rices; thus, the Riemannian distance in the manifold of SPD matri- 

es can be well approximated by computing the Euclidean distance 

etween the tangent space vectors. 

In this work, the Riemannian tangent space projections are cal- 

ulated separately for each of the seven frequency bands. Each pro- 

ection process is computed using the covariance matrices from all 

EG windows of the training data samples. Given a covariance ma- 

rix P , its tangent space vector, s ∈ R 

m , where m = 

C H( C H+1 ) 
2 , is

efined as: 

 = upper 

(
P 

− 1 
2 

R 
log P R ( P ) P 

− 1 
2 

R 

)
. (2) 

The operator upper ( X ) takes only the upper triangular part of 

he matrix X and vectorizes it by applying unity weight to the di- 

gonal elements and 

√ 

2 weight elsewhere. The operator log P R (P ) 

s the logarithmic mapping of matrix P using the reference point 

 R , defined as: 

og P R ( P ) = P 
1 
2 

R 
log(P 

1 
2 

R 
P P 

1 
2 

R 
) P 

1 
2 

R 
(3) 

here P R is the Riemannian mean of the M covariance matrices, 

 P 1 , P 2 ,…P M 

}, extracted from all EEG windows of the EEG epochs

n the training dataset (i.e., M equals the number of EEG win- 

ows × the number of training EEG samples). In the current work, 

 R is computed using the geometric mean [25] defined as follows: 

 R = argmin 

P ′ ∈ { P 1 ,P 2 , ... , P M } 

M ∑ 

i =1 

δ2 
R 

(
P ′ , P i 

)
. (4) 

The Riemannian distance, δR , between two SPD matrices is de- 

ned as: 

R ( P 1 , P 2 ) = log 
(
P −1 

1 P 2 
)

F 
= 

[ 

E ∑ 

i =1 

log 
2 
( λi ) 

] 

1 
2 

(5) 

here λi is the i th eigenvalue of P −1 
1 

P 2 . A detailed description of 

he Riemann geometry properties of the SPD matrices and the tan- 

ent space projection process can be found in [25] . 

To summarize our feature extraction process, one EEG sample is 

ltered into seven frequency bands, then the EEG epoch from each 

and is sliced into three overlapping windows. Consequently, the 

ovariance matrix and its tangent space vector are calculated for 

ach EEG window, resulting in a total of twenty-one (seven fre- 

uency bands × three EEG windows) tangent space vectors for one 

EG sample. Because the number of EEG channels ( CH ) is eight, 

he number of features in a tangent space vector is thirty-six (from 

 = 

CH ( CH +1 ) 
2 ). The final feature vector representing an EEG epoch 

s then constructed by concatenating all twenty-one tangent space 

ectors, concluding the total feature number of 756 (twenty-one 

angent space vectors × thirty-six features). 

.7. Classification 

.7.1. Multilayer extreme learning machine 

Extreme learning machine (ELM) refers to a variation of a sin- 

le layer feed-forward neural network (SLFN). In ELMs, the weights 

f the input layer and the bias values of the hidden layers are 

rst randomly initialized, which are then frozen through the model 

raining process [26] . Due to this, ELMs are much faster to train 

hen compared to other neural networks while producing good 

eneralization performance; hence, ELMs are well-suited for use in 
6 
CI systems which may require a frequent system calibration pro- 

ess considering the non-stationary nature of EEG signals. 

For distinct samples ( x i ,y i ), where x i = [ x i 1 , x i 2 ,…, x in ] 
T ∈ R 

n ,

 i = [ y i 1 , y i 2 ,…, y ic ] 
T ∈ R 

c , i = 1, …, N, N is the number of training

amples, n is the number of input nodes (i.e., the number of input 

eatures) and c is the number of output nodes (i.e., the number of 

utput classes), an ELM with 

˜ N hidden nodes can be mathemati- 

ally modeled as: 

