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Abstract— Multi-view stereo (MVS) algorithms have been
commonly used to model large-scale structures. When process-
ing MVS, image acquisition is an important issue because its
reconstruction quality depends heavily on the acquired images.
Recently, an explore-then-exploit strategy has been used to
acquire images for MVS. This method first constructs a coarse
model by exploring an entire scene using a pre-allocated camera
trajectory. Then, it rescans the unreconstructed regions from
the coarse model. However, this strategy is inefficient because of
the frequent overlap of the initial and rescanning trajectories.
Furthermore, given the complete coverage of images, MVS
algorithms do not guarantee an accurate reconstruction result.

In this study, we propose a novel view path-planning method
based on an online MVS system. This method aims to incre-
mentally construct the target three-dimensional (3D) model
in real time. View paths are continually planned based on
online feedbacks from the partially constructed model. The
obtained paths fully cover low-quality surfaces while maxi-
mizing the reconstruction performance of MVS. Experimental
results demonstrate that the proposed method can construct
high quality 3D models with one exploration trial, without any
rescanning trial as in the explore-then-exploit method.

I. INTRODUCTION

Three-dimensional (3D) modeling of large-scale structures
is an important and ongoing research issue [1]. To address
this issue, multi-view stereo (MVS) algorithms [2] [3] are
widely used because they can estimate wider depth ranges
than stereo cameras or RGB-D sensors. MVS is an offline
method that processes a collection of calibrated images in
a batch to reconstruct the corresponding 3D model. The re-
construction quality of MVS greatly depends on the collected
images [4] [5]. Therefore, it is important to acquire a set of
images that can fully cover a target structure to maximize
the reconstruction performance of MVS.

In order to determine an optimal trajectory that gener-
ates the best 3D model in MVS, view path-planning algo-
rithms are widely used. As a view path-planning method,
an inspection-planning approach [6] [7] [8] is commonly
employed when reconstructing a large-scale structure. Based
on the assumption that a prior model of the target structure
is known, the inspection approach aims to compute camera
trajectories that generates the complete surface coverage of
the prior model. However, for most real-world cases, prior
information of the target structure is unavailable. To address
this issue, studies have proposed the explore-then-exploit
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Fig. 1. 3D reconstruction results. (a) The explore-then-exploit method
[9] with offline MVS [2]. It first constructs an initial coarse model from a
default trajectory (in red) and then computes the coverage path (in blue).
It takes about 11 hours in total (3 hours for coarse model and 8 hours for
detail reconstruction) to process all acquired images. (b) Our method: view-
planning and online MVS system. It reconstructs a 3D scene in real-time
and completes the modeling process in one exploration trial.

method [1] [5] [9] [10]. This method first constructs a coarse
model by exploring an entire scene using a fixed trajectory
within a safe area. Then, based on the coarse model, it plans
an inspection path for the entire model.

However, modeling performance of the explore-then-
exploit method can be degraded for several reasons. First,
this method sometimes generates overlapped trajectories,
which leads to inefficient performance in time because the
camera needs to scan the same areas repeatedly. Second,
even though given images fully cover the target structure, the
MVS algorithms are not guaranteed to generate a complete
and accurate reconstructed model due to textureless scenes,
short baseline distances, and occlusions. Third, the MVS
algorithms usually take a long time to process the images,
which makes the entire modeling process extremely slow.

To address these problems, we propose a novel view path-
planning method based on an online MVS system. The
proposed online MVS system extends monocular mapping
algorithms [11] [12] [13], which focus only on the local
dense mapping, to be adaptable to constructing a large-scale
model. The proposed system handles large amounts of noises
and outliers in 3D data using several post-processing steps,
including noise filtering and depth interpolation. Unlike the
offline methods, our method incrementally constructs the
large-scale 3D models using the surfel mapping method
[14] in real-time. By doing so, it enables to evaluate the
completeness of a model by analyzing the quality of the
reconstructed surface. The proposed method iteratively plans
view paths using the reconstruction quality feedback. It
determines the best views to acquire reference and source
images using the heuristic information of MVS. Based on the
determined views, it provides an optimal camera trajectory
that satisfies the followings: i) to cover low-quality surfaces
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Fig. 2. Overall system architecture of the proposed active 3D modeling framework (see Section III for more details).

in the current scene, and ii) to improve the stereo matching
performance. This planning method then constructs a com-
plete and accurate 3D model in one exploration trial, without
any rescanning trial like the explore-then-exploit (Fig. 1).

