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Abstract— In this study, we addressed a path planning
problem of a mobile robot to construct highly accurate 3D
models of an unknown environment. Most studies have focused
on exploration approaches, which find the most informative
viewpoint or trajectories by analyzing a volumetric map. How-
ever, the completion of a volumetric map does not necessarily
describe the completion of a 3D model. A highly complicated
structure sometimes cannot be represented as a volumetric
model. We propose a novel exploration algorithm that considers
not only a volumetric map but also reconstructed surfaces.
Unlike previous approaches, we evaluate the model complete-
ness according to the quality of the reconstructed surfaces and
extract low-confidence surfaces. The surface information is used
to guide the computation of the exploration path. Experimental
results showed that the proposed algorithm performed better
than other state-of-the-art exploration methods and especially
improved the completeness and confidence of the 3D models.

I. INTRODUCTION

Precise 3D models of large structures are increasingly
required in many industrial applications, such as the digiti-
zation of cultural heritage, renovation design, and structural
inspection. Traditionally, the modeling process has been
performed manually; however, some studies in recent years
have tried to use mobile robots to automatically generate
the models [1] [2] [3]. For the autonomous task, mobile
robots iteratively compute the optimal views to reconstruct
a structure and complete the model by sensing the views.
This is known as a next-best-view (NBV) problem [4]. If
the mobile robots model an unknown environment, this is
defined as an exploration problem.

In this study, we investigated a path planning problem
for mobile robots to construct highly accurate 3D models
of unknown structures. Most studies [1] [2] [3] [5] have
used a volumetric reconstruction method [6] to represent the
environment as a volumetric map. A mobile robot explores
the unknown environment while simultaneously constructing
the volumetric map until it reaches a certain percentage of
completion. The volumetric map has some advantages of
facilitating a visibility check of certain volumes from the
ray-cast operation and allowing the probabilistic occupancy
estimation. Furthermore, free space is directly accessed from
the volumetric map; this is particularly efficient for planning
a collision-free path. After the exploration is completed,
the point cloud streams recorded from a sensor are post-
processed to obtain a complete 3D surface model [2]. How-
ever, even if the volumetric map is complete, it does not
necessarily mean that the quality of the surface model is
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Fig. 1. Example of autonomous 3D modeling of Power Plant structure. The
robot explores around the structure while the structure is scanned with the
attached vision sensor (upper). Our approach computes the exploration path
by analyzing the volumetric (lower left) and surface model (lower right) at
the same time.

also perfect. It is difficult to represent the surfaces of a very
complex model as only free or occupied volumes. Therefore,
the volumetric map is inefficient for completing 3D models
and may provide poor-quality reconstructed surfaces.

To address this problem, we propose a novel exploration
algorithm that considers not only the volumetric map but
also reconstructed surfaces. Unlike previous approaches, we
evaluate the model completeness by analyzing the quality
of the reconstructed surface. The algorithm first extracts
inaccurately reconstructed surfaces by analyzing the quality
and trend of the surfaces from the truncated signed distance
fields (TSDFs) [7]. Frontiers are also extracted from the
volumetric map. Next, the algorithm plans an inspection path
that fully covers both the low-quality surfaces and frontiers.
The inspection path is iteratively refined according to the
updated surfaces and volumes until a specific local area is
completely modeled. Our algorithm then fully analyzes the
3D graphical surfaces and efficiently explores the unknown
region at the same time.

The remainder of this paper is structured as follows. Sec-
tion II presents the related works on mobile robot exploration
and autonomous modeling. Section III defines the considered
problem, and Section IV describes the proposed approach in
detail. Section V gives the experimental results, and Section
VI provides the conclusions and future works.

II. RELATED WORKS
NBV algorithms automatically compute a new viewpoint

to take the most informative sensor measurements from the
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environment. Recently, they have been extensively employed
in the field of robotics due to the growth of practical applica-
tions, including autonomous 3D modeling and environment
exploration tasks. The estimation from an NBV algorithm
can be used to guide a robot to plan a sensing strategy
in various autonomous systems. According to Scott et al.
[8], NBV algorithms can be classified into two categories:
volumetric and surface-based methods.