˜ N 
 

j=1 

v j g 
(
a j x i + b j 

)
= y i (6) 

here g ( x ) is the activation function, j = 1 , . . . , ˜ N , v j = [ v j 1 , v j 2 ,…,

v jc ] 
T ∈ R 

c is the output weights connecting the j th hidden node 

nd the output nodes, a j = [ a j 1 , a j 2 ,…, a jn ] 
T ∈ R 

n is the input

eights connection the j th hidden node and the input nodes, and 

 j = [ b j 1 , b j 2 ,…, b jn ] 
T ∈ R 

n is the bias of the j th hidden node. Con-

idering all N training samples, the N number of Eq. (6) can be 

ritten compactly as 

V = Y (7) 

here 

 = 

⎡ 

⎢ ⎣ 

g ( a 1 x 1 + b 1 ) · · · g 
(
a ˜ N x i + b ˜ N 

)
. . . 

. . . 
. . . 

g ( a 1 x N + b 1 ) · · · g 
(
a ˜ N x N + b ˜ N 

)
⎤ 

⎥ ⎦ 

N× ˜ N 

, 

 = 

⎡ 

⎣ 

v 11 · · · v 1 c 
. . . 

. . . 
. . . 

v ˜ N 1 · · · v ˜ N c 

⎤ 

⎦ 

˜ N ×c 

, and Y = 

⎡ 

⎣ 

y 11 · · · y 1 c 
. . . 

. . . 
. . . 

y N1 · · · v Nc 

⎤ 

⎦ 

N×c 

. 

H is called the hidden layer output matrix of the ELM where 

ach column of H is the j th hidden node output with respect to 

nputs x 1 ,…, x N . V is the output weight matrix containing all the 

utput weights from each hidden node to output nodes. Y is the 

utput matrix containing all N samples of the output nodes. 

The process of training an ELM model is simple. First, the input 

eights a and bias b are randomly initialized to values between 0 

nd 1, from which we can derive the matrix H . We can then calcu-

ate the output weight as V = H 

t Y where H 

t is the Moore-Penrose 

eneralized inverse of the matrix H . By using input as output of 

he ELM network, we can construct an auto-encoding ELM (ELM- 

E). ELM-AE models are trained identically to normal ELM models. 

MLELM is a deep-learning variation of an ELM, which is imple- 

ented by stacking multiple ELM-AEs. It uses multiple ELM-AEs 

o train the input for each hidden layer [27] . Our previous work 

23] has shown that MLELMs trained using Riemannian tangent 

pace projections of EEG covariance matrices as input features out- 

erform other methods commonly used in BCI systems in classifi- 

ation accuracy. 

Given a MLELM model with k hidden layers, the l th hidden 

ayer is built with an ELM-AE that receives the output values of 

he l − 1 th hidden layer as input. The l th hidden layer of a MLELM 

odel can be expressed as: 

 l = g 
(
( V l ) 

T H l−1 

)
(8) 

here H l is the output matrix of the l th hidden layer, V l is the out-

ut weight matrix of the l th hidden layer learned from the l th ELM- 

E. It should be noted that when l = 1, H 0 is the input layer of the

LELM model. The output weights that connect the last hidden 

ayer to the output layer are then learned in the same manner as 

he original ELM. Please refer to [27] for detailed description on 

ow a MLELM model is constructed. 
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.7.2. Model training 

To train the SI classification models for each subject, a five-fold 

ross-validation method is first applied to the data from Experi- 

ent I. There are three hidden layers in the MLELM models; a grid 

earch method is applied to find the optimal number of hidden 

odes in each hidden layer, ranging from 50 to 500 with an incre- 

ental step of 50. The CSP filters and the tangent space projections 

re trained using only training data in each iteration of the cross- 

alidation. Three MLELM models are trained for each subject. The 

rst model performs classification between the “rest” and “power”

lass, while the second and third models perform classification be- 

ween “rest”, “up” and “down”, and “rest”, “next” and “back”, re- 

pectively. Since MLELM’s performance can fluctuate depending on 

he random initialization of the parameters, random seed (from 

ython’s NumPy library) is recorded to reproduce the same param- 

ter initializations in the later step. After the cross-validation step, 

ll three models are trained again using the optimal parameters 

nd their corresponding random seed using the whole data from 

xperiment I. 

