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Abstract: Soft wearable robots comprised of deformable materials have recently attracted much attention in the field of

applications for its lightness and elasticity. However, there exist some limitation to the control of wearable robots due to

the complexity of the model and the conditions of the wearer. In this paper, we propose a learning-based position control

method of soft wearable glove using a deep neural network (DNN). To analyze our proposed method, we fabricated a soft

pneumatic glove and a control board for the glove based on open hardware platform data. With our developed system,

we collected the pressure and position data of the soft glove using a Leap Motion sensor to train our soft glove position

network (SGPN). Along with our proposed DNN model, we could enable open-loop control on the joint positions of the

soft glove by supplying pressure to the actuator without prior knowledge of the wearer or the wearable robot such as hand

size of the wearer or the stiffness of pneumatic actuator.
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1. INTRODUCTION

Soft robots, one of the specific types of robots com-

posed of soft materials such as silicone rubber or tendons,

have recently gained much attention in the application

field of robots due to their relatively high degree of free-

dom and deformability [1,2]. Especially, since it is lighter

and more elastic than conventional robots, the number of

researches applying soft robotics to wearable robots have

drastically increased. Some of the previous researches

include soft gloves for rehabilitation [3–5] and soft wear-

able suits for reducing human metabolic costs [6]. These

soft wearable robots can safely interact with the wearer

because of its lightweight and high compliance, and it is

relatively inexpensive to manufacture compared to tradi-

tional exoskeletons.

Despite these advantages, the functionality of soft

wearable robots is still limited because they are difficult

to model and control. Unlike conventional robots with

fixed shapes and limited movements, soft robots made of

deformable materials have very high degrees of freedom,

making it difficult to create an analytical model for soft

robots and to use existing rigid robot control methods im-

mediately [1, 7].

One common way of modeling soft robots is constant

curvature approximation, which simplifies the model by

assuming that the soft robot has a constant curvature.

This method is able to model and control the soft robot

by reducing the dimension of the soft robot to 3-D. How-

ever, such method only shows good performance when

the external force is small and the shape is uniform. For

robots with the complex shape, such as wearable gloves,
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computational costs and predicted parameters dramati-

cally increase [7]. Especially, it is more complicated for

soft gloves, which have different hand shapes and move-

ments depending on the sex, age and health condition of

the user [5]. Some studies on soft gloves were conducted

to change the design of actuators depending on the shape

of a wearer’s hand and desired behavior [3,5,8], however,

these solutions require information about the user’s hands

to control the gloves and should change the model to suit

the user.

In this research, we propose a learning-based model-

ing method of soft pneumatic glove using a deep neural

network (DNN), to estimate and control each joint po-

sitions of the glove with pressure sensors attached to the

glove without an analytical model, as shown in Fig. 1. For

Fig. 1 Schematic diagram of the soft glove controller ar-

chitecture; (a) soft pneumatic glove, (b) Leap Motion

sensor, (c) pneumatic control board, (d) soft glove po-

sition network (SGPN), (e) result of position estima-

tion

the experiment, a soft pneumatic glove was fabricated us-

ing five pneumatic networks bending actuators (PNBA);

the manufactured glove is driven through a pneumatic
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control board; pressure data and each joint positions of

the glove were collected when operating the glove using

pressure sensors and a Leap Motion sensor, respectively;

and the collected data is used to learn our proposed soft

glove position network (SGPN). The trained model en-

ables open-loop control to the finger joint positions of the

soft glove according to the pressure supplied to the actu-

ator without prior knowledge of the wearer or the robot

model. The performance of the proposed algorithm was

evaluated by comparing the estimated position and the

actual fingertip positions of the glove according to the

pressure for grasping motion of the glove.

The paper is organized as follows. Section II describe

the architecture of the soft glove and its control system

used in this paper. Section III propose data acquisition

method and structures of our model. In Section IV, we

presents analysis of the experimental results. We discuss

limitation of current approach and future work in Section

V, and finally conclude our research in Section VI.

