
  

  

Abstract— Artifact removal from electroencephalography 

(EEG) data is a crucial step in the analysis of neural signals. One 

method that has been gaining popularity in recent years is 

Artifact Subspace Reconstruction (ASR), which is highly 

effective in eliminating large amplitude and transient artifacts in 

EEG data. However, traditional ASR is not possible to use with 

single-channel EEG data. In this study, we propose 

incorporating signal decomposition techniques such as ensemble 

empirical mode decomposition (EEMD), wavelet transform 

(WT), and singular spectrum analysis (SSA) into ASR, to 

decompose single-channel data into multiple components. This 

allows the ASR process to be applied effectively to the data. Our 

results show that the proposed single-channel version of ASR 

outperforms its counterpart Independent Component Analysis 

(ICA) methods when tested on two open datasets. Our findings 

indicate that ASR has significant potential as a powerful tool for 

removing artifacts from EEG data analysis. 

 
Clinical Relevance— This provided artifact removal 

technique for single-channel EEG. 

I. INTRODUCTION 

Electroencephalogram (EEG) is a prevalent neuroimaging 
technique for observing neural activity. Due to its noninvasive 
nature and low cost, EEG is more user-friendly and adaptable 
to a wider range of applications compared to other 
neuroimaging methods [1]. Conventionally, EEG is performed 
by attaching small electrodes to the scalp using an electrical-
conductive gel or paste, and fitting an elastic cap to secure the 
electrodes to the user's head. EEG has a wide range of potential 
applications beyond its traditional use in clinical and research 
settings. These include the use of EEG as daily-life brain 
monitoring tools that can detect certain abnormalities in brain 
activity, such as epileptic seizures [2], or provide 
neurofeedback to help individuals control and regulate their 
mental state [3]. Additionally, it can be used in brain-computer 
interface (BCI) technology, allowing individuals to control 
devices or communicate with others using their brain activity 
[4]. With advancements in technology, EEG systems have 
become increasingly accessible and wearable, making it 
possible to use them in real-world settings.  

In practical applications, EEG is often susceptible to 
interferences and noises that can originate from both the user 
and the environment. These interferences can include other 
biological signals, such as electrooculogram (EOG), 
electromyogram (EMG), and electrocardiogram (ECG) from 
the user, as well as equipment noise and environmental factors 
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such as vibrations and acoustic noise [5]. To address this issue, 
various noise cancellation and artifact removal techniques can 
be employed to enhance the quality of EEG recordings and 
make the data more reliable for analysis and interpretation. An 
example of such a technique is independent component 
analysis (ICA), a blind source separation method that separates 
the neural and artifact components from the EEG signal [6]. It 
is important to note that different techniques can be effective 
in removing noise from EEG recordings, but they also have 
their own limitations and assumptions. Therefore, it is up to 
the researcher to choose the algorithms that best suits the target 
application, taking into consideration the specific 
characteristics of the data and the research question. 

Artifact Subspace Reconstruction (ASR) is a recent, 
component-based method for removing artifacts from data in 
a real-time, automated manner [7], [8]. It operates by 
calculating a principal component analysis (PCA) on 
covariance matrices, identifying and discarding components 
that exceed a predetermined threshold of variance from 
reference data, and reconstructing the data using the remaining 
components to produce a clean, artifact-free version. Previous 
studies showed that ASR can effectively clean multi-channel 
EEG data, especially from non-stationary large-amplitude, or 
transient artifacts that are commonly found in wearable EEG 
setups. In recent years, ASR has gained increasing attention 
and numerous studies have been conducted to evaluate its 
effectiveness in various research settings and propose ways to 
enhance the algorithm for improved robustness. For example, 
the work in [9] adapts the original ASR implementation by 
using Riemannian geometry for covariance matrix processing. 
The Riemannian ASR (rASR) is shown to outperform the 
original version in all three performance measures, including 
specificity, sensitivity, and efficiency. Research presented in 
[10] integrates Hebbian/anti-Hebbian neural networks into the 
ASR algorithm to create an adaptive ASR that eliminates the 
problem of the fixed threshold, which can lead to 
underperformance, especially when the quality of the 
reference data is poor. While the majority of ASR research has 
been conducted with high-density EEG recordings [11]-[13], 
it has also been validated that ASR is effective with EEG data 
acquired from wearable devices with a low number of EEG 
channels, as seen in studies [14] and [15]. 

