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Abstract—We propose a rank-based metric learning method
by leveraging a concept of the Riemannian Potato for better
separating non-linear data. By exploring the geometric properties
of Riemannian manifolds, the proposed loss function optimizes
the measure of dispersion using the distribution of Riemannian
distances between a reference sample and neighbors and builds
a ranked list according to the similarities. We show the proposed
function can learn a hypersphere for each class, preserving
the similarity structure inside it on Riemannian manifold. As
a result, compared with Euclidean distance-based metric, our
method can further jointly reduce the intra-class distances and
enlarge the inter-class distances for learned features, consistently
outperforming state-of-the-art methods on three widely used non-
linear datasets.

I. INTRODUCTION

Recent research on deep metric learning(DML) has shown
significant benefits by learning semantic distance on a non-
linear embedding space using deep neural networks. With the
development of these loss functions, a large corpus of literature
has been presented in various areas such as face recognition,
image clustering, and retrieval [1]. Loss function in DML
plays a crucial role in learning similarity on a manifold, and
many methods such as contrastive loss [2], triplet loss [3],
lifted structured embedding [4], N-pair Loss method [5] have
been proposed in the literature. All these learning methods
take a Euclidean distance metric to measure the distance
between paired examples in n-dimensional feature vector
space. However, many scientific fields study data with an
underlying structure that is a non-Euclidean space. Some real-
world applications include social networks in computational
social sciences, sensor networks in communications, functional
networks in brain imaging, regulatory networks in genetics,
and meshed surfaces in computer graphics. Hence directly
applying the Euclidean-based state-of-the-art approaches often
results in poor or less informative performance. Furthermore,
Euclidean distance cannot preserve the correlation and the
drawback limits to understand non-stationary data. To over-
come this problem, we focus on developing a novel method
on non-Euclidean space.

Interestingly, relatively simple machine learning techniques
can produce state-of-the-art results as soon as the particular
Riemannian geometry is taken into account [6], [7]. Although
the overall structure of the metric learning is preserved in
the context of neural networks, its generalization to Rieman-

nian manifold requires geometric tools on the manifold. In
this work, we further assess the particular interest of metric
learning for Riemannian manifold in the context of learning
on scarce non-linear data with lightweight models. We focus
on the original architecture proposed in [8].

In this paper, we devise a new non-linear rank loss by
leveraging a concept of the Riemannian Potato (RP) defined
in [9]. The RP provides a measure of dispersion using the
distribution of distances between covariance matrices and a
reference matrix and rejects epochs whose covariance matrices
lie out of a region of acceptability defined by a z-score
threshold. Inspired by the principle of the RP, our loss function
aims to pull positive points closer than the potato-shaped
region of acceptability (z-score) and push negative points out
of the boundary. We find that our loss on a Riemannian neural
network [8] with rank perspective has better performance than
current Euclidean-based DML approaches for learning dis-
criminative non-linear embeddings. Our approach can further
jointly reduce the intra-class distances and enlarge the inter-
class distances for the learned features, and preserve the cor-
relations of the non-linear features. As such, our contributions
are the following:
• We propose a new ranking loss to learn discriminative

embeddings on non-Euclidean spaces. By leveraging the
concept of Riemannian Potato, we exploit the structure
of non-linear embedding spaces.

• We achieve new state-of-the-art performance on three
popular benchmarks, reducing the intra-class distances
and enlarging the inter-class distances for the learned
features.

II. RELATED WORK

A. Metric Learning Methods

Metric learning aims to learn an embedding space, where
the similar samples are encouraged to be closer, while dissim-
ilar ones are pushed apart from each other. We give a brief
review of the-state-of-the-art methods below, and we compare
our proposed loss function to them experimentally in Section
4.

Contrastive Loss [2] aims to minimize the distance between
two samples f(xi) and f(xj) if they are categorized in the
same label and to maximize otherwise. Triplet Loss [3] takes



a set of triplets, i, j, and k are the indexes of anchor, positive,
and negative points, respectively. The loss function aims to
pull the anchor point closer to the positive than to the negative
point by a fixed margin m.