Volumetric methods determine an NBV by analyzing spa-
tial information from a volumetric map. As noted earlier, the
volumetric map is appropriate for exploration tasks because
of its accessibility of spatial information that can be used for
collision avoidance, ray casting, and so on. Yamauchi [9]
first defined frontiers as a boundary between the explored
and unexplored areas in a map. The frontier concept has
been applied to volumetric maps and used in various 3D
exploration and modeling algorithms [2] [3] [5] [10] [11]
[12]. Shen et al. [10] used a frontier-based method with a
particle-based representation of 3D space. The expansion of
a particle system is related to the unexplored region, and it
enables a mobile robot to explore an indoor environment.
Cieslewski et al. [11] extended the original frontier-based
method [9] to explore as much as possible at high speed.
The method determines a goal frontier from the current
field of view, reducing changes in velocity. Bircher et al.
[2] employed a receding horizon planning strategy for the
exploration algorithm, which samples feasible trajectories
using a rapidly exploring random tree (RRT) and moves
to the first node of the best trajectory. In our previous
work [12], we proposed an online inspection method for
the exploration and modeling of unknown environments.
The algorithm efficiently explores local unknown regions
and improves the completeness of constructed volumetric
models. In this work, we extend the online inspection method
[12] to additionally account for the surface information of a
model.

Surface-based methods evaluate viewpoints by analyzing
the shape of the surfaces constructed so far. Such methods
focus on completing the surface model, which consists of a
surface mesh or high-resolution point cloud. Most surface-
based methods [13] [14] [15] are generally utilized to model
small-scale objects, not large structures. Chen and Li [14]
estimated the surface trend of a target object in an unknown
region. Their method can be applied to simple and smooth
surfaces, but it is not applicable to complex structures. Wu et
al. [15] measured the confidence of surfaces estimated from
Poisson surface reconstruction [16]. The confidence is de-
fined as the completeness and smoothness of the constructed
iso-surfaces. Their approach uses the confidence values to
generate an ambient viewing field, which provides a set of
NBVs for covering low confidence regions. Kriegel et al.
[17] proposed a combined approach of surface-based and
volumetric methods. They first generated a set of scan paths
from the surface trends estimated by boundary detection
and then evaluated the information gain with the volumetric
model.

Fig. 2. Overall system architecture of the proposed framework.

A. Contributions

State-of-the-art approaches to autonomous modeling of
unknown large environments [2] [3] [5] [11] [12] have
focused on exploring the volumetric map while disregarding
the reconstructed surface quality. On the other hand, surface-
based methods [13] [14] [15] can be used to analyze the
reconstruction quality but have been mostly applied to pre-
cise modeling applications of small objects. We propose a
method to generate a complete surface model by applying a
surface-based method to an exploration algorithm.

The contributions of this paper can be summarized as
follows: (i) Unlike past solutions, we apply a surface-based
method to the exploration problem in order to reconstruct
a complete surface model. (ii) We provide an efficient
inspection algorithm that provides full coverage of surfaces
and volumes by applying different sampling methods to each
model. (iii) We propose a method to compute the sector
visitation order. This method provides a global coverage
sequence of a 3D unknown environment and can minimize
the number of sector revisits. (iv) We empirically evaluated
our approach in two simulated scenarios: modeling a sin-
gle structure and modeling multiple structures. The results
proved the effectiveness and applicability of our method.

III. PROBLEM DESCRIPTION

In this study, we considered the problem of a mobile
robot exploring an unknown and spatially bounded 3D space
V ⊂ R3 while ensuring high-quality surface reconstruction
of structures in the space. We assumed that the robot is
equipped with a forward-looking vision sensor such as a
stereo camera or Kinect sensor and RGB-D data are collected
from the sensor. The sensor has some constraints, such as
the max/min sensing ranges, field of view, and minimum
incidence angle. The estimated RGB-D data are integrated
into a probabilistic volumetric mapM and used to construct
a surface model F at the same time. The volumetric map is
constructed with the Octomap framework [6] and represents
the workspace in three states: occupied (Voccupied ⊂ V ),
free (Vfree ⊂ V ), and unknown (Vunknown ⊂ V ). The
surface model is constructed from TSDFs, which implicitly
represent surfaces as high-resolution fields. The TSDFs can
filter sensor noise from a large amount of sensing data
and quickly estimate the surface point cloud with the zero-
crossing method [7]. The ultimate objective is to fully ex-
plore the unknown space in the volumetric map and construct
a high-quality surface model in a short period of time.
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Algorithm 1 Proposed path planning algorithm
Input: Volumetric mapM, TSDFs F , Current configuration

qcurr, Current sector ssurr, and Sector set S.
1: snext ← GetNextSector(S, scurr)
2: Rsearch ← GetSearchRegion(scurr, snext)
3: qgoal ← ComputeGoalConf(qcurr, snext, Rsearch)
4: while qcurr 6= qgoal do
5: [Rsurfsearch, R

non−surf
search ]← DivideParts(M, Rsearch)

