
I. INTRODUCTION

The early start of the internet and the introduction of

email in the 1970's has transformed the computer into far

more than a simple computing device. The computer

became a communication device as well. With

communication comes the desire to know when new

information is available.

For years, before the introduction of mobile phones,

the computer was the primary device to find out about this

new information. Computers were relegated to the office

and, as time went on, at home as well. When mobile

phones and pagers were introduced, a new, smaller device

that could notify the user came into existence. Even so,

the data that the user consumed on each device was

separate. For example, people consumed text messages

and pages on mobile phones and pagers while they

consumed email and other internet-based information on

computers. However, this too changed with the

introduction of the smartphone and the ability to be

connected to the internet via a mobile device.

With the introduction of internet-connected

smartphones came the ability to have the information that

was formerly relegated to that of the computer spill over

into the mobile side as well. Smartphone users could be

notified of any new email, chat messages and other

important information just as easily on their computers as

on their smartphones. However, in the beginning,

individual applications were required to setup the way

they fetched this new information on their own. Some

applications took the route of polling a server periodically

to find new information, while others set up persistent

connections to servers in order to receive data as a push-

based mechanism.

It was quickly realized that every application having

its own way to get new information negatively impacted

devices in various ways. For example, waking up the

network hardware for every application to poll or send

962

The number of internet-connected devices a person interacts with has increased. With this increase comes an

increase in the number of devices available to notify the user of new information. This paper proposes an algorithm for

intelligently selecting the primary device that should first interrupt the user with new information. This algorithm fuses

information such as activity level and movement from all of a user's devices to predict which device is best. This

algorithm is then implemented as a push-notification service. Using this service, and implemented clients for Android

and Google Chrome, we test this algorithm to establish both its ability to predict the user's preferred device and that it

reduces the annoyance level of users. Our results confirm that our algorithm has the ability to select an appropriate

device, in the future more accurately predict the correct device, and finally that it is less annoying than a naive

approach.

Keywords: Mobile devices, Notifications, Push-services, Networking, User context acquisition

논문번호: TR14-116, 논문접수일자:2014.12.23, 논문수정일자:2015.05.29, 논문게재확정일자:2015.10.22

Theodore F. Morse, Sungho Jo(Corresponding author): Korea Advanced Institude of Science and Technology

Smarter Push Notifications in Multi-Device Environments

Theodore F. Morse ·Sungho Jo

keep-alive information to their respective servers depleted

the battery faster. For this reason, the major smartphone

operating systems set up their own centralized push

mechanism for application and system-related messages to

be passed down to the phone from a central server in the

form of a persistent network connection. [1], [2] This

negated the need for every application to setup its own

protocol which both increased battery life and eased

application development.

In recent years, the introduction of tablet computers

and smart watches caused the number of possible devices

to consume this pushed information to explode. This

presents new challenges for delivering this information.

Among these challenges is how to handle the issue of

multiple devices. Up to this point, this has been handled

on a per-application basis. Naive applications such as

email may simply notify all of the devices at once. In the

worst case, this would cause possibly more than three

devices around the user to simultaneously blink and make

noise. For some users, this may not be an issue. A simple

silencing of the offending devices will ensure that they are

not annoyed further. For others, multiple devices may be

comforting. However, scaling up the number of devices

may reach a tipping point where silencing the offending

devices takes more time than it is worth. Furthermore, if

silencing devices, one may forget to re-enable them,

possibly missing important notifications in the future.

Thus, while user preference is important, the ability to be

smarter about which device to notify the user on may

become a requested feature. Currently, this puts the onus

on each application to handle this issue on their own.

This situation closely analogs the time when

applications were creating their own unique ways of

pushing or polling for new information from their

respective servers. For every new application, they may

eventually have to deal with the same type of problems.

Thus, it would behoove us to research the best possible

way to solve such a problem and build it into the lower

levels of such mechanisms already in place in order to

reap the same types of benefits that were gained by

centralizing the push-mechanism. Furthermore, this

centralization is of great benefit to the user as well.

Thus, this paper aims to provide further research into

this problem in order to find a better solution than what is

currently deployed. Furthermore, research of this nature

may eventually make its way into the base push-

mechanisms of today's technology, freeing future

application developers to solve more interesting problems,

as well as giving users a consistent and more intelligent

mechanism for receiving new information.

The problem to be solved may be summarized as

follows: We want to pick the best device out of the

possible devices a user owns. This best device is called

the primary device. This paper aims to solve the problem

of selecting the correct primary device in which to first

notify the user of new information. For the purposes of

this paper, the correct primary device is the device that

both annoys a user the least, as well as being the preferred

device by the user to receive notifications on.

We attempt to solve this problem through a smarter

algorithm for determining the user's current context. Based

on this context, we select the best primary device and send

new notifications to only this device.

This paper is organized into multiple sections. Section I

provides an introduction to the problem and gives reasoning

for why it is needed along with an overview of the methods

and objectives used to solve the problem. Section II gives an

overview of the existing literature in the areas related to the

problem at hand, including activity tracking, annoyance

levels and current commercial offerings related to the

problem. Section III goes into detail about the proposed

algorithm and the system built to test the algorithm. Section

IV provides details about the experimental setup and

protocols used to obtain the results to test our algorithm.

Section V details the results of the experiments conducted

and dives into a discussion about the results. Finally, in

Section VI we conclude and state future work that should be

undertaken to improve upon the results found.