L(X, y) =
1

T
∑

(i,j,k)∈T

[d2
(i,j) − d

2
(i,k) + α]+, (1)

where T is the set of triplets, d(i,j) is the Euclidean distance
between the two points. The operation [·]+ denotes the hinge
function, and m denotes a fixed margin constant.

N-pair-mc [5] interacts with more negative examples. The
loss function aims to identify one positive point from N − 1
negative points of N − 1 classes.

L(X, y) =
λ

N

N∑
i

‖f(Xi)‖2

− 1

P
∑

(i,j)∈P

log
Ξ(Xi)

Ξ(Xi) +
∑
k:y[k]6=y[i] Ξ(Xi)

, (2)

where Ξ(Xi) = exp{f(Xi)
ᵀf(Xj)}, N is the number of the

samples, and λ is the regularization constant on the embedding
vectors.

Lifted Struct [4] argued that the contrastive and triplet loss
function are challenging to explore full pair-wise relations
between samples in a mini-batches. The objective of Lifted
Struct is to pull one positive pair(xi, xj) as close as possible
and push associated negative points farther than a margin m

L(X, y) =
1

2|P|
∑

(i,j)∈P

[log(
∑

(i,k)∈N

exp{α− d(i,k)}

+
∑

(j,l)∈N

exp{α− d(j,l)}) + d(i,j)]
2
+, (3)

where N denotes the set of pair-wise examples with different
labels.

Recently, many efforts have been devoted to devising new
loss functions to learn a non-linear embedding of data. Schall
et al. [10] proposed a rank-based approximation with a non-
linear transfer function. Xu et al. [11] presented a kernel-based
approximation approach to capture non-linear relationships
between samples. Another line of DML which is related to our
approach is to use statistics of data. Yuan et al. [12] proposed a
distance metric by leveraging a concept of the signal-to-noise
ratio (DSML), denoting anchor features as signals and other
features as noisy signals.

B. Riemannian Geometry in Metric Learning

A Riemannian manifold is a differential manifold equipped
with a varying inner product smoothly on each tangent space.
Riemannian metrics of the manifold are the family of inner
products on all tangent spaces. Given two points in a curved
space, the shortest path can be defined by minimizing the
length of a curve between the points, geodesic distance, which
is analogous to straight lines in Euclidean space, but a more
natural measure between the two points than the Euclidean

distance. Several metrics have been presented to capture its
non-linearity such as the affine-invariant metric (AIM) [13],
log-Euclidean metric (LEM) [14], Stein divergence [15], Burg
matrix divergence [16], and alpha-beta divergence [17]. The
two most widely used distance measures as true geodesic dis-
tances induced by Riemannian metrics are the log-Euclidean
distance

δL(Σ1,Σ2) = ‖log(Σ1)− log(Σ2)‖F (4)

and the affine-invariant distance.

δR(Σ1,Σ2) = ‖log(Σ
−1/2
1 Σ2Σ

−1/2
1 )‖F

= (

C∑
c=1

log2λc)
1/2, (5)

where λc, c = 1, . . . , C are the eigenvalues of Σ
−1/2
1 Σ2Σ

−1/2
1 .

Most existing methods learn the SPD distance measure in
a more discriminative space such as the Euclidean tangent
space [18], [19], [20] and the reproducing kernel Hilbert
space (RKHS) [21]. Vemulapalli and Jacobs [18] proposed
a Mahalanobis-based metric learning method on the tangent
space. Huang et al. [19] introduced the LEM learning (LEML)
approach to transform the matrix on the tangent space to
other tangent spaces. Zhou et al. [20] presented a sample-
specific version of LEML named α-based covariance-like met-
ric learning (α-CML) that learns to adjust eigenvalues of the
SPD matrix for more discriminative power. Besides, several
metric learning methods [22], [23] combine the discriminative
abilities of multiple types of manifold representations into
RKHS. Quang et al. [21] generalized the LEM between
two finite-dimensional SPD matrices to infinite-dimensional
covariance matrices in RKHS by Hilbert–Schmidt operators.
To overcome the inaccurate approximation of the Euclidean
space and preserve the SPD manifold structure, Harandi et
al. [24] proposed projecting the high-dimensional SPD matrix
into a low-dimensional manifold and learning a metric in the
new manifold.