6: Psurf ← GetSurfacePoints(F , Rsurfsearch)

7: Xfront ← GetFrontierPoints(M, Rnon−surfsearch )
8: if #(V newfront) > θfront then
9: ξlocal ← InspectionPathP lanning

(qcurr, qgoal, Psurf , Xfront, Rsearch)
10: end if
11: MoveToward(ξlocal)
12: Update(M,F , qcurr)
13: end while

We denote the configuration of the mobile robot as q ∈ Q,
where Q ⊆ Rn is the configuration space. We assumed
that the localization of the robot is precise, so the exact
configuration can be accessed. The path ξ : [0, 1] → Q is
defined as a sequence of configurations. It is computed only
within the known free space Vfree in M, which guarantees
collision-free navigation.

IV. PROPOSED APPROACH

To consider the problem of surface reconstruction and
exploration of an unknown environment, the proposed ap-
proach plans an exploration path by analyzing the volumetric
map M and surface model F . We decompose the whole
space into equal-sized cuboid regions denoted as sectors S.
The mobile robot consistently computes the visitation order
of the sectors and sequentially completes the entire model
according the visitation order. Therefore, we can reduce the
number of revisits of the sectors and the total length of the
robot trajectory. For each sector, we divide the volumetric
map into two parts: a surface-containing region and a non-
surface region. In the surface-containing region, the method
focuses on improving the reconstruction quality by analyz-
ing the TSDFs. In the non-surface region, the volumetric
approach is employed to account for the exploration of the
unknown regions on the volumetric map.

Fig. 2 shows an overview of our framework tested, and Al-
gorithm 1 shows the pseudocode of the proposed algorithm.
We adopted an online inspection methodology [12], which
first determines a goal configuration and then iteratively
plans a local inspection path to cover the local region. The
algorithm first determines the next sector snext by computing
the visitation order of the sectors in the current map (line 1
and Section IV.A). We define the search region Rsearch as an
area inside the sectors starting from scurr to snext (line 2).
The algorithm determines the goal configuration qgoal that
maximizes the information gain and closes to the center of
snext at the same time (line 3 and Section IV.B). The robot
moves to qgoal and simultaneously plans the local inspection

Fig. 3. The extraction process of target surface points: We first obtain an
incomplete point cloud (a) and its TSDF weight value (b) by detecting the
zero-crossing of TSDFs. The high-weight points are shown in red and low
weight in blue. We then reconstruct the tentative surface model (c) using
screened Poisson reconstruction algorithm. Finally, the target surface points,
green normal points, are estimated by extracting the low confidence surfaces
(d). The gray points represent the zero-confidence surfaces.

path ξlocal to completely reconstruct surfaces in Rsearch.
The local path is iteratively refined according to the updated
surfaces until the modeling in the local area is complete (lines
4-13).

To compute the local path, our approach first di-
vides the volumetric map in Rsearch into two parts: the
surface-containing region Rsurfsearch and non-surface region
Rnon−surfsearch (line 5). Rsurfsearch is a region that contains the oc-
cluded cells and their surrounding cells at a specific distance.
The remaining region excluding Rsurfsearch is Rnon−surfsearch . The
quality and trend of the surfaces in Rsurfsearch are estimated
from F , and low-quality surface points Psurf are extracted
(line 6 and Section IV.C). We then extract the frontier points
Xfront, which are set at the center positions of the frontiers
in Rnon−surfsearch on M (line 7). After Psurf and Xfront

are extracted, our algorithm plans an inspection path that
fully covers them (line 9 and Section IV.D). The inspection
path is iteratively refined according to the updated surfaces
and volumes. The refinement step of the inspection path
is performed only if the number of new frontier points
#(Xnew

front) is greater than the constant value θfront (line
8). If the robot reaches qgoal, the iteration stops. The path
planning approach is repeated until the whole model is
completely constructed.