A limitation of the current ASR technique is its inability to 
be applied to single-channel EEG systems. This is because the 
algorithm relies on calculating the EEG covariance matrix, 
which is not possible with single-channel data. This presents a 
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challenge for researchers and practitioners who work with 
single-channel EEG systems, such as those used in wearable 
devices [16]. In order to address this limitation and make the 
powerful artifact removal method of ASR more widely 
accessible and applicable, this study aims to explore the 
possibility of adapting the ASR algorithm for use with single-
channel EEG. We propose a single-channel version of ASR 
that uses signal decomposition techniques to decompose 
single-channel EEG data into multiple signals, before applying 
the ASR process for artifact removal. The proposed method is  
evaluated using publicly available datasets, and the results will 
be compared to traditional single-channel ICA methods that 
utilize similar signal decomposition techniques. Signal 
decomposition techniques such as ensemble empirical mode 
decomposition (EEMD) [17], wavelet transform (WT) [18], 
and singular spectrum analysis (SSA) [19] will be considered, 
along with various hyper-parameter settings 

II.  METHODOLOGY 

A. Artifact Subspace Reconstruction  

In summary, ASR learns statistical properties from a given 
calibration data, which is a clean EEG data segment that is 
recommended to have a length of at least 30 seconds or 1 
minute. Then, it compares those statistics to the statistics of the 
incoming data segment to identify and remove the artifact 
component, resulting in a cleaned EEG signal.  

ASR consists of three main steps. In the first step, ASR 
segments the given calibration EEG data into multiple 
windows and calculates the root-mean-square (RMS) value of 
each window for each channel. It then identifies clean 
windows based on the RMS values that fall within a 
predetermined range. In the second step, ASR computes the 
covariance matrices from the clean data windows identified, 
and calculates the geometric median covariance matrix, U, to 
represent the clean covariance matrix sample. It then computes 
the mixing matrix, M, where MMT = U, and performs PCA on 
M to obtain the eigenvectors matrix, V, and eigenvalues, D. At 
the end of this step, the clean data are projected into the 
component space. The mean, µ, and standard deviation, σ, of 
RMS values across all windows are computed for each 
component and used to define the rejection threshold Ti = µi + 
kσi for the ith component, where k is a user-defined tuning 
hyperparameter. In the last step, the new, uncleaned EEG data, 
XNew, is undergone the same process as the previous step, and 
the components whose statistical properties exceed their 
rejection threshold Ti are replaced with zero vectors resulting 
in a clean eigenvector Vclean. Finally, ASR reconstructs and 
produces the clean EEG data Xclean using the equation: 

Xclean = M(VT
cleanM)+ VT

New XNew       (1) 

For in-depth information about the ASR algorithm, including 
technical details, please see [7] and [8].  

B. Adapting ASR for Single-Channel EEG Data via Signal 

Decomposition Techniques 

Similar to other blind-source-separation techniques such as 
ICA, traditional ASR techniques also require multi-channel 
EEG data. To overcome this limitation, we propose a single-
channel version of the ASR method by incorporating signal 
decomposition techniques, specifically EEMD, WT, and SSA, 
to decompose the single-channel EEG data into multiple 

signals before applying the ASR process for artifact removal. 
For the WT method, we use the stationary wavelet transform 
(SWT) specifically to decompose the single-channel EEG data 
into multiple signals with the same sample length. Our 
proposed methods are named EEMD-ASR, WT-ASR, and 
SSA-ASR, respectively.  

C. Validation 

The proposed EEMD-ASR, WT-ASR, and SSA-ASR  
methods are validated using two open datasets. The first 
dataset, the Physiobank motion artifact dataset [20], [21], 
consists of 24 recordings where EEG signal was acquired from 
two electrodes that are closely placed together, resulting in 
highly correlated data. High-amplitude, transient motion 
artifacts were induced randomly in one of the electrodes by 
pulling its cable at approximately 2-minute intervals. The total 
length of the recordings was 9 minutes, and the sampling rate 
was originally 2048 Hz but was downsampled to 256 Hz to 
lower the computation cost. The data were preprocessed with 
a notch and 1-50 Hz bandpass filters to remove common noise. 
The first 1-minute EEG data segment of each recording was 
used as the calibration data for the ASR process. The disturbed 
channel was used as the target artifact-contaminated single-
channel EEG data and the undisturbed channel as the ground 
truth for evaluation.  