Although various metric learning approaches have been
studied on non-linear manifolds, most existing methods are
notoriously computation-heavy on optimization problems. To
overcome this problem, we devise a new rank-based metric
learning method in the context of deep neural networks,
learning on scarce data with lightweight models.

III. METHODOLOGY

A. Principle of the Riemannian Potato

The Riemannian Potato (RP) is a multivariate adaptive
method for identifying artifacts in continuous data [9]. A
potato-shaped region of acceptability is induced by the non-
linearity of Riemannian manifold. Since the geometry of co-
variance matrices captures multivariate second-order statistics
of data, the RP is based on covariance matrices that are
symmetric positive definite (SPD) processed in a Riemannian
manifold. The principle of the RP is to represent clean signals



Fig. 1. The overview deep learning framework of our proposed ranking loss with SPDNet. For each input mini-batch, every SPD matrix acts as a query and
obtains a list ranked by the z-scores on RP embeddings. For each ranked list, we sample and group less trivial samples into the positive and negative sets
based on their margin losses with respect to the query. At last, our proposed loss is computed with the joint supervision of positive and negative sets for
every query.

by estimating a reference covariance matrix and a measure of
dispersion (z-score) for a epoch t,

zt =
log(dt/µt)

log(σt)
, (6)

where dt = δR(Σt, Σ̄t−1) is the Riemannian distance between
the current covariance matrix Σt and the reference matrix
Σ̄t−1, which is the geometric mean of i ∈ [0, I] numbers
of Σi. The reference matrix Σ̄ can be defined by minimizing
the dispersion of Σ on the manifold M such as the sum of
squared distances:

Σ̄ = arg min
Σ∈M

NI∑
i=1

δ2
R(Σi,Σ), (7)

where NI can be the maximum number of iterations. The
mean µ and the standard deviation σ are

µt = exp(
1

t

t∑
i=1

log(di)), (8)

σt = exp(

√√√√1

t

t∑
i=1

(log(di/µi))2. (9)

Then, the RP rejects all artifacts whose covariance matrices
are too far from the reference Σ̄ according to an objective
statistical criterion based on z-score threshold zth. Typically
it is 2.5 to define the hull of acceptability, rejecting around
0.6% of data under Gaussian assumption. We should note that
arithmetic definitions in the original RP [9] are not optimal
because Riemannian distances are not normally distributed.
Since distances empirically follow a non-negative highly right-
skewed distribution, we modeled them in Eq. (6), (8), and (9)
by a log-normal or chi-squared distribution [25].

B. Riemannian Potato-based Ranking Loss (RPL)

Inspired by the principle of the RP, we define the hull of
acceptability by estimating a reference matrix Σ̄ with positive
pairs which are the same classes as a anchor covariance matrix.

Hence, adding a superscript c to index the C classes in Eq. (6)
∼ (9), our loss function, RPL, aims to pull positive samples
from the same class with c closer than a predefined RP
threshold zth and push negative samples out of the boundary,
separating the positive and negative sets by a margin m. Given
a SPD matrix Σi and the associated label c = yi ∈ C, m is
the margin between the two boundaries as follows:

L(Σi,Σj , yi; f) = (1− yij)[zth − zcj )]
+ yij [z

c
j − (zth +m)]+, (10)

where yij = 1 if c = yi = yj and yij = 0 otherwise. zcj is
the z-score of Σj for a class c with the AIR distance between
two points δR(Σj , Σ̄

c
i−1) in Eq. (5).