.8. System evaluation 

In the previous sections, we have shown how the classification 

odel is built to classify different SI tasks using the data obtained 

rom Experiment I. The average classification accuracy of the five- 

old cross-validation process is used to evaluate the offline perfor- 

ance of the system. To further evaluate the system in an online 

anner, we perform two more experiments: (1) an online test and 

odel calibration experiment, and (2) a real-world scenario exper- 

ment. The online system evaluation is based on the classification 

ccuracy of the trained model and its performance in specific tasks. 

fter the experiments, survey questions regarding the SI tasks, our 

ar-EEG wearable device, the experiment, and the system protocol 

re also handed to the participants after they finish the experi- 

ents. The survey questions are designed to help us better under- 

tand how the system could be improved in the future. The survey 

uestions are provided in Supplementary Material A. The objective 

nd experimental protocol of each experiment are described in the 

ollowing subsections. 

.8.1. Experiment II: online test and model calibration 

After the model is trained using the training data, we carry out 

xperiment II to evaluate model performance in an online setting. 

he data acquired during the experiment is then used to further 

alibrate the model. Similar to Experiment I, a simulated televi- 

ion is shown, but with three green circles on the bottom, left 

nd right sides of the television. In one session of Experiment II, 

articipants are given six different types of tasks: increase or de- 

rease the volume by one, increase or decrease the channel by one, 

urn on or turn off the television, and rest. The subjects are in- 

tructed with written words on a popup screen that participants 

an close by pressing the Enter key. To perform the instructed SI 

asks, participants are told to move the mouse cursor (using nor- 

al mouse movement with a hand) into the corresponding green 

ircle located at the right, left, and bottom of the television to in- 

icate which mode of control they intend to perform: the right 

ircle for volume control, the left circle for channel control, and 

he bottom circle for power control. When the cursor enters a cir- 

le, the color of the circle changes from green to red for two sec- 

nds. Subjects would then imagine the appropriate word to con- 

ey their desired command to the simulated television according 

o the given task while the circle remains red. EEG signals are 

ollected during the first 1.5 s to be used in the classification of 

he user’s intention. It should be noted that only the pre-trained 

LELM model and algorithms (e.g., CSP filters and tangent space 
7 
rojection) which are corresponded to the selected mode of con- 

rol are applied to the EEG signals. The state of the simulated tele- 

ision is adjusted according to the given task regardless of the clas- 

ification result. Simple visual feedback (a checkmark or a cross 

ark) is then displayed for 500 milliseconds to inform the par- 

icipants of the result for each task. For the rest task, participants 

re instructed to relax and watch the current state of the televi- 

ion continuously displayed for five seconds. The tasks are given 

andomly but the “Power” tasks are arranged so that the other SI 

asks are not given while the simulated television is off. Each dis- 

inct task is performed for ten trials in one session of Experiment 

I. 

After the participants finish a session of Experiment II, the true 

ositive rate (TPR) of each task is reported. We then use the data 

btained from the current session to calibrate our classification 

odels. By using the grid search method, we find the new set of 

arameters that give the optimized classification accuracy for the 

ew data. Finally, all models are retrained using both data from Ex- 

eriment I and the current session of Experiment II. Experiment II 

s performed three times in total, with each session taking approx- 

mately nine minutes. Fig. 6 depicts the process of Experiment II. 

he average TPRs from the last session of Experiment II are used to 

easure the performance of the proposed online ear-EEG SI-based 

CI system for each participant. 