A. Sector visitation order

We use the information of the current volumetric map to
compute the visitation order of all remaining sectors except
for the already passed sectors. In this section, we regard
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the unknown space in M as free space because the path
between sectors is calculated in a partially known environ-
ment (most are unknown). To solve the problem, we use a
similar approach to that of Das et al. [18], who transformed
the original problem into a Hamiltonian path problem by
applying metric closure. The metric closure method is used
to construct an augmented graph Gaug = (V aug, Eaug) from
an adjacency graph. Each vertex vaugi ∈ V aug is located at
the center of the free space in an unvisited sector si. Each
edge eaugij ∈ Eaug represents the connection of vertices vaugi

and vaugj , and it has a cost value caugij , which is defined as the
shortest path cost between the vertices. Gaug is a complete
graph, which is obtained by finding the all-pair shortest paths
in the adjacency graph.

To efficiently compute the shortest path in a 3D space,
we construct a sparse adjacency graph Gadj = (V adj , Eadj)
from the octree structure [19]. The vertex set V adj is
composed of free octree nodes whose resolution is greater
than the specific resolution θadj−res. The edge set Eadj is
estimated with the neighbor search algorithm from Xu et al.
[19]. The number of vertices in Gadj is significantly smaller
than that of a regular 3D grid. Thus, we can reduce the
computation time of the graph search algorithm. Finally, we
estimate the all-pair shortest paths of V aug by using an A*
search in Gadj and then compute the Hamiltonian path in
Gaug by using a heuristic TSP solver [20].

B. Goal determination

Similar to our previous work [12], we generate a set
of feasible samples by extending branches of a rapidly
exploring random tree T [21] and select the sample with
the most information gain as the goal qgoal. The samples
are only generated in the search region Rsearch. We define
the information gain Gain(qk) as the volume of unknown
cells that can be observed at qk, which is penalized by two
distance factors DT and DE :

Gain(qk) = V is(Rsearch, qk)e−λ·{DT (qcurr,qk)+DE(qk,snext)}

(1)
where V is(Rsearch, qk) is the volume of visible and un-
known cells from qk in Rsearch. The parameter λ penalizes
the long distance factors. DT (qcurr, qk) is the distance of a
path starting from qcurr to qk in the constructed random
tree T , and DE(qk, snext) is the Euclidean distance for
the position of qk and center of the sector snext. These
two distance factors give a higher weight to the sample
trajectory T towards the center of next sector. Therefore, the
determined goal configuration qgoal covers a large amount
of the unknown volume in Rsearch and closes to the center
of snext at the same time.

C. Surface model analysis

In this section, we describe how to extract target surface
points that need to be sensed for the high-quality surface
model. The TSDFs are composed of equal-sized voxels,
and each voxel v contains a signed distance value dv and
weight value wv . dv represents the distance to the closest
surface, and wv represents the reliability of the surface

Algorithm 2 Local inspection path planning algorithm
Input: Current configuration qcurr, Goal configuration

qgoal, Surface points Psurf , Frontier points Xfront, and
Search region Rsearch.
/∗ Surface inspection planning ∗/

1: Csurf ← ClusterSurfacePoints(Psurf )
2: {Q1, ..., QN} ← DualSampling(Csurf , Rsearch)
3: {qπ1 , ..., qπN

} ← SolveGTSP ({Q1, ..., QN}, qcurr, qgoal)
4: ξsurf ← GetLinearPath(qcurr, {qπ1

, ..., qπN
}, qgoal)

/∗ Frontier inspection planning ∗/
5: Pfront ← GetUnV isibleFront({qπ1

, ..., qπN
}, Pfront)

6: ξlocal ← FrontINSPPath(ξsurf , {qπ1 , ..., qπN
}, Pfront)

7: return ξlocal

measurement. We apply the TSDF integration method, as
given by Newcombe et al. [7], to accumulate a simple
constant weight 1 up to the maximum weight wmax. The
estimated surface point cloud can be extracted by detecting
the zero-crossings of the TSDFs (Fig. 3a).

After the surface point cloud is generated, we can recon-
struct a tentative surface model for the structures by using the
screened Poisson surface reconstruction algorithm [16] (Fig.
3c). For real-time computation, we sample the point cloud on
a voxel grid with a resolution that is four times as less as that
of the TSDFs. The reconstructed surfaces are represented as
a set of oriented points P = {(xi, ni)}i=1,...,N , where xi is
the center position of a surface and ni is a surface normal.
We refer to them as surface points. To evaluate the quality
of the reconstructed surfaces, we define the confidence of a
surface point pi as the average weight of neighbor points:

Conf(pi) =

∑
k∈N(pi)

wk

#(N(pi))
(2)

where N(pi) is the neighbor points of pi. The wk is a
normalized weight that ranges from zero to one; it is defined
as wk = wk/wmax. If there is no neighbor point, we set the
confidence value to zero. Finally, the surface points whose
confidence values are lower than θlow−conf are determined as
the target surface points Psurf . The extracted target surface
points are shown in Fig. 3d.