II.RELATED WORK

Work related to this paper can be divided into several

areas. While no work has been found to investigate the

exact problem studied in this paper, there is work related

to this field of study.

There have been multiple studies related to creating

software architectures for multiple devices, but not in the

context of notifications or primary device selection.

Chmielewski and Walczak [1] researched software

middleware for intelligently adapting software based on

context and device. Pierce and Nichols [2] tackled the

issue of multiple devices belonging to one person by

elevating ownership to be a first class property. They

extend Extensible Messaging and Presence Protocol

(XMPP) [3] to allow services between devices for

synchronizing and sharing information.

The level of annoyance and interruption has been

studied for single devices and for groups, but not in the

963 Telecommunications Review·Vol. 25 No. 6·2015. 12

Kwapisz et al. [10] worked on activity recognition using

the accelerometer in cellphones. Additionally, Gellersen et

al. [11] looked at fusing sensors to gain a better

understanding of a user's context for smart artifacts. Patel

et al. [12] did an important study on how far away the

average person's cellphone is from them at any given

moment, allowing us to create the movement correlation

technique we present in Section III.

III. METHOD

Suppose that a user has three different devices on

which they consume information and receive notifications

on. The first device is a smartphone, the second device is

a tablet computer and the third is a desktop or laptop

computer. When a user receives a new email, one or more

of the devices try to notify the user of this fact. This act of

notification typically involves a sound and/or vibration in

the case of a smartphone or tablet as well as a visual pop-

up on all three devices. This simultaneous ringing is not

optimal for several reasons. First, there is no guarantee

that the user is near any device other than possibly the

smartphone. Second, if the user is near more than one of

the devices, the level of annoyance perceived by the

notification increases. Instead, it would be better to notify

the user on only one of the devices, falling back to a

different device in the case that they do not respond to the

notification.

The problem then arises as to which device should be

used to notify the user first. This is called the primary

device. The primary device is the device that is best used

to get the user's attention. This device changes by

situation, and thus one device cannot be labelled as the

primary device without taking context into account. For

example, while using the computer, it makes more sense

to notify the user of new email on the computer since they

are both using it and it is a more comfortable device to use

compared to a smartphone, despite both being, possibly,

within reach of the user. These types of situations must be

accounted for in any algorithm that tries to determine the

primary device to notify the user on.

The algorithm proposed in this paper takes these

things into account by fusing activity and movement

information from all of the devices into a model to predict

which device should be the primary device. This primary

device is selected as each notification comes in, allowing

the primary device to change in any given situation.

This section is broken up into subsections. Each

subsection will go into detail about the different pieces of

context of multiple devices under a single owner. In

Wilson and Miller [4], the HCI aspect of notifications was

studied. They looked at how to decrease the interruption

factor of notifications when they are displayed to the user

by introducing gradual-awareness notifications. Bani-

Salameh et al. [5] looked at decreasing interruptions in

the context of social software development.

Commercial systems exist already, used by most

smartphones today. Android devices use Google Cloud

Messaging (GCM) [6] to maintain a connection to servers

run by Google in order to receive messages from servers

belonging to individual applications. However, until

recently, GCM had only provided ways to send to a list of

devices, with no way of grouping devices by user.

Recently they have started what they call, ' 'user

notifications,'' which aims to allow grouping of a set of

devices owned by a user. However, presently, this feature

only aims to aid in the dismissal of shared notifications

and does not suggest a primary device.

Apple created the Apple Push Notification Service

(APNS) [7] for their iOS and Mac OS X product lines.

Much like GCM, APNS simply provides an internet-based

connection point in order to send a message to a device.

Any grouping must be done at the application-level.

Flores and Srirama [8] showed how these commercial

systems could be replaced by a pure XMPP-based

protocol, useful for inter-operability between the major

smartphone operating systems, but does not look at any

multi-device intricacies related to messaging.

Along the same lines, different applications have

developed different ways of handling the idea of multiple

clients. This comes up most frequently in chat

applications. Some applications, such as Kakao Talk, use a

combination of last device used, but default to the phone

client if the computer has been idle for more than a user-

specified amount of time or the screensaver activates.

Other applications, such as Google Hangouts, from

empirical investigation, appear to notify the device that

last used the application, broadcasting to all devices after a

certain time-out period. These algorithms may choose the

wrong device, or unnecessarily delay notifying the user.

Protocols such as XMPP allow devices to set a priority,

routing messages to the device with the highest priority.

However, priorities are self-reported and have no insight

into the overall context of the user. Thus a better primary

device selection algorithm is important.

Finally, for other parts of our algorithm, Ravi et al.

[9] looked at different ways of classifying accelerometer

data into different activities such as walking, running as

well as interesting features to use for such classifications.

Smarter Push Notifications in Multi-Device Environments 964

and is treated as an ''idle'' status.

Furthermore, in our algorithm, devices are given a

''type'' attribute that specifies what type of device they

represent. Possible values are ''computer,'' ''tablet,''
''phone,'' and ''watch.'' Each type is given a rating of how

convenient the device is to use. For example, a tablet is

more convenient to use than a phone due to its bigger

screen. In this way we can rank devices. The ranking of

devices, in ascending order, is as follows: watches,

phones, tablets, and finally computers.