The second dataset is a semi-simulated EEG/EOG dataset 
[22], which combines EOG data linearly with EEG data to 
create semi-simulated EOG-contaminated EEG data. It 
comprises 55 EEG recordings, each containing 19 channels. 
The data were acquired at a sampling rate of 200 Hz. EEG 
recordings with a data length shorter than 30 seconds were 
discarded, resulting in a total of 33 EEG recordings. In this 
study, each channel of each recording was treated as an 
individual single-channel EEG sample. All data underwent the 
same filtering steps as the first dataset. Due to its short 
recording time, Gaussian noise with a standard deviation of 1 
was added to the pure EEG data and used as the calibration 
data for the ASR method. Unprocessed pure EEG data were 
used as the ground truth for evaluation. 

Three measurements were used to evaluate the 
effectiveness of the artifact removal process: 

1) Improvement in Correlation Value (∆R): The 

correlation between the ground truth EEG epoch (EEGRef) and 

the EEG epoch before (EEGArt) and after the ASR process 

(EEGASR) are calculated. Then ∆R is defined as: 

 
∆R = Corr(EEGRef, EEGASR) –  Corr(EEGRef, EEGArt)  (2) 

where Corr(.) is the operation to calculate the correlation 
between two signals.  

2) Improvement in Signal-to-Noise ratio (∆SNR): In this 

work, the Signal-to-Noise ratio (SNR) of an EEG epoch is 

defined as: 

 
SNREEG = 10 log10(Var(EEG)/Var(EEG-EEGRef)   (3)  

where Var(.) calculates the variance of the input signal. SNR 
values are calculated for both EEGArt and EEGASR, and ∆SNR 
is defined as: 

∆SNR = SNRASR – SNRArt       (4) 
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3) Improvement in Mean Square Error (∆MSE): Similar 

to the other two measurements, ∆MSE calculates the 

improvement in the mean-square error (MSE) to the reference 

signal before and after the ASR process. It is defined as: 

 
∆MSE = MSE(EEGRef, EEGASR) –  MSE(EEGRef, EEGArt) (5) 

where MSE(.) computes the MSE values between two signals. 

D. Experimental setup 

  We applied the proposed single-channel ASR methods 

to both datasets with two hyperparameters: the number of 

decomposition levels, which ranges from 2 to 6 for EEMD-

based and WT-based methods, and 2 to 16 for SSA-based 

method, and the threshold tuning parameter k for the ASR 

process, which ranges from 1 to 30. The default window 

length for the ASR method (500 ms) was used, and the EEG 

samples were processed in non-overlapping segments of 3 

seconds at a time. We then averaged the values of three 

evaluation measurements across all samples and compared 

the results of the proposed methods to those of well-known 

single-channel ICA artifact removal algorithms, namely 

EEMD-ICA [6], WT-ICA [6], and SSA-ICA [24]. For the 

ICA-based methods, we iteratively removed all components 

that improved the correlation between the reference and 

processed signal to reconstruct the artifact-free signals. 

III. RESULTS AND DISCUSSION 

The performance of each artifact removal method is shown 
in Table 1. The results shown in the table are the best results 
among all runs with different hyperparameters. It is important 
to note that the best results for the three evaluation 
measurements may not have been obtained from the same set 
of hyperparameters. 

The validation results using the Physiobank Motion 
Artifact dataset showed that our proposed methods 
outperformed their ICA-based counterparts in all three 
evaluation measurements. The WT-ASR method showed the 
highest performance in all three measurements with values of 
0.2770, 14.8686, and 10.4130 for ∆R, ∆SNR, and ∆MSE, 
respectively. Among the ICA-based methods, the ∆R of the 
WT-ICA method was higher than the EEMD-ASR and SSA-
ASR methods, and its ∆MSE was also higher than the EEMD-
ASR method. This suggests that the WT might be a better 
choice of signal decomposition method for handling high-
amplitude, transient motion artifacts that are present in data 
from the Physiobank dataset. The SSA-ASR method 
outperformed the EEMD-ASR method in all three 
measurements, but this was not the case for SSA-ICA and 
EEMD-ICA methods, making the comparison between the 
EEMD and SSA signal decomposition methods inconclusive 
for this type of artifact.  

The results from the semi-simulated EOG/EEG dataset 
revealed a distinct trend compared to the results from the 
Physiobank dataset. Although the ASR-based methods yielded 
the best results in all three measurements, not all proposed 
methods performed better than their ICA-based counterparts. 
The highest values of ∆R, ∆SNR, and ∆MSE were 0.1960 
(SSA-ASR), 15.878 (EEMD-ASR), and 6.8592 (EEMD-
ASR), respectively. The lower results compared to the Physio- 

TABLE I.  VALIDATION RESULTS FOR THE PROPOSED SINGLE-
CHANNEL ASR ARTIFACT REMOVAL METHODS AND SINGLE-CHANNEL 

ICA-BASED METHODS. THE BEST PERFORMANCE FOR EACH 

MEASUREMENT IS HIGHLIGHT IN BOLD STYLE. 