.8.2. Experiment III: real-world scenario 

Participants who achieve high performance in Experiment II are 

einvited to participate in Experiment III to further evaluate the 

obustness of our system. Experiment III takes place after at least 

even days from Experiment II. The objective of this experiment 

s to test the performance of the system in a real-world scenario. 

urthermore, conducting Experiment III on a different day helps 

s test the generalizability and robustness of our models, which is 

n important property for systems that deal with a non-stationary 

ignal such as EEG. Participants are first asked to carry out Experi- 

ent II once again using the pre-trained model from the previous 

ession of Experiment II. The newly acquired online data are then 

sed to recalibrate the models before performing the tasks in Ex- 

eriment III. Unlike Experiment II, Experiment III is designed to al- 

ow participants to have complete control of the operations in the 

imulated television. Participants are given freedom over how they 

ant to achieve their goal task. Participants control the interactive 

imulated television by moving the cursor into one of the three 

reen circles; upon entry, the circle color changes to red, and the 

ystem starts translating the user’s ear-EEG into the corresponding 

I command. To reduce the false-positive rate, ear-EEG data of 1.5 s 

indow is classified every 100 ms, and the final result command 

s output if and only if three consecutive classification results are 

dentical. After an output command is produced, the state of the 

imulated television is changed accordingly, with 1.5 s interim be- 

ore the next classification. Participants can freely move the cursor 

ut of the focus circle to stop the current operation whenever they 

ant as well. 

In each trial of Experiment III, the simulated television is ini- 

ially shown to be off. When the television is turned on, the chan- 

el and volume are set to five. There are two sub-tasks for the par- 

icipants to perform. The first sub-task is to turn on the television, 

nd then increase the volume and the channel to ten. The second 

ub-task is to decrease the volume and the channel back to its ini- 

ial state of five and turn the television off. The participants are 

nformed that they can freely choose the order of SI commands to 

ccomplish the sub-tasks. Fig. 7 illustrates the procedure of Exper- 

ment III. The total session time, average command delivery time, 

he misstep number, and the total step number to achieve the goal 

re used as evaluation metrics; when calculating these metrics, the 

rest” command is not considered as a command step due to the 
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Fig. 6. Experimental procedure of Experiment II: online testing and model calibration session. The trained models are tested in an online experiment. The classification 

results are reported and the online-test data are used to calibrate the models to further improve the performance of the system. 

Fig. 7. Experimental procedure of Experiment III: real-world scenario session. Participants were given two sub-tasks to complete. The first subtask is to turn on the interactive 

simulated TV and change its channel and volume to ten. The second subtask is to change the channel and volume back to five and turn off the TV. Participants were given 

a complete control on how they want to finish the tasks. 
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act that “rest” command does not affect the state of the simulated 

elevision. Experiment II and Experiment III are carried out con- 

ecutively for a total of three sessions to acquire a more accurate 

nsight into the performance of our system. 

. Results and discussions 

.1. Experiment I: training session 

Although the main objective of Experiment I is to gather data 

o train the models, the average classification accuracy from the of- 

ine cross-validation process can give us information on how well 

ach participant performs the SI tasks. Table 1 shows the classifica- 

ion accuracies of each model (case 1 model classifies “power” and 

rest” class, case 2 model classifies “up”, “down”, and “rest” class, 

nd case 3 model classifies “next”, “back”, and “rest” class). From 

he results, all participants achieved the average classification ac- 

uracies significantly higher than the chance level (50% for case 1 

odel, 33.3% for case 2 and 3 models) according to the one-tailed 

 -test ( p < 0.01) for all types of models. The average classification

ccuracies across all participants were 84.9%, 64.9%, and 64.5% for 

ase 1, 2, and 3 models, respectively. Participant P2 performed ex- 
8 
eptionally well among other participants with an average accu- 

acy across all models of 97.9% while participant P8 performed the 

orst with an average accuracy of 55.9%. 

.2. Experiment II: online testing and calibration 

Table 1 also shows the TPRs of each task during Experiment 

I which is used as an evaluation measure for the online perfor- 

ance. The average TPRs across all tasks of all participants for first, 

econd and final sessions were 0.44, 0.45, and 0.59, respectively. 

articipant P2, who showed the best performance in the offline 

nalysis of Experiment I, achieved the highest average TPR across 

ll tasks (TPR = 0.85 in the last session) with TPR values higher 

han 0.5 in all tasks in the final session of Experiment II. In con- 

rast, participant P5 showed the worst performance with an aver- 

ge TPR of 0.32 in the last session. 