2. MATERIALS
Soft robots composed of flexible materials have diffi-

culty in estimating the state or position of robots, con-

sidering their high degree of freedom and variable stiff-

ness. Especially in the case of wearable robots such as

gloves, having to adjust the model suitable for the wearer

increases complexity. Therefore, we suggest a learning-

based modeling approach for estimating and controlling

the position of soft gloves based on data without specific

model information. In order to make this possible, we

made a soft pneumatic glove and a pneumatic control sys-

tem capable of measuring the position of the soft glove.

2.1 Soft Pneumatic Glove
The soft pneumatic glove used in the experiment was

fabricated using the pneumatic networks bending actua-

tor (PNBA) proposed by Mosadegh et al. The PNBA is an

actuator made by connecting sequence of air chambers.

The chambers are manufactured by curing silicone elas-

tomers using molds made from a 3-D printer. The seri-

ally connected chambers are inflated during air injection,

thereby creating a bending motion of the actuator. Mate-

rials that does not stretch like paper are added to prevent

unnecessary movement such as extending at the bottom

of the actuator.

To make a soft pneumatic glove, two types of PNBA

were produced considering the differences in the length

of each finger of the human hand. One (112 × 17 × 15

mm) had eleven air chambers for bending the thumb. The

other (146 × 17 × 15 mm) was consist of twelve air

chambers for the rest of the fingers (index finger, mid-

dle finger, ring finger, and pinky finger). The actua-

tors made of silicon material (DragonSkin30, Smooth-

On Inc.) were attached to each finger position of a cloth

glove using Velcro, as shown in Fig. 2 (a). To drive the

glove, tubes were connected to one end of each actuator

Fig. 2 Experimental equipment (a) soft pneumatic glove,

(b) pneumatic control board

to allow air to flow in and out.

2.2 Pneumatic Control System
1) Hardware
To control the pressure supplied to the glove, we used

a pneumatic control board proposed by the soft robotics

toolkit [9] as shown in Fig. 2 (b). The board was con-

sists of several parts: a micro controller (Arduino MEGA

2560 R3, Arduino), eight solenoid valves (VA100U-

5M, SMC), two MOSFET switch module (SZH-AT021,

SZH), an air pump (DAP-3043, MotorBank), and five

pressure sensors (100PGAA5, Honeywell). The air from

the motor is supplied to the soft pneumatic glove through

the tubes connected to the actuator of the glove. The

pneumatic pressure supplied to PNBA of the soft glove

was measured using the pressure sensors connected on

the tube of the actuators.

To adjust the air supply on the actuator, the con-

troller generated the pulse with modulation (PWM) sig-

nal, which were transferred to the MOSFET switch mod-

ule. Depending on the PWM signal, the MOSFET switch

module regulated the amount of air supplied by opening

and closing the solenoid valves connected to the actua-

tors. By consistently retrieving the measured pressure

and generating PWM signal the pneumatic board, the

pressure was adjusted to control the soft glove.

2) Control System
We created a control system for pneumatic board con-

trol using the Robot Operating System (ROS) [10] to col-

lect position data and pressure from the soft glove. Along

with the generation of PWM signals from the controller

of the board, the joint position data of each finger of the

soft glove was utilized for the control system. The joint

positions of each finger were acquired using the Leap

Motion sensor, which is a device capable of measuring

3-D hand position with a position accuracy of up to 1.2

mm for moving objects [11].
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For the experiment, we presented hand position in-

formation on the 78-dimensional data format composed

of each finger joint and the palm-center coordinate as

shown in Fig. 3. Because the thumb does not have

metacarpals, Leap Motion sensor publishes the same po-

sition about proximal phalanx and metacarpal [12]. For

this reason, the data representing the hand position by

combining each 3-D coordinate and the palm-center co-

ordinate at each five-finger joint position had 78 dimen-

sions (5 × 5 × 3 + 3 = 78). The position information

was converted into TF topics, the data format represent-

ing the 3-D coordinate in ROS, and then changed into rel-

ative coordinates centered on the palm. By transforming

to relative coordinates in this way, errors due to transla-

tion and rotation of the hand can be reduced. The hand

position data were used to train our deep neural network

with pressure sensor information.