D. Inspection path planning

In this section, we address the inspection problem for both
the surface points Psurf and frontier points Xfront. The
visibility of Xfront is estimated through ray-casting in the
view frustum from a viewpoint. However, the visibility of
Psurf is additionally considered for the incidence angle. The
angle between the surface normal and view direction has to
be smaller than the parameter of the minimum incidence
angle θmin−inc. Thus, the inspection problem of Psurf is
more complicated than that of Xfront; they should be solved
in different ways.

We employ the sampling-based approach [22], which finds
a set of viewpoints that fully cover the target structures by
random sampling. There are two sampling methods for in-
spection: the primal method [12] [23] [24] randomly samples
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Fig. 4. Overview of the process of local inspection path planning algorithm.
The processes are described in 2D for clarity. The algorithm first generates
coverage samples of cluster points by the dual sampling (a) and solves the
GTSP to determine the optimal tour path (b). We then refine the path to
cover the frontiers using primal sampling algorithm [12] (c). The final local
inspection path is shown in (d).

the configuration space until all targets are fully covered,
and the dual method [25] [26] inversely selects a target and
samples the configurations in the cover region where the
target is visible. The cover region of a surface point can be
reduced by the constraint of the incidence angle, so the dual
method is more efficient for Psurf than the primal method.
On the other hand, Xfront has a wide-ranging cover region,
so it is suitable for the primal method. Therefore, we apply
the primal and dual sampling methods to Xfront and Psurf ,
respectively.

We propose a two-step inspection planning approach to
cover both Psurf and Xfront. The first step generates
coverage samples of Psurf by the dual sampling method
and then plans the surface inspection path ξsurf by using
the samples. The path starts from a current configuration,
covers the entire surface points on Psurf , and ends in the
goal configuration. The second step refines ξsurf to fully
cover the frontier points Xfront near the path by using the
primal sampling method. Algorithm 2 shows the pseudocode
of the proposed approach, and Fig. 4 illustrates the path
planning process.

1) Surface inspection planning: To efficiently plan an
inspection path in real time, we process clustered surface
points rather than each individual point. We greedily cluster
multiple nearby surface points by randomly selecting a
surface point and grouping it with all other points within
a distance θclustdist and angle θclustangle between their normals.
We repeat this clustering process until every surface point
belongs to a cluster and reject the clusters with small number

Fig. 5. Two simulated environments in the ROS simulator: (left) Notre
Dame Cathedral model and (right) Power Plant model.

of surface points (line 1). We define a surface cluster ci ∈
Csurf as the averaged surface point of the clustered points.
For each clustered point ci, we generate a sample set Qi ⊂ Q
by the dual sampling method [25] (line 2). The dual sampling
method inversely estimates a cover region where a certain
cluster point ci is visible and uniformly generates samples in
the region. The cover region of ci is estimated by composing
a view frustum from ci to its normal direction and ray casting
into the view frustum for a visibility check. Let ddir be
the distance of a direct path from qcurr to qgoal. A sample
qi is rejected if the total distance of a path from qcurr to
qgoal transferring qi is greater than 1.5× ddir. Furthermore,
the samples outside Rsearch are also rejected. A cluster ci
that does not have any feasible sample is excluded from the
cluster set Csurf .

After the dual sampling, we extract an inspection path of
the surface points by finding the minimum distance trajectory
that visits at least one sample qi ∈ Qi from each sample set.
This is a generalized traveling salesman problem (GTSP).
Given a set of sample sets {Q1, ..., QN}, the GTSP finds
the minimum cost tour starting from qcurr, visits exactly one
sample qi per sample set Qi (line 3), and ends at qgoal. We
represent the optimal tour as a sequence of selected sample
configurations {qπ1

, ..., qπN
}, where Π = {π1, ..., πN} is the

permutation of the cluster indices {1, ..., N} representing
the visitation order. This approach is similar to Hess et
al.’s approach [26], which transforms the GTSP into a TSP
[27] and then computes the solution for the TSP. However,
we use the generalized 2-opt neighborhood method [28] for
computational efficiency. The distance of each configuration
is defined as the Euclidean distance directly connecting the
pairs. If the connection has a collision, the A* planner is
used to connect them.

