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Abstract² This work addresses surface electromyogram 

(sEMG)-based muscle pattern classification using a generative 

model. By using a hierarchical Bayesian model, the proposed 

approach constructs an overall process model of recorded 

sEMG signals. By inferring probabilistically latent neural states 

which governs a collection of training sEMG data, classification 

is realized. To validate the approach, eight-class classification 

using four sEMG sensors on the limb actions is tested with five 

subjects. The proposed model achieves an overall 95% accuracy 

in the classification experiment. The results support that the 

proposed approach is very promising for sEMG pattern 

classification. 

I. INTRODUCTION 

The surface electromyogram (sEMG)-based muscle 

activation observations have been extensively of interest as a 

non-invasive method for control or interfacing. Applications 

to control prosthetics or exoskeletons have been attempted 

and impressive results have been reported [1-9]. To 

successfully realize control or interface schemes, robust 

pattern recognition from sEMG is a key. Although 

discriminative classification methods were mainly 

investigated for sEMG pattern recognition, there were 

recently some attempts to apply Bayesian approaches for 

myoelectric control [10-11]. In particular, the hidden Markov 

model [10] and Gaussian mixture model [11] were applied for 

multiple limb motion classification using myoelectric signals. 

Bayesian approaches are generally known to be good at 

achieving an automatic and adaptive process without concrete 

information about the parameters and incorporating prior 

information as well. On the other hand, they typically involve 

high-dimensional integrals. A Bayesian model permits 

construction of a generative model, which can generally infer 

complex relationships between the output observations and 

some hidden variables. Although more complicated model 

organization is required, the recent advent of computational 

power and methodology make Bayesian approaches very 

attractive to resolve complex problems. 

Even though a variety of methods were attempted so far, 

achieving stable and accurate performance is still  

challenging because the musculoskeletal system is very 

complex, and the sEMG signals are innately noisy and 

affected by conditions of the subject and tasks. A robust 

approach is expected to attain consistent results independent 

of subject. This work suggests a new approach to 
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sEMG-based control or interface as another attempt to 

overcome demanding limitations. 

This paper proposes newly a hierarchical Bayesian model 
which is derived from multi-time series of sEMG data. The 
proposed model assumes the probabilistic distribution of 
latent neural state variables which occur sEMG profiles. By 
constructing a generative probabilistic model, 
low-dimensional probabilistic relationships among a set of 
latent intention variables are formed and possible sequences of 
sEMG data are generated based on the relationships. The 
probabilistic structure of latent neural state variables makes it 
possible to classify activations from a set of sEMG profiles. 

II. HIERARCHICAL BAYESIAN MODEL 

A. Model Description 

The proposed model is motivated from latent Dirichlet 

allocation (LDA), which is the simplest topic model. LDA is 

based on the intuition that documents, which are sets of words, 

exhibit multiple topics [12-14]. LDA models document 

collections which are produced from the latent topics by 

representing each topic to be a distribution over a fixed 

vocabulary. The proposed model interprets the intuition 

behind the topic model with respect to a collection of sEMG 

profiles. It is proposed to regard a sEMG signal profile over 

time as a sequence of data units. A sEMG data unit, 

corresponding to a word in topic model, contains features 

which play a role in a basic representation of data information. 

Then, a trial, which records sEMG signals from multiple 

electrode channels, is a collection of a sequence of units. 

Assuming there are latent neural states, comparable to latent 

topics in topic model, the trials are represented by random 

mixtures over latent intentions, where each latent neural state 

is characterized by a distribution over data units. This work 

proposes to use the Gaussian distribution to represent each 

latent neural state by taking into account the general features 

of sEMG signals. For application to pattern recognition, the 

model includes classification procedure. Most likely classes 

are successively selected assuming a trial is associated with a 

sequence of intentions.  

Suppose that training data are collected in D trials for C 

class classification, and data sequence is made up of N data 

units in each trial. Under the assumption that K latent neural 

states are fixed, the proposed model, shown in Fig. 1, 

describes a generative process of data acquired at the dth trial 

as follows. 

1. Sample à×1���������:Ù; 
2. For each of sEMG data units (J L sá å á0;, 

Sample Vá1�����������:à×; 
         Sample @á1L:@á�Vá á ä5ãÄ á35ãÄ; from a multivariate  
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Figure 1.  A graphical representation of the proposed model . 

Gaussian distribution conditioned on Vá. 

3. Sample H1L:H�V §á ß5ãÅ;  which represents a softmax 

distribution, where V § L :s�0;Ã Vá
Ç
á@5  

 

à×  is a K-dimensional Dirichlet random vector, and the 

parameter = is a K-dimensional vector whose element each is 

positive. Each trial is generated by again selecting from the 

Dirichlet random vector and repeating the entire process. 