Fig. 3 The positions of each finger joint and palm-center

position of soft glove

3. METHOD
3.1 Data Acquisition

The manufactured soft glove and control system was

used for collect the train and test dataset. The soft glove

data, position and pressure data of each PNBA actuator of

the glove, were collected by the pneumatic control board

and Leap Motion sensor. The PWM generated for driv-

ing the PNBA actuator was used to operate within the

pressure range of 0 (0 kPa) to 13 psi (89.63 kPa) con-

sidering actuator bending motion, and the position and

pressure data of the soft glove was gathered at a speed

of 20 Hz. Data were collected using glove worn in the

subjects’ hands, and worn gloves were driven only by the

applied pressure. For the train data, the PWM values for

the ten grasp motion were performed and the joint posi-

tion data of soft glove were gathered using Leap motion

sensor, and the size was 2,950. The test data were pro-

duced for two grasp motions in the same pressure range

as the train data and 400 data were generated. Table 1

shows the summaries of the train and test data.

Table 1 Summary of dataset

Pressure range

(psi)

Number of

grasp motion
Data size

Train data 0∼13 10
2,950 per

each finger joint

Test data 0∼13 2
400 per

each finger joint

3.2 Soft Glove Position Network
Unlike tendon-driven soft robots in which the actua-

tor space and joint space are linearly related, pneumatic-

driven soft robots require nonlinear mapping to define

the relationship between two spaces [7]. One way to

model nonlinear relationships is to use a deep neural

network model. Our proposed soft glove position net-

work (SGPN) was based on feed-forward neural network

(FFNN) which can make nonlinear relations between the

pressure sensor data of the control board and each actua-

tor positions of soft pneumatic glove.

The FFNN is a type of typical deep neural network

model that can map the nonlinear relationship between

input and output due to multiple hidden layers between

input and output layers [13]. In this network, learning

proceeds while conveying information in one direction

without a cycle, and it is possible to learn nonlinear re-

lations by using several hidden layers. So, we developed

SGPN that can estimate each joint position of soft glove

using pressure of the actuator based on FFNN. The model

we developed is shown in Fig. 4.

Fig. 4 The structure of the Soft Glove Position Network

(SGPN) for position estimation of soft glove.

Our model was consists of six hidden layers composed

of 128 hidden units and the Rectified Linear Unit (ReLU)

was used in each hidden layer as the activation func-

tion [14]. For the input of our model, the pressure data

of the soft glove were used. There were five actuators of

our soft glove, so the input x is set to x ∈ R5. For guess

the soft glove positions, we use five 3-D points of each

finger and the center position of the palm are required.
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So, the output y is y ∈ R78. After the define out model,

we learned our SGPN model using the train data to map

the relationship between the pressure data and glove posi-

tion. As a loss function for learning, mean squared error

(MSE) function was used to calculate the error between

the predicted value and the true value position of the soft

glove. We implemented the stochastic gradient descent

(SGD) method to our SGPN model for learning, set the

batch size to 32, and trained 100 epochs of train data us-

ing the Adam optimizer [15] to optimize the mode with a

base learning rate of 0.001. The SGPN model was imple-

mented using a deep learning framework, PyTorch [16].

4. RESULT
We evaluated our model through 400 test data gener-

ated by two grasp operations. Because the length of each

finger is different, the positions of soft glove varies, even

with the same control input, and may affect the position

error of soft glove. Therefore, we used two evaluation

metric: root mean square error (RMSE) and normalized

root mean square error (NRMSE) as follows:

RMSE =

√√√√ 1

n

n∑
t=1

(ŷi − yi)2, (1)

NRMSE =
RMSE

‖pmax − pmin‖ × 100%. (2)

where ŷ is predicted value and y is true value. pmax and

pmin are the points which have maximum distance within

trajectory of each soft glove position. We defined that the

distance ‖pmax − pmin‖ to euclidean distance of trajec-

tory in the position moving range of the glove. As shown

in Eq. (2), the NRMSE is obtained by dividing the RMSE

by the maximum distance of the region where the posi-

tion of the soft glove is changed. By using the metric,

it is possible to know how much error occurs due to the

movement of the finger, even though the position of soft

glove varies depending on the finger length.