The result from Experiment II also shows an increase in online 

erformance with more calibration process; the average TPR in the 

hird session is significantly greater compared to the average TPR 

n the first session according to the one-way ANOVA ( p < 0.05), 

ith exceptions of participant P5 and P7 whose TPR decreased in 

he final session. There is no significant difference between the TPR 
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Table 1 

The numerical results of Experiment I and Experiment II. 

Partici-pant Experiment I: Training session (acc%) Experiment II: Online testing (TPR) 

case 1 case 2 case 3 Session Power Up Down Next Back Rest AVG 

P1 100.0 87.3 76.0 #1 0.6 0.1 0.6 0.4 0.0 0.4 0.35 

#2 1.0 0.0 1.0 1.0 0.0 0.3 0.55 

#3 0.4 0.8 1.0 0.6 0.9 0.9 0.77 

P2 99.0 98.7 96.0 #1 1.0 0.6 0.8 0.6 0.5 0.6 0.68 

#2 1.0 0.7 0.9 0.7 0.4 0.5 0.70 

#3 1.0 0.9 1.0 0.8 0.6 0.8 0.85 

P3 70.0 52 50.7 #1 0.0 0.0 0.0 0.2 0.5 1.0 0.28 

#2 0.3 0.1 0.0 0.0 0.9 0.8 0.35 

#3 0.7 0.7 0.2 0.3 0.5 0.9 0.55 

P4 89.0 63.3 69.3 #1 0.4 0.0 0.9 0.0 0.8 0.8 0.48 

#2 0.1 0.4 0.5 0.0 0.8 1.0 0.47 

#3 0.9 0.8 0.4 0.5 0.6 0.7 0.65 

P5 75.0 52.0 50.7 #1 1.0 0.0 1.0 0.0 0.7 0.1 0.47 

#2 0.8 0.2 0.0 1.0 0.0 0.1 0.35 

#3 0.3 0.1 0.0 0.9 0.0 0.6 0.32 

P6 81.0 53.3 59.3 #1 0.4 0.9 0.0 0.1 0.0 0.8 0.37 

#2 0.7 0.0 0.0 0.4 0.0 0.0 0.18 

#3 0.5 0.8 0.4 0.4 0.1 0.7 0.48 

P7 67.0 50.0 51.3 #1 0.5 0.0 1.0 0.2 0.6 0.5 0.47 

#2 0.5 0.3 0.6 0.4 0.2 0.1 0.35 

#3 0.6 0.3 0.3 0.6 0.2 0.5 0.42 

P8 71.0 48.7 48.0 #1 0.2 0.4 0.3 0.6 0.0 0.7 0.37 

#2 0.0 0.0 0.4 0.0 0.0 0.9 0.22 

#3 0.3 0.1 0.9 0.4 0.0 0.9 0.43 

P9 90.0 75.3 62.0 #1 1.0 0.0 1.0 0.0 1.0 0.1 0.52 

#2 0.9 0.6 0.4 0.0 0.7 0.8 0.57 

#3 1.0 0.5 0.8 0.3 0.9 0.6 0.68 

P10 92.0 56.7 58.0 #1 0.2 0.4 0.2 0.0 1.0 1.0 0.47 

#2 0.0 0.3 0.2 0.8 0.6 0.8 0.45 

#3 0.7 0.0 0.7 0.6 0.9 0.5 0.57 

P11 100.0 76.7 88.7 #1 0.0 0.3 0.9 0.0 0.5 1.0 0.45 

#2 1.0 0.6 0.9 0.8 0.4 0.8 0.75 

#3 0.8 0.7 1.0 0.6 0.8 1.0 0.82 

AVG 84.9 64.9 64.5 #1 0.48 0.25 0.60 0.19 0.51 0.64 0.44 

#2 0.57 0.29 0.45 0.46 0.36 0.55 0.45 

#3 0.65 0.52 0.61 0.55 0.50 0.74 0.59 

Table 2 

Results of Experiment III. 