Each Vá denotes a 1-of-K binary random vector with elements 

VáÞ for k=1,«,K. Vá, J L sá å á0, is the latent neural state 

that induces sEMG sequence. To describe the kth latent 

neural state, the Gaussian parameters, mean vector äÞ� and 

covariance matrix 3Þ , are fixed quantities.  Given the 

quantities, a feature vector @áof the data unit is drawn from 

the multivariate Gaussian distribution conditioned on Vá. 

For application, class label H is drawn from the softmax 

distribution [15] 

L:H�V §á D5ãÅ; L ���:ßßÍV §; �Ã ���:ßÜÍV §;Å
Ü@5 � ����

where ß5ãÅ represents a set of L class coefficients, each ßß is a 

K-dimensional vector whose elements are real values. 

Unknown parameters to be estimated are =, ä5ãÄ,�35ãÄ, and 

ß5ãÅ . Once the model is established, sEMG-based 

classification is possible for future test trial.  

Raw sEMG profiles can be windowed with overlap. Each 

window is regarded as a data unit. In a window, features are 

appropriately designated. Feature extraction relies on 

physical and neurophysiological conditions for a problem to 

be solved. The feature used in this work is 

mean-absolute-value (MAV), which has been popularly used 

for onset detection due to its computational simplicity. Thus, 

@á L >���5 ���6 ���7�����® ���¼?Í� ����

where subscript indicates channel index assuming a trial 

recodes sEMG signals from C channels. 

It is remarked that sEMG data unit is a basic element of 

information representation. This work assumes that a 

sequence of the sEMG units contains essential information 

encoded in sEMG data from a trial. 

B. Parameter Estimation and Classification 

Exact inference to compute the conditional distribution of 

latent neural states given the model is intractable. Instead, the 

recipe of the variational inference approximation used in 

LDA is similarly applicable [13]. In the middle of the 

inference approximation, variational parameters, Û and�î5ãÇ, 

are introduced; Û is a K-dimensional Dirichlet parameter and 

each îá  parameterizes a categorical distribution over K 

elements where �>Vá? L îá. Unknown model parameters are 

estimated through variational Expectation-Maximization 

(EM) algorithm. In the E step, variational parameters are 

updated. The update rule of the variational parameter Û  is 

identical to LDA [13], therefore,  

ÛÞ
áØê L ÙÞ E -á@5Ç îáÞ� � ����

Meanwhile, the update rule of the variational parameter îê 

is obtained by applying the technique introduced in [15] for 

the model which includes softmax classification as follows. 

îáÞ
áØê L â0:@á�äÞá3Þ; ���mð:ÛÞ; F ð FÍ ÛÝ

Ä

Ý@5
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where DÍîá L Ã Â @Ã îáÞATL @ 5Ð ßßÞAÄ
Þ@5 AÇ

á@5
Å
ß@5 , a linear 

function of îá , and D L >D5á å á DÄ?Í . ð:®;  is a gamma 

function and â is a normalization factor. 

In the M step, model parameters are estimated given the 

variational parameters. Gaussian parameters in the latent 

neural state are computed: 
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Classification parameters ß5ãÅ can be estimated using 

conjugate gradient [25] which is applied to  
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where î$ç L :s�0;Ã îçá
Ç
á@5 . = can also be optimized [19]. 

However, practically its value is fixed, for example, 

= L B5
Ä
á å á

5

Ä
CÍuniformly. 

To perform classification for the future data, the same 

procedure as in [15] is applied, which results in the label 

selection such that  

HÛ L ������ßÐ<5áåáÅ= '>ßßÍV §? L ������ßÐ<5áåáÅ= ßßÍî$ � ����

�

III. EXPERIMENT 

A. Subject 

Five subjects volunteered for experiments (mean ± SD 

age = 25.4 ± 2.96 years). The relatively small range in age of 

the male subjects was intended to minimize the potential, 

confounding effects of age and gender during force 

generation. All of the participants were free of neuromuscular 

and musculoskeletal pathology. All of the subjects were given 

sufficient information about the purpose and procedures, and 

before participation, informed consent was obtained from 

each subject. The KAIST Institutional Review Board 

approved the proposed experimental protocol of this study. 
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Figure 2.  Electrode locations chosen for this study. 

B.  Experiment Design 

In this study, limb actions were chosen to intuitively 

represent all possible actions: wrist flexion/extension, 

radial/ulnar deviation, pronation/supination, and hand 

grasp/open. The actions are easily executable, intuitive and 

various enough to be used for applications such as prosthetic 

or exoskeleton control [1, 3,  8, 10]. The goal of this study is 

classification of the nine wrist or finger postures, eight 

actions and one relaxation posture, using the proposed model 

and its evaluation. During actions, raw sEMG signals were 

measured using a commercial active surface electrode and 

filter-amplifier system (Bagnoli, Delsys Inc., USA). Four 

electrode locations were selected as shown in Fig. 2 

considering particular muscles whose relevant functions 

contribute to wrist and finger actions; Flexor Carpi Ulnaris 

(FCU), Palmaris Longus (PL), Extensor Carpi Radialis (ECR) 

and Extensor Digitorum (ED). A minimal number of 

electrode sites were used so that signal interpretation of 

different actions can be made as much as possible across 

subjects. A fifth electrode was located on the upper arm as a 

reference to remove noises.  