2. Movement Determination from an
Accelerometer

For devices that contain an accelerometer such as

smartphones and tablets, more accurate idle information

can be obtained. This enhanced idle information can be of

great use when choosing a primary device. The three

subcategories of an ''idle'' status that pertain to phones and

tablets are ' 'stationary,' ' ' 'stashed,' ' and ' 'moving.' '
''Stationary'' means that a phone is merely sitting on a

table or someplace off the person of the user and is not

moving. It gives no indication of its proximity to the user,

merely that it is not moving. ''Stashed'' means that the

phone or tablet is being held by the user, possibly in their

pocket, but the user is not moving. This can happen if the

person is sitting with the phone in their pocket. ''Moving''
implies that the phone is both on the user and the user is

actively moving, such as walking.

Figure 1 shows some example accelerometer data

collected from a Samsung Galaxy Nexus smartphone for

each of the three statuses. The three data sets represents

the acceleration in m/s2 along the x, y and z axes. The

data was collected at a rate of approximately 62 Hz. In

Figure 1, box A represents data when the phone was

stationary. Box B represents data while the phone was

stashed. Finally, Box C represents data form walking. As

can be seen from the graphs, the difference between

965 Telecommunications Review·Vol. 25 No. 6·2015. 12

the proposed algorithm. Afterwards, these pieces will be

brought together to form the outline of the proposed

algorithm. Finally, several sections will discuss the

implementation details of the system used to test the

algorithm.

1. Device Status and Ranking

Our algorithm is heavily dependent on the self-

reported status history of each device. The devices report

time-stamped status changes. Between status updates, it is

assumed that the devices maintain the same status. If a

device unexpectedly goes offline, this is automatically

recorded by the server -- as a device which suddenly goes

offline is unable to report its status as offline.

Depending on the type of device, the possible status

values differ. For example, computers give more coarse-

grained status values that smartphones and tablets.

For an overview of the different types of statuses that

are recorded for a device's history, see Table 1. Status

values are broadly categorized as ''active,'' ''idle'' or

''unavailable.'' Active statuses typically mean the device in

question is being used. For smartphones and tablets, this

occurs when the screen is on. In the case of computers, an

''active'' status is when there is active input to the

computer such as with the mouse or keyboard. Idle

statuses indicate that the machine is online, but is not

currently being used. For computers, this means that there

has been no activity on any input device for at least one

minute. In the case of mobile phones and tablets, which

typically contain an accelerometer, the ''idle'' status can be

further subcategorized into ''stationary,'' ''stashed'' and

''moving.'' See Section III.2 on more information as to how

these statuses are determined via the accelerometer. An

additional status that is limited to computers is the ''locked''
status. This status value indicates that the screensaver has

activated and a password may be needed to resume using the

device. This status is currently not used in the main algorithm

Table 1. Device status values and device categories

SSttaattuuss

OFFLINE

IDLE

LOCKED

STATIONARY

STASHED

MOVING

ACTIVE

CCaatteeggoorryy

All devices

Computers

Computers

Phones, Tablets

Phones, Tablets

Phones, Tablets

All Devices

DDeessccrriippttiioonn

Device is not connected/online.

The device is not being used.

The device’s screensaver is active.

The device is idle and not moving.

The device is idle and on the body of the user.

The device is idle and being carried.

The device is being used. The screen is on.

between 0.85 m/s2 and 1.5 m/s2, the device was

considered ''stashed''. Anything above was classified as

''moving.'' These threshold values were determined

empirically. The classifier required that two axes'
standard deviations fell into the same range before a

determination was made on the entire sample.

We determined these values by analyzing the collected

accelerometer data. After selecting thresholds, we then

verified these thresholds were sufficient through

experimentation.

In this way, the accelerometer of the mobile devices are

able to give valuable information about their idle status.

3. Special Situations to Consider

There are a few cases which must be considered when

developing an algorithm for selecting a primary device.

These cases include: One device active, more than one

device active, and no devices active. Each of these cases

are discussed in turn.

First, the case where only one device is active should

be the easiest to consider. The active device represents the

current device the user is interacting with, and thus the

notification in theory should go to this device. As will be

discussed in Section V, this may not be a valid

assumption, but is the assumption used in our algorithm

for the purposes of this paper. Furthermore, issues of

multiple people using the same device were ignored in this

paper.

The next case is when more than one device is active

at the same time. In this case a decision must be made

between the active devices. In this case, one can take the

type of each device into consideration. Types are ranked

according to ease of use. Thus, in the case that more than

one device is active at once, a simple and effective

approach ranks the active devices according to type and

picks the device that is the most convenient to use among

''stationary'' and ''stashed'' is minimal, yet it exists and can

be detected. Furthermore, there exists a large difference in

magnitude between ''stashed'' and ''moving.'' Thus, a

classifier was written to distinguish between these cases.

Loosely based on [10] and [9], a minimum of 50 Hz

sampling rate was requested. Due to the Android operating

system, an exact sampling rate is not guaranteed, and a 62

Hz sampling rate was typically achieved. However, 62 Hz

is above the minimum of the 50 Hz required. A window of

256 samples were gathered, representing approximately

four seconds of movement. This window was then

evaluated for movement classification. Every 256 sample

window of data overlapped the previous window by 128

samples. Each window is classified as to which status it

should take between ' 'stationary,' ' ' 'stashed,' ' and

''moving.'' If two consecutive windows classify to the

same movement state, the device is reported to have that

status. Data is collected and evaluated until a decision can

be reached. Thus, after at least six seconds, approximately,

a new status can be confirmed. In the future this delay

could be shortened. However, a tradeoff occurs between

false positives and the time to confirm a status. For

example, given an average pace of 120 steps per minute,

there would be approximately two steps per second. If a

user has a cellphone in their pocket, then this means we

record the major movement of one leg only, thus reducing it

to one step per second. Thus, more than one step would be

needed to confirm that the user is indeed moving and not

simply shifting their body. Therefore, we chose a longer

period to collect data and confirm our classifications. This

period has been confirmed to be sufficient according to [9],

who also used an overlapping window.