Dataset Method ∆R ∆SNR ∆MSE 

Physiobank 

Motion 
Artifact 

Dataset 

EEMD-ASR 0.2305 14.6598 9.5141 

WT-ASR 0.2770 14.8686 10.4130 

SSA-ASR 0.2654 14.7843 10.1143 

EEMD-ICA 0.2271 13.1584 8.2743 

WT-ICA 0.2705 14.3765 9.7538 

SSA-ICA 0.2292 11.6732 6.2965 

Semi-
Simulated 

EEG/EOG 

Dataset 

EEMD-ASR 0.1766 15.8785 6.8592 

WT-ASR 0.1427 15.0460 5.8926 

SSA-ASR 0.1960 15.0978 6.2899 

EEMD-ICA 0.1481 14.5129 5.7863 

WT-ICA 0.1779 14.3551 5.9093 

SSA-ICA 0.1952 14.0806 6.1685 

 
bank dataset were likely due to the larger amplitude of motion 
artifacts compared to the artifacts from the EOG signal. 

Another clear observation is that the WT-ASR method, 
which performed best on the Physiobank dataset, performed 
the worst among the three proposed methods. This could be 
attributed to the limitation in the length of the EEG data 
segment, which resulted in a limited decomposition level of 
the WT method at 3. When the length of the data segment was 
increased from 3 to 6 seconds, the maximum decomposition 
level increased to 4, and the best ∆R was greatly increased 
from 0.1427 to 0.2070. Despite this improvement, there was 
no increase in ∆SNR or ∆MSE values. Although the length of 
the EEG data segment does not directly impact the 
performance of the ASR algorithm, certain signal 
decomposition techniques necessitate a minimum data length 
to accurately decompose the signal into a desired number of 
components. In BCI, short EEG segments are used to achieve 
fast command delivery. In contrast, other applications such as 
mental state monitoring may benefit from longer EEG 
segments for improved signal decomposition. It is important 
to consider the length of the EEG segment in conjunction with 
other hyperparameters when applying this single-channel ASR 
to a specific application. 

To examine the effect of the ASR threshold, k, and the 
decomposition level on the performance, we plot the ∆R 
results from the best methods in Physiobank (WT-ASR) and 
EEG/EOG dataset (SSA-ASR). Fig. 1(a) shows the ∆R results 
with different values of k and a fixed decomposition level, 
while Figure 1(b) displays the ∆R results with different values 
of the decomposition level and a fixed k value. The fixed 
values for k and decomposition level correspond to the values 
that yielded the best ∆R results as shown in Table 1. According 
to the results, the ∆R metric steadily increased and peaked at 
k=5 for the Physiobank dataset and k=4 for the EEG/EOG 
dataset, before gradually decreasing as the ASR threshold 
increased. The peak of the ∆R results at a smaller value of k in 
the EEG/EOG dataset may be attributed to the fact that the 
artifacts from EOG, such as eye movements, tend to have 
smaller amplitudes compared to the motion artifacts present in 
the Physiobank dataset. Regarding the decomposition level, 
Fig. 1 (b) shows that the results improved as we increased the 
decomposition level for both methods in both datasets. This 
trend was also generally observed for the other signal 
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decomposition techniques used in this study. This result 
indicates that a higher signal decomposition level is likely to 
improve performance, but one must also consider the length of 
the data segments to achieve an appropriate level of 
decomposition, as previously discussed. It is also important to 
weigh the trade-off between performance and computing cost 
when selecting the value of this hyperparameter, to ensure that 
it is suitable for the target application. 

In conclusion, our method successfully adapted the ASR 
algorithm to make it usable with single-channel EEG data. The 
results showed that our method achieved performance that was 
equal to or better than well-known single-channel ICA-based 
methods. The use of signal decomposition techniques was key 
in achieving this success. In future work, we plan to test the 
algorithm with a variety of different types of artifacts and 
explore the potential for incorporating other methods to further 
improve performance. Overall, ASR has proven to be very 
effective and has great potential for artifact removal in EEG 
data. We believe that this method may become a valuable tool 
for researchers and practitioners working with EEG data.  
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(a)                         (b) 

Figure 1. The improvement in correlation value (∆R) of the WT-ASR method on the Physiobank Motion Artifact dataset for different values of the ASR 

threshold (k) and decomposition level, as shown in subplots (a) and (b) respectively. 
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