Participants Session # 

Online test and model calibration session (TPR) Real-world scenario task 

Task 

Power Up Down Next Back Rest Average Time (s) #steps #missteps Time (s) #steps #missteps 

P1 #1 0.5 0 0.9 0.1 0.8 1 0.55 – – – 50.37 11 0 

#2 1 0.6 1 0.7 0.5 0.9 0.78 49.95 13 1 58.59 15 2 

#3 1 1 0.9 1 0.6 0.8 0.88 131.14 23 6 53.45 15 2 

P2 #1 1 0.9 1 1 1 0.5 0.90 58.01 15 2 61.28 17 3 

#2 1 0.5 1 1 0.8 1 0.88 49.41 13 1 52.12 15 2 

#3 1 0.9 0.6 0.6 0.5 1 0.77 52.60 13 1 42.71 11 0 

P4 #1 0.7 0 1 1 0 1 0.62 73.60 17 3 – – –

#2 0.8 0.1 0 0.5 0.7 1 0.52 – – – – – –

#3 0.5 0 1 0.1 0.4 1 0.50 – – – – – –

P9 #1 0.1 0.1 0 0 0.1 1 0.22 – – – – – –

#2 0.3 0.5 0.4 0.2 1 0.9 0.55 119.57 21 5 – – –

#3 0.8 0.8 0.1 0.4 0.2 0.7 0.50 178.34 39 14 138.08 17 3 

P11 #1 1 0.8 0.7 0.4 0.9 0.6 0.73 78.67 17 3 – – –

#2 0.1 0.9 0.4 0.8 0.7 0.8 0.62 60.00 15 2 69.30 15 2 

#3 1 0.9 0.3 0.7 1 0.5 0.73 – – – – – –

o
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f all SI tasks. Five participants including participants P1, P2, P4, 

9, and P11 achieved an average TPR higher than 0.65 and were 

einvited to participate in Experiment III. 

.3. Experiment III: real-world scenario 

The results of Experiment III of the five participants (P1, P2, P4, 

9, and P11) are shown in Table 2 . Out of the five subjects, par-
9 
icipants P2 and P11 achieved an average TPR higher than 0.65 

n their first session of the online test without any model cal- 

bration process. Furthermore, participant P2 even outperformed 

heir performance in the final session of Experiment II with an 

verage TPR of 0.90 in the first online test session. Participant 

1 outperformed their online testing result from Experiment II 

fter the second calibration session. Participants P4 and P9 all 

howed performances lower than what they achieved in Experi- 
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ent II even after the calibration processes. Participant P1 showed 

n increase in online test performance with each calibration ses- 

ion while participants P2 and P4 showed a decreasing trend 

nstead. 

In the real-world scenario task, all subjects except for P4 com- 

leted both sub-task 1 and sub-task 2 for at least one session. Par- 

icipant P2 succeeded in completing both sub-tasks in all three 

essions and showed the best performance among all five partic- 

pants. Participant P2 showed increased performance in the real- 

orld scenario tasks after each calibration process, which was sur- 

rising given that their performance in the online testing part of 

he calibration session decreased instead with each session. The 

verage performance time, the total number of steps and misstep 

umber to finish a sub-task of participant P2 were 52.69 s, 14, 

nd 1.5 missteps, respectively. The command delivery time was 

.79 s/command. Participants P1 and P11 completed both sub- 

asks after the second calibration. However, participant P11 failed 

o finish both sub-tasks after the third calibration session while 

articipant P1’s performance got worse in the third session. The 

ommand delivery time of participants P1 and P11 were 3.88 

nd 4.31 command/seconds, respectively. Participant P9 success- 

ully finished only sub-task 1 after the second calibration session, 

nd finished both sub-tasks after the final calibration session but 

ith very low performance: average performance time, the total 

umber of steps, and misstep number of 158.21 s, 28, and 8.5, re- 

pectively. Participant P4 completed only sub-task 1 of the second 

ession and failed all other subsequent tasks. 

.4. Discussions 

Although the results from the experiments conducted in this 

tudy show that all participants achieved classification accuracy 

ignificantly higher than the chance level, only a few participants 

ere able to achieve accuracy high enough to effectively con- 

rol the interactive stimulated television in the real-world sce- 

ario tasks. Since most of the participants have prior experience 

n the SI-based BCI experiment, the reason for the difference 

etween the individual performance appears to be independent 

f the user’s experience. Possible explanations include individual 

natomical and cortical differences that make neuro-activities dur- 

ng SI tasks poorly detectable by the wearable ear-EEG device. Fur- 

her research is required to discover the exact reasons for the dif- 

erences in user performance. 