We calculated the fingertip position error of the soft

glove to accurately evaluate the performance of our

SGPN model. The reason for this evaluation is that it

is better to use the fingertip data instead of comparing all

the joints of the hand in order to understand the relation-

ship between the movement range of the hand and the two

evaluation metrics. So, we extracted the end point data of

each soft glove finger from the result of test data and cal-

culated the max error, RMSE, euclidean distance of the

trajectory, and NRMSE, and the results summarized in

Table 2.

As shown in the Table 2, the maximum error of each

finger does not exceed 23 mm and the average maximum

error of the fingertips is also within 17 mm. In the case of

RMSE, each finger does not exceed 5 mm, and NRMSE

can be operated with an error within 8% of finger move-

ment on average. The thumb had the largest RMSE (4.91)

and the smallest distance of trajectory (34.13), resulting

Table 2 Experimental results of fingertip position estima-

tion of soft glove

Test error Thumb Index Middle Ring Pinky Average

Max error [mm] 15.84 21.90 22.84 15.15 8.05 16.76

RMSE [mm] 4.91 4.41 3.95 4.00 3.62 4.18

Euclidean

distance [mm]
34.13 73.12 69.82 69.30 46.32 58.54

NRMSE 14.38% 6.03% 5.72% 5.23% 7.44% 7.76%

in NRMSE of 14.38%, which resulted in higher error rate

rather than other fingers because of the relatively small

range of movement. This result shows that our algorithm

can be operated within 8% error based on the trajectory

of each end soft glove finger except thumb.

We plotted the data that occurred during the test to fig-

ure out how the pressure applied to the soft glove affected

the position estimation. The error of each fingertip gen-

erated during the test were shown in Fig. 5. The upper

and below plot show the error of the fingertips of the soft

glove and the target pressure on the glove for grasping

motion over time, respectively. As shown in the figure,

the each position error of the soft glove finger are re-

duced at 5 seconds and 16 seconds when the pressure is

applied. On the other hand, the position error increases

at 0 seconds, 10 seconds, and 20 seconds when there is

no pressure. This is because the glove do not support the

hand when pressure is not applied, and therefore the po-

sition changes variably due to gravity and the weight of

the hand. The results indicate that our algorithm reduces

the error of position estimation as the pressure acting on

soft glove increases.

5. DISCUSSION AND FUTURE WORK

Our contribution is to propose a deep neural network

that can estimate and control the position of the soft glove

without prior knowledge such as wearer’s hand size and

the characteristic of a soft glove, which is required for

modeling the analytical model of robots and control it.

Using our model, it is possible to estimate the position

of the soft glove using its pressure data. Also, we can

control the glove endpoint position with the error within

8% based on the range.

Our model was able to estimate the position without

previous information, but there was no sensor to feedback

the error, so there was no way to reduce the error. One of

the ways to improve the performance of our algorithms

is to attach additional soft sensors to the soft glove and

estimate current state algorithm [17] to enable feedback-

control. We are interested in further research to develop

soft wearable robot control algorithms capable of feed-

back control by applying a deep neural network model.

In this way, more precise control results will be obtained.
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Fig. 5 Position errors of soft glove tips and the change of target pressure for grasping motion over time

6. CONCLUSION

We propose a learning-based control method for posi-

tion control of soft wearable gloves without knowledge of

the predefined model such as wearer’s hand size or glove

model, and it can be used as a method to solve the diffi-

culty of mathematical modeling of a soft wearable robot.

Our deep neural network method trained using pressure

and position data of soft pneumatic glove, and test the

models performance. According to the results, our model

can control the position of soft glove using its pressure,

and the error upon the trajectory were within 8%. It is

possible to control complex robot systems such as wear-

able gloves without complex mathematical modeling.
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