1) Mining Strategy on the Riemannian Potato Embedding:
High retrieval quality does not depend on the actual distances,
but rather on the ranking order of the features from similar
examples. Hence, given a query Σi, we rank all other sample
points according to their similarities to the query (See Fig. 1).
In each class c ∈ C, positive samples in the positive set Pci
and negative samples in the negative set N c

i are given by

Pci = {∀Σj |j 6= i ∧ c = yi = yj}, (11)

N c
i = {∀Σj |c = yi, yi 6= yj}. (12)

Metric learning methods have adopted sampling strategies for
pairs and triplets in neighborhood relationships from class la-
bels. Similar as in [26], we focus on less trivial samples which
have non-zero losses in violation of the pairwise similarity
for the retrieval problem. Furthermore, our strategy retrieves
samples on the class level since instance-based sampling
cannot guarantee that each example has at least one neighbor
in the same minibatch. We denote the sets of non-trivial
positive P̂ci and negative N̂ c

i samples with respect to a query
Σi as

P̂ci = {∀Σj |j 6= i ∧ c = yi = yj , z
c
j > zth}, (13)

N̂ c
i = {∀Σj |c = yi, yi 6= yj , z

c
j < zth +m}. (14)



2) Joint Loss: A perfect clustering can be achieved if and
only if all distance to negative examples are larger than a
boundary zth. Consequently, all samples from the same class
are grouped into a hypersphere with zth diameter. To pull
all non-trivial positive points in P̂ together and learn a class
hypersphere, we minimize:

LP (Σi, yi; f) =
1

|P̂ci |

∑
Σj∈P̂ci

L(Σi,Σj , yi; f) (15)

To push the non-trivial negative points in N̂ , beyond the
boundary zth +m, we minimize:

LN (Σi, yi; f) =
1

|N̂ c
i |

∑
Σj∈N̂ ci

L(Σi,Σj , yi; f) (16)

In RPL, we adopt the joint supervision of the two objective
functions to enhance the discriminative power of deep features
as follows:

LRP (Σi, yi; f) = LP (Σi, yi; f) + λLN (Σi, yi; f), (17)

where λ controls the balance between positive and negative
sets. With the joint supervision, not only the inter-class fea-
tures differences are enlarged, but also the variations of the
intra-class feature are reduced.

C. Stochastic RP Optimization on Mini-Batches

We optimize the proposed RPL using stochastic gradient de-
scent (SGD) with mini-batches. Each mini-batch is randomly
sampled from the whole training classes, emits one RPL value,
and the overall objective is the average of the RPL values as
follows:

L̄RP =
1

N

∑
LRP (Σi, yi; f), (18)

where N is the batch size and geometric statistics of RP are
updated as

µi = exp((1− βδ)log(µi−1) + βδlog(di)), (19)

σi = exp(
√

(1− βδ)(log(σi−1)2 + βδ(log(di/µi))2), (20)

Σ̄i = Σ̄
1
2
i−1(Σ̄

− 1
2

i−1ΣiΣ̄
− 1

2
i−1)βδ Σ̄

1
2
i−1, (21)

where βδ ∈ [0, 1] defines the learning rate for adaptation
in online implementations. A hyper-parameter NI in Eq. (7)
defines the number of positive covariance matrices used for
initializing the region of acceptability to model an accurate
estimate for the mean and the distribution of distances to it,
which will significantly influence the retrieval performance.
Otherwise, the RP will be inefficient to separate negative
examples. For the calibration method to initialize the region of
acceptability, we uniformly sample the NI numbers of samples
for each class c and estimate the geometric statistics µ, σ, and
Σ̄ Eq. (7) ∼ (9) before training.

Since the geometric mean has no closed form and is nega-
tively affected by ill-conditioned input matrices [27], we use a
gradient descent algorithm [28] in stochastic optimization on
mini-batches for solving the minimization of sum-of-squared

Algorithm 1 Riemannian Potato-based Ranking Loss
Input: {{zci }

Nc
i=1}Cc=1 = {(Σi, yi)}Ni=1, the embedding func-

tion f(·), the learning rate βL and βδ
Output: Updated f(·)

1: for all embeddings f(zci ) ∈ {{f(zci )}
Nc
i=1}Cc=1 do

2: Sample less trivial positive points in P∗c,i.
3: Sample less trivial negative points in N ∗c,i.
4: Compute the joint loss in Eq. (17).