In Experiment III, the results show that two out of five partic- 

pants achieved high TPRs in the online testing session that took 

lace more than one week after Experiment I & II prior to any 

odel calibration process. This suggests that, for these two par- 

icipants, our system showed good robustness overall, maintain- 

ng high performance even after a period of time despite handling 

on-stationary EEG signals. 

While the results from Experiment II show that the average 

PR of the last session is significantly higher than the first ses- 

ion among all participants, there are some cases where the perfor- 

ance got worse as the calibration process progressed, especially 

n Experiment III. This might be due to bad EEG epochs from the 

ewly obtained calibration data. The bad EEG epoch could be in 

orm of an unexpected noise, motion artifact, or a user mistake 

hile performing the task. As the calibration process tunes the 

odels in favor of the newly acquired data, the calibrated mod- 

ls are more susceptible to poorly collected EEG samples, which 

eads to worse classification performances. Therefore, an additional 

rocess to check and remove the outliers from the calibration 

ata is necessary to make sure that the models are accurately 

alibrated. 

In our current online system, the optimal command delivery 

ime is 3.2 s/command, assuming perfect classification. This time 
10 
ould be shortened by reducing the length of an EEG epoch, step 

ize, and the interim between each output command to increase 

he control speed; however, such measures are likely to decrease 

he performance of the classification models. The tradeoff between 

he command delivery time and the accuracy is needed to be con- 

idered as well. 

As seen in the experimental results, the proposed system is not 

et ready to be used in a real-life scenario. Apart from the inade- 

uate accuracy and command delivery speed, the current system 

lso lacks a method to select the target object and/or mode of 

ontrol. In this study, the experiments were conducted with par- 

icipants manually moving a mouse cursor to select the mode of 

ontrol of the simulated television. Ideally, this should be accom- 

lished by SI tasks as well. Adding more SI classification modules 

o the system would allow us to have more levels of control. For 

xample, there could be three levels of SI modules in which the 

rst, second, and third module would be used to let the user se- 

ect the target home appliance (e.g., “TV” or “Light” SI tasks), mode 

f control (e.g., “Volume” or “Channel” SI tasks), and control com- 

and (e.g., “Up” or “Down” SI tasks), respectively. Alternatively, 

ifferent levels of control could also be done by other types of BCI 

omponents or a camera with an object recognition algorithm. 

.5. Survey results 

In the first part of the survey, participants were asked ques- 

ions regarding SI as a BCI paradigm. Participants were requested 

o score SI from 1 to 10 considering three different criteria: intu- 

tiveness, ease of use, and how well focused they were while us- 

ng SI. Participants from both BCI-experienced and inexperienced 

roups reported the SI tasks to be intuitive (average score of 8.4 

nd 7.0, respectively, with 10 being very intuitive). BCI-experienced 

articipants responded that SI is easy to use (average score of 7.3 

ith 10 being very easy to use) and somewhat easy to keep their 

ocus on the tasks throughout the experiment (average score of 6.4 

ith 10 being very easy to keep the focus). In contrast, the inex- 

erienced group gave a neutral answer to both questions (average 

core of 5.5 and 5.0). These results indicate that SI tasks are in- 

uitive and easy to use compared to other types of BCI. However, 

eople with no experience in BCI systems may require some time 

o get familiar with the tasks. 