The classification between the different status values

is accomplished by a simple linear classifier based on the

standard deviation of the given sample window. For

standard deviation values in the range of 0 to 0.085 m/s2 ,

the device was considered ''stationary''. For values

Smarter Push Notifications in Multi-Device Environments 966

X
Y

Z

Figure 1. Sample Accelerometer data. Box A: stationary. Box B: stashed, Box C: walking/moving

967 Telecommunications Review·Vol. 25 No. 6·2015. 12

the active devices to be the primary device.

The final case is when all devices are idle. The simple

approach is to say that the primary device is the most

recently used device. This fails under two scenarios. The

first case is when two or more devices were used at

approximately the same time, but the user leaves, carrying

only one of the devices. However, because both devices

are idle, a pure comparison of idle time is not appropriate.

Movement information, however, can help make a

determination. This scenario is depicted in Figure 2. As

one follows the timeline across, the figure depicts when

the devices have the given labeled status. Following the

devices until the end of the depicted timeline, clearly the

device that has moved is a better device to send to, since it

has traveled with the user. Thus, a device that is moving

can be considered less idle than a device that is stationary.

When calculating idle time, it is useful to calculate a

weighted idle time. Each ''idle'' status value is given a

weight that scales down the effective idle time of the

device. A ''moving'' status has a weight of 0.5, while a

''stashed'' idle status has a weight of 0.75. ''Stationary,''
''idle,'' and ''locked'' statuses all have weights of 1.0. When

the idle time of a device is calculated, it is calculated from

its status history from the last time it was ''active.'' The

skewed idle time is calculated as such:

n
time=Σ) Wsi

(ti-1-ti)
i=2

Where i is the current status out of n status values

since it was active, each with timestamp t, and status s,

and each status has a weight Wsi
. In this way, a device that

has been moving has a lower idle time than a device that

has been stationary for the same period of time. Thus, the

primary device is the least idle device, given this skewed

idle time. Going back to Figure 2, this would correctly

choose the primary device as the device that the user took

with them.

For the purposes of our algorithm, the exact values of

the weights is mostly insignificant. The important

property is that the weights increase with the increased

''idle-ness'' of the device. Thus, as long as the weight for

Figure 2. A timeline of two idle devices, one of which moves. Time flows in the direction of the arrow.

Figure 3. A timeline depicting two devices. Device 1 is used while Device 2 lays idle next to it. Later,
Device 2 is taken and leaves Device 1 alone.

Smarter Push Notifications in Multi-Device Environments 968

''offline.'' If there are no devices online at that time, the

message is stored and delivered to the first device that

comes online and no further processing is done.

Second, the algorithm finds all the devices that are

active. Among these devices, it finds the devices that

ranks the highest and selects that device as the primary

device and does no further processing.

Third, the algorithm computes the skewed idle time of

each device. For every device that can be considered

mobile (phones and tablets), a simple search is done to

correlate them with the other non-mobile devices. If such a

correlation is found, their skewed idle time is adjusted and

the algorithm continues. Finally, the algorithm selects the

device with the lowest skewed and adjusted idle time as

the primary device. The notification is then sent to the

primary device that was selected.

5. Implementation of a Push-Notification
Service

The algorithm described in Section III.4 was

embedded within a simplified custom push-notification

service. This service, much like the existing commercial

offerings by Google and Apple, allows all the devices to

maintain an open connection to a server. For a graphical

overview of the architecture, see the left side of Figure 4.

At the heart of the system is the MQTT [13] protocol.

This is a TCP/IP based publish-subscribe protocol the

other major piece of the architecture is the ''brain'' of the

push-notification system. This system is responsible for

subscribing to all of the status information topics and

fanning out any notifications to the appropriate devices. The

next subsection will cover this piece more extensively.

Finally, there are the various devices, which are connected

to the MQTT server and listen and send status information

to the MQTT server. For our implementation, we used the

open-source mosquito [14] MQTT server running on a

virtual private server in the cloud.

Within MQTT, data is published to topics. Topic

names form a tree structure. To receive data, one registers

to these topics. MQTT has a wildcard syntax to allow one

to register to more than one topic at a time. Within this

system, each device has its own ''sub tree'' of the topic tree

to receive and send messages on. For example, status

updates are published under this tree. Any notification or

message that needs to be sent to the device is published to

a topic under this tree. Additionally, the topic tree has a

few ''virtual'' topic branches. These topics are topics that

only the brain is subscribed to. The brain is then

responsible for fanning out the received messages to the

''Idle'' is greater than that of ''Stashed,'' our algorithm

works.