C. Experimental Procedure 

The experiments consisted of three sessions: pre-test, 
maximal voluntary contraction (MVC) check, and test. During 
the pre-test session, each subject experienced the 
familiarization session in which the subject became 
comfortable with the experimental equipment and practiced 
the experimental protocols. After the pre-test session, the 
subjects were asked to sequentially perform four wrist actions, 
radial deviation, flexion, extension, and ulnar deviation at 
MVC following the instruction on the computer screen. Each 
wrist action was asked to be performed for two seconds. 
Strong verbal encouragements were provided. Maximum 
contraction values were recorded to be regarded as 100% 
MVC. In each experiment, each subject was asked to perform 
wrist actions sequentially at strong but comfortable 
contraction level. In each test session, the order of wrist 
actions is radial deviation, flexion, extension, ulnar deviation, 
pronation, supination, hand grasp, and   hand open for five 
seconds. Relaxation posture is taken between any two 
sequential actions with the same interval. The movement 
sequence began with relaxed natural posture of wrist and hand 
initially.  Each subject repeated the movement sequence five 
times at each muscular contraction level. Therefore, five 
sessions per subject were recorded. The subjects could relax  

 

Figure 3.  Accuracy and likelihood over the number of latent neural states 

averaged across subjects. 

Table I   Accuracy according to the number of latent neural states 

 S1 S2 S3 S4 S5 ave 

10 0.913  0.875  0.800  0.863  0.925  0.875  

20 0.913  0.988  0.888  0.938  0.975  0.940  

30 0.925  0.925  0.938  0.925  0.963  0.935  

40 0.913  0.988  0.925  0.938  0.988  0.950  

50 0.938  1.000  0.913  0.950  0.938  0.948  

60 0.938  0.913  0.900  0.925  0.938  0.923  

 

between each session to avoid muscular fatigue, which could 
affect the sEMG signal in the subsequent trial.  

D. Signal Processing 

The sEMG signals were recorded simultaneously with a 

data acquisition system (NI 6221, National Instrument, USA), 

and were then sampled at 1 kHz. The sEMG signals were 

band-pass filtered (5±450 Hz) using the zero phase fourth 

order Butterworth filter and power line noise were rejected 

with an activated notch filter. Baselines of the sEMG signals 

were shifted using mean values during initial 10 seconds and 

then the sEMG signals were normalized using MVC values. 

The time window per a data unit was set to be 250 msec with 

50 msec overlap and the feature, MAV, was extracted in each 

window. 

IV. RESULTS 

As in [1], performance measure was based on 

leave-session-out cross-validation error. That is, the proposed 

model was trained with four sessions and tested with a 

remaining session. An average accuracy is obtained from five 

runs for test per each session. Figure 3 shows classification 

accuracies and converged likelihood values during training 

over the number of latent neural states of selected subjects 

among the five. The results indicate relatively high 

contraction level performances are generally better than 

relatively low contraction level performances. Although 

accuracy changes over the number of latent neural states, 40 

latent neural states look an appropriate choice to obtain 

reasonable overall accuracies of 95 %. Table I summarizes 
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Figure 4.  (a) Visualization of mean vectors of latent neural states, (b) 

relative scales of major neural states per action. 

 

the performance results over subjects. Accuracies are 

generally above 90%, which is competitive in comparison 

with previous reports [1, 3,  8, 10].  

To see the trained model in detail, the estimated latent 

neural states from a sXEMHFW¶V�PRGHO�are illustrated in Fig. 3(a). 

Each rectangular shape visualizes the 4-dimenional mean 

vector, sEMG values of FCU, PL, ECR and ED, clockwise 

from right direction, of each Gaussian distribution 

representing a latent neural state. Each neural state is labeled 

from 1 to 40. Given data of a particular trial, in Fig. 3(b), 

relative contribution scales of major influential latent neural 

states are visualized per each action including the relaxed 

posture. Regarding that elements in Û represent the relative 

influence proportions of latent neural states, latent neural 

states corresponding to large elements, which cover up to 90% 

of each action, were selected to be the major influential latent 

neural states for each action. As a result, two to four major 

latent neural states were selected per action as in Fig. (b). The 

visualization shows relative amplitudes of the four electrodes 

per action, which were encoded in the model. 

V. CONCLUSION 

This paper suggested hierarchical Bayesian model-based 

classification of sEMG signals. Given training data, the 

generative model finds latent neural states and their combined 

structure, which are key components of classification. The 

experimental evaluation indicates that the proposed approach 

seems very promising. Even though further exploration is 

required, this work proposes that hierarchical Bayesian model 

may be an effective choice for sEMG pattern recognition. 

Further enhancement is under investigation.  
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