The second part of the survey examines the participants’ 

houghts on the wearable ear-EEG device with respect to weara- 

ility, comfort, and applicability in real life. Most participants con- 

idered our device to be very easy to wear (average score of 8.6 

ith 10 being very easy). Participants also stated our device to be 

omfortable to wear at the start (average score of 8.2 with 10 be- 

ng very comfortable), but less so at the end of the experiments 

average score of 7.0). Three participants voted that they were not 

illing to wear the device in real life. These participants com- 

ented that the device was visually unappealing, causes sweat- 

ng around the ears, and involved too much work to replace the 

lectrodes every day. However, they also said that the device was 

uch more comfortable to wear compared to the conventional 

calp-EEG acquisition tool. We believe that the issue of the de- 

ice’s size and appearance can be easily fixed by customizing the 

iosensing board to reduce the size. The problem with perspiration 

ay be solved by changing the material of the cushions or adding 

ome holes around the headphone to increase the airflow. Lastly, 

he electrodes may be replaced with dry electrodes to solve the 

eed for frequent replacement of electrodes, in return for a possi- 

le decrease in signal quality. 

In the last part of the survey, we asked the participants ques- 

ions related to experiment protocols and our system. The partici- 

ants claimed that they were able to keep their focus throughout 

he experiment (average score of 7.6 with 10 being very focused) 
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nd that they felt somewhat exhausted after the experiment (av- 

rage score of 4.4 with 1 being very exhausted). When questioned 

bout the time taken to acquire data and train the system, all par- 

icipants said that 20 min (the approximate running time of Ex- 

eriment I) was too long (average score of 9.0 with 10 being very 

ong) to spend every day before using the system. They were then 

sked whether they were willing to spend 9 min (the approximate 

unning time of Experiment II) at the start of each day before us- 

ng the system for calibration instead. The participants still consid- 

red our model-calibration process to be too long (average score of 

.1). In response to the question about the upper limit of time for 

alibration for a real-life system that they were willing to use, we 

eceived an average answer of 3.1 min. All participants responded 

hat the system was easy to understand and use (average score of 

.1 with 10 being very easy) but that they were not fully satisfied 

ith the experience of using the system overall (average score of 

 with 10 being very satisfied). Seven participants answered that 

hey would not use the system for controlling appliances in real 

ife, primarily due to its low speed and accuracy. Nevertheless, they 

esponded positively to using the system given that these issues 

ere resolved. 

Based on the survey answers, the major issues with our cur- 

ent systems are those involving preparation time and accuracy. 

ne way to decrease the calibration time is to change the proto- 

ol of the calibration process. In this current study, Experiment II 

erves as both an online-testing session and a data gathering pro- 

ess for the model calibration; hence, the experimental protocol is 

esigned to have a clear time margin between each task. For actual 

alibration, the time between each task can be greatly shortened 

y performing multiple numbers of an identical SI task consecu- 

ively similarly to Experiment I. The time used to display instruc- 

ions can also be decreased as the user gets used to the system. 

roblems concerning accuracy require the development of better 

lgorithms. Further research on how SI is generated in the brain 

s needed to better extract features that represent brain activities 

uring SI tasks, which would allow us to select an appropriate clas- 

ification model to best classify these features. 

. Conclusion 

In this study, we proposed a novel online BCI system using a 

ombination of SI tasks and a wearable ear-EEG headphone. In the 

ffline analysis from Experiment I, we found that all participants 

ere able to achieve classification accuracy significantly higher 

han the chance level. We also found promising results from the 

nline experiments where a few participants were able to use the 

roposed system to control the simulated television with high ac- 

uracy and relatively fast command delivery time. Through a user 

urvey, we found that participants were mostly satisfied with the 

I-based BCI system and the wearable ear-EEG headphone and 

illing to use the system in real life given that the classification 

ccuracy and command delivery time are improved. Answers to 

he survey questions also gave ideas and directions on how to fur- 

her develop the ear-EEG SI-based BCI system. All things consid- 

red, we believe that the combination of the ear-EEG and SI tasks 

rovides a powerful method of control for BCI systems that aims 

or daily-life use. 

For future work, the development of better feature extrac- 

ion and classification algorithms for SI tasks are required to in- 

rease the performance of the system. Noise-canceling and artifact- 

emoval techniques should also be included in the system to en- 

ure the quality of the EEG signal in a noisy real-world application 

cenario. Apart from developments in algorithms for the system, an 

mbedded computing module or a connection between the device 

nd the user’s smartphone should be incorporated into the system 

o increase its mobility. 
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