The second case is when a user leaves the active

device, taking another device with them. This scenario is

depicted in Figure 3. It is important to note that in this

scenario, the user has not activated the device they take

with them, and thus a pure comparison of idle times, even

skewed idle times, would select the primary device as the

device the user abandoned. However, yet again, the

introduction of movement information helps guide the

primary device selection algorithm

Consider again the scenario in Figure 3. First, when

the user goes to initially use the computer, there is a short

amount of time between when the computer becomes

active and the phone becomes stationary or stashed. In

this case, we can imagine the user has sat down at the

computer and placed their phone either in their pocket or

next to the computer. At this moment, we can consider

the two devices co-located due to the correlation between

status updates. Additionally, at the end of Figure 3, when

the user leaves the computer to go somewhere else, the

same, yet reversed, situation can be seen. Within minutes

of the computer updating its status to ''idle,'' the phone

updates its status to ''moving.'' In this way, we can

consider the computer and phone no longer co-located.

The phone has effectively taken over as the primary

device.

Our algorithm actively looks for this correlation

between devices when selecting a primary device. In the

case where it finds a mobile device that has moved since

another device has gone idle within a three minute

window, it considers the mobile device's idle time to be

the skewed idle time since the previously active device

went idle. Also, a constant amount of time is subtracted

from the moving device's idle time in order to negate the

order in which the active device and moving device and

moved and became idle. In this way, the mobile device

effectively takes control and becomes the primary device

for any future notifications, baring no other device

becomes active.

4. Algorithm for Selecting the Primary
Device

The algorithm for selecting the primary device is a

three-stage algorithm based on the status history of each

device.

When a notification is received that is bound for the

primary device, the algorithm first collects all the devices

which are online. That is, they have a status other than

969 Telecommunications Review·Vol. 25 No. 6·2015. 12

appropriate topics. For example, there is a virtual topic

branch of all of the users. When data is published to any

of these topics, the brain selects the primary device and re-

publishes the data on the appropriate topic under the

device's tree, which the device will then receive.

Everything within our system has a unique identifier.

Devices, users and messages are all assigned a 128-bit

random Universally Unique Identifier (UUID) [15].

All data published is a valid UTF-8 encoded JSON

[17] object. Invalid data is silently ignored.

5.1. Brain

The brain of the notification system is implemented as

a client of the MQTT server. See the right side of Figure 4

for an overview of the system architecture of the server.

Working from the bottom up, the brain uses an H2 [18]

SQL Relational Database to store all of the pertinent data

of the system. This includes all of the devices registered,

the devices' status histories, which user a device belongs

to, queued messages and information about which device

has received which message, or whether the message still

needs to be sent to a device. Within the brain, a service-

based architecture was implemented. Each service is

responsible for defining which topics within the MQTT

topic tree they need to be subscribed to. Thus, when data

is published to any of the interested topic trees, the data is

routed to the appropriate service. Services can handle data

on their subscriptions either synchronously or

asynchronously.

Within the brain there are two main services: the

UserService and the ConnStateService. The UserService

is responsible for the user virtual topic tree. This is where

our proposed algorithm lives. Since the user virtual topic

tree is required to fan out to an appropriate device, when a

message is received to send to a user, our algorithm selects

the appropriate primary device and forwards the message.

The ConnStateService is responsible for recording the

time-stamped status updates sent by the devices. It is also

responsible for passing along any messages that were

queued while the device was offline.

Along with these services that are primarily outward-

facing. There are a number of ''managers'' that deal with

managing the different entities. For example, there is a

UserManager that aids in retrieving and updating users.

In between services and managers are the basic objects

that organize the system. These objects mainly represent

entities in the database.

5.2. Android Client

The Android client supports Android phones and

tablets using Android version 4.3 and higher. It is

implemented as a persistent service with hardly any UI

elements to it. The UI elements that exist were created for

the user study described in Section IV. The main service

of the application keeps the MQTT connection alive. It

displays notifications based on the messages that it

receives and updates its status.

A secondary service within the application keeps track

of the activity of the device. Every 30 seconds, the phone

starts querying the accelerometer according to Section

III.2 in order to update the device's idle status. For newer

devices that support a sudden motion sensor, a sudden

movement trigger also starts a reading of the

accelerometer, as this would give a tighter bound on when

the user actually started moving. Any change in status is

then reported on the phone's status topic.

5.3. Desktop Client

A desktop client was written as a Google Chrome

Figure 4. (Left) An overview of the network architecture.
(Right) An overview of the software architecture of the brain of the push service.

tablet game. They momentarily pause their work to

download the game on their tablet. While using the

tablet, they receive an email.

⑤ It is break-time at the office. The user decides to get

coffee. They leave their computer, taking their phone

with them to go purchase coffee at a nearby cafe.

While purchasing the coffee an email arrives.

⑥ The user has finished working and is at home. The

user is relaxing and playing a computer game. While

playing the computer game an email arrives.

⑦ Finished with their game, they go out to a local

convenience store to grab a late-night snack, taking

their phone with them. While walking the last email

arrives.

For each scenario, two notifications were sent, totaling

14 notifications total. The first notification was sent via

GCM and simulated the nal̈ve approach of sending to

every applicable device. The second notification was sent

via our system.

For each notification, the user was asked two

questions:

① For the given scenario, if a notification were sent,

which device would be the ideal device to receive the

notification on?

② Given the notification that was just received, on a scale

of 1 to 10, how bothersome or annoying was the

notification?

The above scenarios were each chosen to test a

specific portion of our algorithm and judge its

effectiveness in different situations. Scenario 1 aims to

test the basic idle time-based selection, and confirm that a

user in fact does want it sent to the phone. Scenario 2 and

3 tests basic selection when 1 device is active. However,

scenario 3 differs in that the possible devices has

increased, as well as where the user is. Scenario 4 tests

the case when 2 devices are active at the same time.