2) Frontier inspection planning: The planning algorithm
of the local inspection path in [12] is employed to entirely
cover the frontier points on Xfront. The algorithm [12] first
computes the shortest path from the current position to the
goal and iteratively generates coverage samples within a
certain distance dsample from the path. The algorithm utilizes
a streaming set cover approach to maintain a suboptimal
coverage solution in each iteration. The suboptimal solution
is used to decrease the size of the sampling domain to
possibly improve the solution.

We modified the original inspection algorithm [12] to
sequentially follow the sampled configurations {q1, ..., qN}
along ξsurf . First, the visible frontier points from each con-
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(a) RH-NBV (b) Online-INSP (c) SBE

Fig. 6. Results in Scenario 1. Constructed surface models (upper) and volumetric models of the Notre Dame Cathedral object with trajectories taken by
the MAV (lower) at the end of executions of RH-NBV [2] (a), Online-INSP [12] (b), and the proposed SBE (c). Each surface model was color-coded
according to the surface confidence; the high-confidence surfaces are shown in red and low confidence in blue.

TABLE I
PARAMETERS USED IN THE EXPERIMENTS.

Parameter Value Parameter Value

Resolution of F 0.03125m θfront 100

Resolution of M 0.3m θadj−res 2.4m

Size of sector 10×10×5m3 θlow−conf 0.4

λ 0.5 θmin−inc 60◦

dsample 1.5m θclustdist 1m

RRT edge length 1m θclustangle 30◦

figuration qk ∈ {qπ1
, ..., qπN

} are excluded from Pfront (line
5). Instead of computing the shortest path, we directly utilize
the computed path ξsurf and generate the coverage samples
near ξsurf . Similar to the original algorithm, we then use the
online set cover approach to determine the coverage solution
Q∗. The configuration set {qπ1

, ..., qπN
} is integrated into

Q∗. Finally, the inspection path is computed by extracting the
shortest connecting path over all configurations in Q∗ using a
TSP solver [20]. The algorithm then shortens the path length
by using Englot et al.’s heuristic speed-up improvement
method [22].

V. EXPERIMENTAL RESULTS

In order to evaluate the performance of the proposed
method, simulation experiments have been performed using
the RoterS simulator [29] with the micro-air vehicle (MAV)
model of the Firefly hexa-copter. We assume that the MAV is
in a flat state with zero roll and pitch [2], which results in a
4D configuration space comprising 3D coordinates and yaw
angle. We limit the maximum translational speed to vmax =
0.2m/s and rotational speed to ψ̇max = 0.5rad/s. These
limits are small enough for accurate surface reconstruction
and exact path following. A forward-looking stereo camera
was mounted on the MAV. It had a max/min sensing range
of [0.3m, 8m] and field of view of [60◦, 90◦] in the vertical

and horizontal directions. To integrate the acquired RGB-D
data into the TSDFs, we employed the Kintinuous system
[30]. The system can construct a dense surface model over
an extended region by virtually translating TSDFs. For com-
putational efficiency, the surface models were analyzed only
with the TSDF shifting volume in the Kintinuous system.
We set the size of the shifting volume to 16× 16× 16m3.

We considered two simulation scenarios: modeling a
single structure (Notre Dame Cathedral1) and modeling
multiple structures (Power Plant2). All structures in the
scenarios were relatively large and more complex than the
model used in previous studies [2] [12]. Fig. 5 shows each
simulation environment. The proposed approach of surface-
based exploration (SBE) was compared with the receding
horizon NBV algorithm (RH-NBV) [2] and online inspection
approach (Online-INSP) [12]. We used the same parameter
settings for RH-NBV, Online-INSP, and SBE, such as the
edge length of RRT and λ. Table I summarizes all parameters
used in every scenario.