Update geometric statistics of the RP in Eq.(19) ∼ (21).
5: end for

Compute the averaged loss in Eq. (18).
Compute the gradient ∇f = ∂L̄RP (Σi; f)/∂f .

6: return f(·) = f(·)− βδ · ∇f

distance function. The proposed loss function on one mini-
batch is summarized in Algorithm 1, and the overall pipeline
for our loss on SPDnet is shown in Fig. 1.

IV. EXPERIMENT

We evaluate the proposed loss function on different tasks:
emotion classification from EEG [29] and facial images [30],
and skeleton-based human action recognition [31] from images
using three popular datasets, where SPD matrix representation
has achieved great success.
• DEAP [29]: Database for Emotion Analysis Using Phys-

iological Signals (DEAP) is a large-scale dataset for 32-
channel EEG-based emotion recognition. This dataset
contains EEG signals of 32 participants; each participant
watched 40 one-minute-long excerpts of music videos.
The dataset contained continuous valence ratings on
scales from 1 to 9 rated directly after each trial. We
grouped the continuous valence labels into k discrete
states, denoting as DEAP-k. For instance, DEAP-3 com-
prises negative (1 ∼ 3), neutral (4 ∼ 6), and positive
(7 ∼ 9) valence ratings. As similar in [32], for each
channel, all EEG signals are first band-pass filtered with a
bandwidth of 4 ∼ 47Hz, and electrode-wise exponential
moving standardization is then performed to compute
exponential moving means and variances, both of which
are used to standardize the continuous data. As a result,
each EEG signal is represented by a 32×32 SPD matrix.

• AFEW [30]: Acted Facial Expression in the Wild
(AFEW) dataset contains 1,345 video sequences of seven
facial expressions acted by 330 actors in movies. To
evaluate the performance on the validation set, we follow
the setting in [8]. Each facial frame is normalized to an
image of size 20×20 for extracting the covariance matrix
feature of size 64× 64.

• HDM05 [31]: Hochschule der Medien (HDM05) is a
large-scale dataset for the problem of skeleton-based
human action recognition. The dataset contains 2,337
sequences of 130 action classes, which provides 3D
locations of 31 joints of the subjects. As similar in [8], we
divide the training sequences set to around 18,000 small
sub-sequences in each random evaluation and represent



Fig. 2. The distribution of deeply learned SPD features (Inter- and Intra-
distances) on DEAP dataset.

each sequence by a joint covariance descriptor(SPD ma-
trix) of size 93×93, which is calculated by a second-order
statistics of the 3D coordinates for the 31 joints in each
frame.

A. Experimental Setup

We compare our RPL to a series of state-of-the-art methods
which are tested under the same setting: Triplet-Random,
Triplet-Semihard, Lifted Struct, N-Pair, NRA, and DSML-
Triplet. All methods have been described in Section 2. For
a fair comparison, learning rate βL was set to 1× 10−3 with
5×10−4 weight decay. βδ was set to 1/t with the initialization
of NI = 100, giving a cumulative moving average. The batch
size was set to 150, the weights were initialized as random
semi-orthogonal matrices, and the rectification threshold ε was
set to 10−4. Early-stopping during validation with a fixed
patience size was adopted to prevent an overfitting in learning
the deep features. We report the retrieval performance and
the clustering quality in terms of F1 score, Recall@K, and
NMI. SPDNet was used as our backbone network [8]. For
AFEW and HDM05, three BiMap layers and two ReEig layers
are configured. The parameters on AFEW are set to 400 ×
200, 200 × 100, and 100 × 50, respectively. The parameters
on HDM05 are set to 93 × 80, 80 × 40, and 40 × 20,
respectively. For the DEAP dataset, we configured one BiMap
Layer and one ReEig Layer as the feature extractor, whose
parameters are set to 64 × 32. For other parameters of the
compared methods, we empirically set the best parameters
with the highest accuracy based on the original study.