Scenarios 5 and 7 test device correlation from movement.

Scenario 6 is identical to scenario 3, but the circumstances

have changed in that the user is much more engrossed in

their current activity than in scenario 3.

V. RESULTS AND DISCUSSION

1. Results

A total of 26 participants were tested. The participants

application. Being a Google Chrome application, the

client was written in Javascript. The client relies on

Google Chrome to report the computer's idle status. The

decision was made to implement this as a Google Chrome

application in an effort to make the UIs identical for the

user study, as Google Chrome recently gained the ability

to receive GCM [6] messages in the browser.

IV. EXPERIMENTAL SETUP

In order to test the algorithm defined in the previous

section, a user-study was completed. The purpose of the

user-study was to gain two metrics. First, that the

algorithm picks a primary device that matches the user's
expectations. Second, that, compared to a naive approach,

our algorithm was subjectively less bothersome or

annoying to the user.

To approach this, an identical set of applications for

the desktop and Android were created using the existing

GCM framework. Additionally, a website was created to

allow ''fake'' messages to be sent through either system,

taking the form of an email or chat notification containing

a title and an optional message.

The applications for both systems were installed on

three devices: a Google Galaxy Nexus smartphone, a

Google Nexus 5 smartphone and a laptop computer. The

Google Nexus 5 has a bigger screen when compared to the

Google Galaxy Nexus smartphone and was thus labeled as

a tablet instead of a phone for the purposes of testing.

A total of seven scenarios were created that modeled a

typical day of an office worker or graduate student. These

scenarios are explained below:

① The user has just woken up in the morning via their

cellphone's alarm. They have a tablet and phone

available, their computer remaining off for the time

being. While getting ready for the day, they receive an

urgent email from the office. For this scenario, the

notification is this email.

② Upon the receipt of the email in scenario 1, they decide

to reply to it via their tablet, as their computer remains

off and the tablet is a more convenient interface to

reply on. While replying to the email, another email

arrives, notifying them again.

③ Having finished replying, they go to the office and start

working on their computer in the office. Now there are

a total of three possible devices. An email arrives

while working.

④ While they are working, they receive word of a new

Smarter Push Notifications in Multi-Device Environments 970

ranged in age from 23 to 57 years, with an average age of

28±6.8 years. All participants were informed about the

experiment and what questions would be asked of them,

confirming they understood. In the case of a language

barrier, an assistant was present to translate. Throughout

the test, many users gave valuable feedback as they

selected their answers. These answers were invaluable to

gain insight as to why some results were lower or higher

than expected.

Annoyance levels for our system were lower than the

nal̈ve system. On average the nal̈ve system garnered a

score of 6.62±2.65 with a standard error of 0.015.

Contrasting with our system, which had an average score

of 3.42±2.38 with a standard error of 0.013. Figure 5

shows a graph of the annoyance levels by scenario.

As can be seen from the graph, for each scenario, our

system was less bothersome to the user than the nal̈ve

approach. There is an interesting increase for scenario 6

which will be discussed in the next section.

See Table 2 for an overview of the results of our

system for predicting the same primary device as the user

specified. As can be seen from Table 2, the success of our

algorithm varies from 15% accuracy to 100% accuracy

with a total average of 70.3%. The discussion next section

will cover some reasons for this wild variance in accuracy.

In Table 2, scenario 4 uncovered a bug that was not caught

during testing, and thus the result changed for the

remainder of the tests.

2. Discussion

On average the users felt less annoyed with our system

than the nal̈ve one. Scenario 6 was the exception to this

due to the user's perceived concentration level. Generally,

when a user is playing a game, they are concentrating

much harder on their current activity compared to general

office work. Thus any notification is a bigger distraction

and more annoying to the user. In this regard, the

algorithm should become more aware of the context of the

user as they use a computing device. That is, the

algorithm should assess the state of activity on the

computer. If it indicates that a high-concentration or full-

screen activity is happening, a different primary device

should be selected, or the notification should be postponed

until the user is in a better state to receive it, provided the

notification is not urgent.

In scenarios 5 and 7, the user only had their phone

with them, and thus would not hear any other device that

971 Telecommunications Review·Vol. 25 No. 6·2015. 12

GGooooggllee

UUss

Figure 5. A breakdown of annoyance levels by scenario with bars representing the standard error

Table 2. Algorithm Accuracy

1

2

3

4

5

6

7

Phone

Tablet

Computer

Computer/Tablet*

Phone

Computer

Phone

2 (7.7%)

2 (7.7%)

22 (84.6%)

4 (15.4%)

0 (0%)

4 (15.4%)

0 (0%)

1 (3.9%)

16 (61.5%)

0 (0%)

18 (63.2%)

0 (0%)

0 (0%)

0 (0%)

23 (88.5%)

8 (30.8%)

4 (15.4%)

4 (15.4%)

26 (100%)

22 (84.6%)

26 (100%)

88.5%

61.5%

84.6%

42.3%

100%

15.4%

100%

SScceennaarriioo
AAllggoorriitthhmm'ss
CChhooiiccee

NNoo.. UUsseerrss pprreeffeerr
tthhee CCoommppuutteerr ((%%))

NNoo.. UUsseerrss pprreeffeerr
tthhee TTaabblleett ((%%))

NNoo.. UUsseerrss pprreeffeerr
tthhee PPhhoonnee ((%%))

AAllggoorriitthhmm
AAccccuurraaccyy

may have been notified at the same time. Thus, it is

interesting to note that the annoyance level with the nal̈ve

approach is higher for scenario 5 than 7. Recall that in

scenario 5, the user had left the office while in scenario 7

the user is at home. Users said they were generally

worried about privacy. Even though they could not hear

the notification being sent to the computer and tablet, they

assumed it would be sent, and thus worried about privacy.