For the comparison, we evaluate the performances from
two perspectives: exploration performance and modeling
quality. To evaluate the exploration performance, we com-
puted the completion time and total path length. When
the mobile robot covered 90% of the actual free space,
we stopped the exploration and evaluated the performance.
We also evaluated the modeling quality from the surface
coverage and average confidence of the reconstructed surface
points. The surface coverage was computed by matching
the reconstructed point cloud to that of the original model
[31]. If the distance between an original point and its closest
reconstructed point was less than the registration distance
of 0.05m, the original point was considered as observed.
The surface coverage is the percentage of the observed point
cloud over the entire original point cloud. We defined the
confidence of the reconstructed surface point as its TSDF

1http://3dwarehouse.sketchup.com/
2http://models.gazebosim.org/
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(a) RH-NBV (b) Online-INSP (c) SBE

Fig. 7. Results in Scenario 2. Constructed surface models (upper) and volumetric models of Power Plant with trajectories taken by the MAV (lower) at
the end of executions of RH-NBV [2] (a), Online-INSP [12] (b), and the proposed SBE (c).

TABLE II
EXPERIMENTAL RESULTS OF TWO SCENARIOS.

Algorithm

——— Scenario 1 ——— ——— Scenario 2 ———

RH-
NBV

Online-
INSP SBE RH-

NBV
Online-
INSP SBE

Completion.
62.92 55.28 57.88 41.26 30.56 34.67Time(min)

Path
583 506 521 376 286 324Length(m)

Coverage
87.75 93.36 97.50 85.59 90.45 96.32(%)

Avg.
0.77 0.80 0.84 0.80 0.85 0.88Confidence

weight normalized to the range [0, 1].

A. Simulation results

We assumed that the bounded space containing the target
structures is provided and the remaining space is free. The
size of the bounded space was defined as 22 × 46 × 25m3

for Scenario 1 and 50 × 32 × 12m3 for Scenario 2. The
MAV constructed volumetric maps and surface models of
the structure while exploring the bounded spaces. Table II
tabulates the results of every scenario as the average of 10
executions. Figs. 6 and 7 show the paths and constructed
volumetric and surface models after the execution of each
best case for Scenarios 1 and 2, respectively.

Online-INSP showed the best exploration performance
in terms of completion time and path length. However,
considering that SBE generated complex local paths for the
surface coverage, the performance gap between SBE and
Online-INSP was not significant. SBE consistently planned
a visitation sequence of the sectors. Thus, it improved the
exploration performance by reducing the number of revisits
of the sectors. RH-NBV and Online-INSP focused only on
planning the local path, so their trajectories sometimes over-
lapped in some regions. As shown in Figs. 6 and 7, RH-NBV
generated a complex path that frequently overlapped while
the path computed by Online-INSP sometimes overlapped.

Fig. 8. The confidence distributions of each constructed surface model.

Even if Online-INSP fully covered the local area, the MAV
sometimes moved through regions that it already covered to
arrive at the next unexplored region. However, in the case
of SBE, the MAV rarely passed through already explored
regions, reducing the total exploration time.

SBE had the best modeling performances in terms of the
surface coverage and average surface confidence. Although
Online-INSP was efficient at volumetric modeling, it did
not completely cover the surfaces of a complex structure.
Occlusions frequently occur in complex structures. Thus,
the surfaces from the complex structures may not be re-
constructed because of the incidence angle factor, even if
the volumetric map recognizes it as an occupied cell. On the
other hand, SBE had 97.50% and 96.32% surface coverages,
which indicates that the complex structures can be covered
by a surface-based approach. In particular, SBE generated
surface models with the highest average confidence; 0.84%
and 0.88%. Fig. 8 shows the confidence distributions of each
constructed surface model. The high confidence surfaces
were distributed over a large percentage, as shown in Figs.
6c and 7c. These results indicate that SBE is suitable for
high-quality surface modeling systems.

VI. CONCLUSION AND FUTURE WORKS

We present a novel exploration method to generate a
complete surface model in an unknown environment. The
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method sequentially visits sectors and completes the entire
model. The key is to analyze the surface trend and quality
on TSDFs and use the results to guide the computation
of the exploration path. When moving to each sector, the
robot iteratively plans an inspection path to cover both the
low-confidence surfaces and frontiers. As a result, we can
efficiently explore an environment and construct a high-
quality surface model at the same time. Experimental results
showed that our method performed better than other explo-
ration methods and especially improved the completeness
and confidence of the constructed surface models.

For future work, we will evaluate the proposed approach
in real-world experiments with a real mobile robot. Our
approach in this paper assumed that the exact pose of a robot
can be estimated and that the robot can follow a planned path
accurately. However, this assumption is not always valid in
real-world applications; we should consider the uncertainty
of the localization and motion of the robot.
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