B. Experimental Results

Table I, II, and Fig. 2 report the performance on the three
different datasets. We have the following observations.
• Overall, our method outperformed all the compared ap-

proaches, which validates the effectiveness of our pro-
posed loss function. Particularly, the F1 and R@1 on the

three datasets were higher than previous state-of-the-art
methods. Among the baselines, the triplet loss with uni-
form sampling always performed the worst. These results
support the significance of mining positive and negative
examples on non-Euclidean space. Furthermore, when
triplet loss with hard negatives, the results became poor
severely in R@1, R@3, and NMI. This bad performance
on triplet loss implies the loss may waste gradient update
on SPD matrices far away from the decision boundary.

• Discriminative power of our loss function can be found
in Fig. 2, which showed the pairwise distances between
the Riemannian centers of each class and matrices within
a class (intra-class distances), and with different classes
(inter-class distances). The result indicates that the fea-
tures learned by our loss exhibit more clear discriminative
structures, while the other loss presents relatively vague
structures. Although the NMI result from our method
slightly underperforms with comparison to the Proxy
NCA on the DEAP dataset, the encouraging perfor-
mances of our loss in Table II and Fig. 2 show that
our Riemannian distance-based metric learning approach
has more power to enlarge the inter-class distances and
reduce the intra-class distances than the traditional Eu-
clidean distance metric such as Lifted Struct and NRA.
While the Proxy NCA had a good performance in inter-
class distance, the softmax-based computation was not
discriminative enough to reduce intra-class variations.
The Lifted Struct method had similar performance to
reduce the intra-class distance, but their Euclidean-based
distance metric was not accurate enough to enlarge inter-
class distance. The proposed method on SPD matrices
led to better performance when the study on reducing
the semantic distances between continuous labels was
conducted.

• Different modalities on the three datasets had different
effects on learning their characteristics by discriminating
each of f functions. Except for the proposed loss, none
of the other methods always wins due to the difference
in dataset properties, including class imbalance, noisy
labels, etc. Most loss functions had significant difficulty
in learning non-stationary EEG signals on the DEAP
dataset. This result indicates applying non-linear and non-
stationary data to Euclidean-based metric learning leads
to incorrect measurement of semantic distances. On the
other hand, our method consistently shows the superiority
to Euclidean-based metric learning methods.

C. Ablation Studies

1) The Effect of Batch Size: The batch size is critical
element for the model performance in deep metric learning
since it determines the size of retrieval problems during
training. In our loss, the batch size decides the number of
negative class labels and influences to shape the RP in Eq.
(8) and (9). In order to study the influence of batch size in
our approach, we fix the number of SPD matrices per class
and only vary the size of batch size and measure the R@1



TABLE I
COMPARISON WITH THE STATE-OF-THE-ART METHODS ON DEAP, AFEW, AND HDM05 IN TERMS OF F1 (%), RECALL@K (%) AND NMI (%). ALL

THE COMPARED METHODS USE SPDNET AS THE BACKBONE ARCHITECTURE.

Method
DEAP-4 AFEW HDM05

F1 R@1 R@3 NMI F1 R@1 R@3 NMI F1 R@1 R@3 NMI

DSML-Triplet 38.7 35.5 37.8 36.1 29.3 31.3 34.2 31.9 53 57.3 58.5 52.4
Triplet-Random 33.5 31.4 32.5 28.7 25.8 25.1 25.4 27.4 48.3 44.5 47.5 45.6
Triplet-Semihard 35.5 30.1 31.4 27.3 27.4 24.4 30.5 28 51.3 50.4 55.3 47.5
Lifted Struct 35.3 35.2 35.8 33.4 32.5 35.4 38.4 39.4 55.5 59.3 59.2 53.4
N-pair-mc 41.5 38.4 39.5 34.8 34.4 33.5 36.4 35.1 59.8 60 61 59.4
Proxy NCA 39.8 41.3 41.4 38.1 34.5 34.2 36 36.3 59 63.3 64.5 62
NRA 42.2 44.4 46.2 37.2 35.2 36.5 38.6 36.8 59.2 64.3 65.2 64.1