They were worried about other people around their

computers becoming curious as to the noise and looking.

However, at home they feel safer and thus were less

concerned with other people noticing.

The more ripe area for discussion is in the algorithm s

primary device prediction percentages. From Table 2 we

can see that the percentages ranges wildly from 15% to

100%. In an ideal world, this would not be acceptable.

The reasons for this lie in the assumptions of the algorithm

as well as the variability of people's preferences. For

example, there were two subjects that preferred their

phone to be the primary device no matter what scenario

they were in.

In scenario 1, the algorithm was mostly correct. There

were a few users that would have preferred another device,

even if that device wasn't available at the moment. The

reason for this stems from the fact that certain devices are

preferred for different communications. Even though

more accessible devices were available, email was seen as

a computer-related communication. However, usually

users preferred to use their phones for chatting.

Scenario 2 was slightly worse that scenario 1, coming

in at about 61% accuracy. Users were generally conflicted

between receiving notifications on their tablets vs their

phones, even if they were using the tablet at the time. In

this case the algorithm was correct to select the tablet as

the primary device, but it's important to bear in mind that

user preference should be taken into account in the future.

Scenario 4 was a case where the algorithm misjudged

what people actually wanted. Even if a computer and

tablet are both active, the user would prefer to receive a

notification on a less comfortable device. This may be

due where their concentration is at the time. The primary

device should be where the user is concentrating, but only

if they are not concentrating too hard.

Scenarios 5 and 7 were the most straightforward, due

to the user only having one device with them at a time.

This gives credence to the necessity to take movement and

colocation into consideration when selecting a primary

device.

However, it should be noted that scenarios 5 and 7

have the highest probability of destroying the trust a user

has in the system. If the system guesses incorrectly and

sends to the wrong device, especially in these scenarios, a

user could possibly miss a notification. Thus, a secondary

device should also be selected, or all devices should be

broadcasted to. In the worst case, we would be no worse

than the nal̈ve approach. While cascading was outside the

immediate scope of this particular study, it is an important

feature for any system put into production in order to

retain the trust of the user.

Finally, scenario 6 was the worst of the accuracy rates,

being only 15%. As discussed before, when users are

concentrating hard, such as when playing a game, they

generally dislike being interrupted. However, should they

have to be interrupted, they want the primary device to be

the device they are not concentrating on. That is, any

notifications that appear should not detract from their

current activity. Thus, again, more context of the computer

is needed to be gathered to select a secondary primary

device. Further correlation should be considered between

co-located devices in order to select the appropriate

secondary device.

Overall, the level of annoyance was lower than a nal̈ve

approach, giving credence to the importance of picking a

primary device. However, the algorithm as it stands is less

than perfect as it picks a primary device that deviates from

people's line of thought. However, even if the algorithm

picks the wrong device, it never picked a device that was

not near the user. That is, the user never missed a

notification, even if that notification was sent to the less

than ideal device. This is in contrast to other systems

which may delay notifications due to their cascading

between possible devices.

Even with the above results looking promising, more

information may be needed to prove that this system

would be ideal outside of planned scenarios. In a planned

scenario, a user may decide that the ideal device is their

computer, but in real life realize a phone is the ideal

interface. This is a limitation of the type of user study

done. Thus a longer user study may be needed to verify

the validity of the algorithm over a longer period of time.

Additionally, it could be noted that by testing the

system against a simplistic broadcast notification, the

annoyance levels were lower only because less devices

were notified at once. If a random device were picked as

the primary device, the annoyance levels could be similar.

While certainly plausible, it also gives credence to the

necessity of picking a primary device, even if the device is

chosen at random. Further study may be needed to confirm

this. If true, the second part of the study becomes more

important. If less devices should be notified, then selecting

Smarter Push Notifications in Multi-Device Environments 972

the right device becomes more important.

In conclusion, while the user study completed shows

that the initial results are promising, further user studies

are needed to address further dimensions of the problem.

VI. CONCLUSION

This paper presents an algorithm to select a primary

device out of a group of devices belonging to a user. This

algorithm takes into account activity status, idle time and

movement, fusing it together to make the best decision for

a given situation. This algorithm was tested within a

custom push-notification service implementation using

MQTT for the publish-subscribe protocol. Clients were

created for Android and the computer. A user study was

completed to test the validity of both primary device

selection and which devices our algorithm selects as the

primary device. Results were mixed, with annoyance

levels decreasing, but primary device selection guiding

future work.

Future work includes changing the algorithm to take

into account personal preferences as well as enhancing the

resolution of activity statuses on devices. Furthermore,

greater correlation should be attempted to detect co-

located devices in order to guide secondary device

selection, should the primary device be a poor choice due

to activity levels. Additionally, secondary devices should

be taken into account in case the user has not

acknowledged the notification in order to ensure the user

can continue to trust the system. Notification priorities

should be taken into account and studied further.

Notifications which are urgent should be dealt with in a

different manner than normal notifications. For example,

high priority notifications might be broadcast to every

device instead of only the primary device in order to

negate any chance that the notification is missed. Also, an

additional user study should be performed over a longer

period of time to ensure that the algorithm in this paper is

useful outside of pre-planned scenarios.

[References]
[1] Google, Inc, "Google Cloud Messaging for Android,"

[Online]. Available: https://developer.android.com
/google/gcm/index.html.

[2] "Apple Push Notification Service," Nov. 2014.
[Online]. Available: https://developer.apple.com/library
/mac/DOCUMENTATION/NetworkingInternet
/Conceptual/RemoteNotificationsPG/Chapters

/ApplePushService.html.
[3] Jacek Chmielewski and Krzysztof Walczak,

"Application Architectures for Smart Multi-
device Applications," in Proceedings of the
Workshop on Multi-device App Middleware, 2012.
pp. 1-5.

[4] Jeffrey Pierce and Jeffrey Nichols, "An Infrastructure
for Extending Applications' User Experiences
Across Multiple Personal Devices," in Proceedings
of the 21st Annual ACM Symposium on User
Interface Software and Technology, 2008.
pp. 101-110.

[5] Peter Saint-Andre, "Extensible Messaging and
Presence Protocol (XMPP)," Internet Engineering
Task Force (IETF), 2011. [Online]. Available:
http://tools.ietf.org/html/rfc6122

[6] Thomas Wilson and Robert Miller, "Reducing the
cost of interruption using gradual awareness
notifications," [Online]. Available:
http://groups.csail.mit.edu/uid/projects/slowgrowth/
gradual-Awareness.pdf.

[7] H. Bani-Salameh and C. Jeffery, "Notifications
Management in Distributed Development
Environments: a Case Study," in Collaboration
Technologies and Systems (CTS), 2014
International Conference on, May, 2014. pp. 49-55.

[8] Huber Flores and Satish Srirama, "Mobile
Cloud Messaging Supported by XMPP Primitives,"
in Proceeding of the Fourth ACM Workshop on
Mobile Cloud Computing and Services, 2013.
pp. 17-24.

[9] Nishkam Ravi, Nikhil Dandekar, Preetham Mysore
and Michael L. Littman, "Activity recognition
from accelerometer data," in AAAI, 2005.
pp. 1541-1546.

[10] Jennifer R. Kwapisz, Gary M. Weiss and Samuel
A. Moore, "Activity Recognition Using Cell
Phone Accelerometers," in SIGKDD Explor.
Newsl., Mar., 2011. pp. 74-82.

[11] Hans. W. Gellersen, Albercht. Schmidt and Michael.
Beigl, "Multi-sensor Context-awareness in Mobile
Devices and Smart Artifacts," in Mob. Netw. Appl.,
Vol. 7, No. 5, Oct., 2002. pp. 341-351.

[12] Shwetak N. Patel, Julie A. Kientz, Gillian R.
Hayes, Sooraj Bhat and Gregory D. Abowd, "Farther
Than You May Think: An Empirical Investigation
of the Proximity of Users to Their Mobile Phones," in
UbiComp 2006: Ubiquitous Computing, Vol. 4206.
2006. pp. 123-140.

[13] International Business Machines Corporation (IBM),

973 Telecommunications Review·Vol. 25 No. 6·2015. 12

"MQTT V3.1 Protocol Specification," Nov.
2014. [Online]. Available: http://public.dhe.ibm.com
/software/dw/webservices/ws-mqtt/mqtt-v3r1.html.

[14] Roger Light, November 2014. [Online]. Available:
http://mosquitto.org.

[15] P. Leach, M. Mealling and R. Salz, "A Universally
Unique IDentifier (UUID) URN Namespace,"
Internet Engineering Task Force (IETF), 2005.
[Online] Available: http://tools.ietf.org/html/rfc4122

[16] S. Josefsson, "The Base16, Base32, and Base64
Data Encodings," Internet Engineering Task
Force (IETF), 2006. [Online] Available:
http://tools.ietf.org/html/rfc4648

[17] ECMA International, "The JSON Data Interchange
Format," October, 2013. [Online]. Available:
http://www.ecma-international.org/publications/
standards/Ecma-404.htm.

[18] Thomas Mueller, "H2 Database Engine," 2014.
[Online]. Available: http://ww.h2database.com.

[19] Gray Watson, "OrmLite - Lightweight Object
Relational Mapping (ORM) Java Package," [Online].
Available: http://ormlite.com/

Smarter Push Notifications in Multi-Device Environments 974

Theodore F. Morse

He received the B.S. degree in Computer Science from

University of Evansville, USA, in 2007 and the M.S.

degree in Computer Science from KAIST, Korea, in 2015.

His research interests include smart device

communications and the internet of things.

E-mail: tmorse@gmail.com

Sungho Jo

He received the B.S. degree from the School of

Mechanical and Aerospace Engineering, Seoul National

University, Korea, in 1999 and the M.S. degree in

Mechanical Engineering and the Ph.D. degree in Electrical

Engineering and Computer Science from MIT, USA, in

2001 and 2006, respectively. From 2006 to 2007, he was a

Postdoctoral Researcher with the MIT Media Lab. Since

December 2007, he has been with the School of

Computing, KAIST, where he is currently associate

professor. His research interests include neural signal-

based interfaces, human-robot interaction, and wearable

computing.

E-mail: shjo@kaist.ac.kr

Tel:+82-42-350-3540