RPL 43.3 44.7 46.2 37.5 36.4 36.5 39.4 36.4 59.4 66.7 68.8 65.4

TABLE II
COMPARISON WITH THE STATE-THE-OF-ART METHODS ON DIFFERENT

DEAP DATASET SETTINGS. THE EVALUATION SETTINGS FOLLOW TABLE
I. DEAP-K GROUPED THE CONTINUOUS VALENCE LABELS INTO k

DISCRETE STATES.

Method
DEAP-2 DEAP-3 DEAP-9

F1 R@1 F1 R@1 F1 R@1

DSML-Triplet 54.3 57.9 40.4 39.1 20.4 19.7
Triplet-Random 46.2 52.7 36.8 35.4 14.3 13.6
Triplet-Semihard 53.1 55 38.4 37.3 17.4 18.4
Lifted Struct 56.4 59.2 40.8 39.4 21.5 19.4
N-pair-mc 59.6 58.4 43.5 42.8 20.4 21.2
Proxy NCA 58.9 61.3 43.4 43.1 20.5 19.2
NRA 60.5 63.4 44.6 47.1 21.1 20.9

RPL 63.8 66.9 45.2 47.5 23.4 23.5

on all three datasets. The results are reported in Fig. 3. We
observe R@1 monotonically improves with larger batch size.
This may resonate with the fact that large batches reduce the
variance of the stochastic gradients and statistic values in the
RP.

2) The Effect of the Parameter λ: The λ is a hyper-
parameter of RPL to dominate negative sets. It determines
the balance of the two sets in discriminative feature learning.
To investigate the sensitiveness of the parameter, we vary λ
from 0.1 to 1, keeping other parameters fixed. Fig. 4 shows the
impact on test set performance in terms of R@1. Intuitively,
increasing the value of λ during training would improve the
classification performance of the deeply learned features. We
also observe that the performance remains largely stable across
a wide range of λ.

3) Geometric Statistics on Online RP: Another hyper-
parameter of RPL is the maximum number of iteration NI for
initializing the RP to reach convergence on geometric statistics
in Eq. (7). It determines the robustness of representing positive
sets P as RP. To study its effect, we also vary numbers of NI ,
keeping other parameters fixed. Fig. 5 shows the impact on test
set performance in terms of R@1 and the convergence curve

Fig. 3. Recall@1 results of different batch size on the three datasets (DEAP,
AFEW, and HDM05).

on the DEAP dataset. Intuitively, increasing the number of NI
during training would result in a robust approximation of RP,
converging quickly. However, we observe that retrieval per-
formance and the convergence have not necessarily improved
with more epochs.

V. CONCLUSION

In this paper, we proposed a rank-based metric learning
method for learning discriminative embeddings and showed
the efficacy on classifying non-linear data. Given a query
covariance matrix, our RPL splits its positive and negative
sets and forces a margin between them on a SPD manifold.
In addition, non-trivial samples mining and negative examples
weighting are exploited to make better use of all informative
data points. The proposed method achieves state-of-the-art per-
formance, reducing the intra-class distances and enlarging the
inter-class distances for learned features. Our next work will
study the non-stationary nature of brain activity as revealed by
EEG, which has been subject to noises from various artifacts,



Fig. 4. Recall@1 results of different λ on the three datasets (DEAP, AFEW,
and HDM05).
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Fig. 5. The (a) convergence curves (loss) and (b) the Recall@1 performance
of different initialization NI on the DEAP-2 dataset during training

low signal-to-noise ratio (SNR) of sensors, and inter- and intra-
subject variability. Hence, we will investigate the efficacy of
RP-based metric learning for discriminating EEG signals and
show the progression patterns of the classification in training
on additional datasets such as EEGBCI [33].
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