The contributions of this paper are summarized as follows:
(i) Unlike existing approaches, we employ an online MVS
system based on the monocular mapping algorithm for
constructing 3D models to address the view path-planning
problem. (ii) We propose a view path-planning method that
performs a trajectory optimization and view selection to
maximize the performance of MVS reconstruction. (iii) We
empirically evaluate the proposed method in two simulated
scenarios using a Micro Aerial Vehicle (MAV). The effective-
ness and applicability of the proposed method are evaluated
in comparison with existing methods.

II. RELATED WORK

The problem of computing optimal views during the
construction of a 3D model is known as view planning or
active vision [15] [16] [17]. Different types of view-planning
methods have been developed and used for different recon-
struction algorithms. Real-time mapping algorithms [18] [19]
accumulate 3D data directly from a RGB-D sensor. Because
these algorithms can evaluate modeling completeness online,
exploration approaches are frequently used to plan view
paths by simultaneously identifying uncovered areas from the
partially-reconstructed model. Most approaches iteratively
determined the next-best-view (NBV) [20] [21] or view
path [22] for exploration planning by analyzing frontiers in
a volumetric map. Song and Jo [23] proposed a surface-
based exploration method, which simultaneously considers
unexplored regions and reconstruction quality. Our work
extends this method [23] by incorporating with the trajectory
optimization step to improve the performance of MVS.

Several methods [24] [25] have been proposed to model
the target scene directly from a sparse point cloud using
structure-from-motion (SfM). Hoppe et al. [24] proposed
an online SfM framework that provides a visual feedback
of reconstruction quality to a human operator. Haner and
Heyden [25] proposed a covariance propagation method that
determines a view sequence to minimize the reconstruction
uncertainty of the sequential SfM.

The MVS algorithms have been used in large-scale struc-
ture modeling because they can estimate a wide depth range
of the target scene. Some approaches [26] [27] acquired
images for MVS reconstruction using a simple lawn mower

or circular trajectories in a safe overhead area. However,
these approaches do not guarantee complete coverage of the
target structure. Therefore, an explore-then-exploit approach
is generally adopted in 3D modeling systems based on
an MVS algorithm [28] [9] [5] [10]. Roberts et al. [9]
proposed the modeling of surface coverage by observing a
hemispheric area around the surface. This method computes
a coverage trajectory, such that the camera observes surfaces
from diverse viewpoints by maximizing the observing area of
the hemispheres. Huang et al. [5] proposed a relatively fast
MVS algorithm that reconstructs coarse 3D models. Their
method iteratively determines the NBVs by analyzing the
coverage of a tentative surface model.

There have been only a few methods [29] [30] [31] that
deal with an online MVS algorithm. Mendez et al. [29]
[30] used an online dense stereo matching algorithm [32]
based on deep learning. They proposed a next-best-stereo
method that determines the best stereo pair to maximize
stereo matching performance. Forster et al. [31] addressed
a view-planning problem that acquires an informative mo-
tion trajectory for monocular dense depth estimation. These
approaches concentrated only on the local depth estimation,
whereas global modeling was not considered. On the other
hand, the proposed method deals with not only the local
trajectory for local mapping, but also the global trajectory
for constructing a global model.

III. SYSTEM OVERVIEW

Fig. 2 illustrates an overall system architecture of the
proposed framework, which is composed of two modules:
online 3D modeling and path planning. The 3D modeling
module constructs 3D models online from an obtained image
sequence. It first computes the camera poses from a SLAM
system [33] and generates a depth map of a scene using a
monocular mapping method [11]. The obtained depth maps
are integrated into a volumetric mapM and a surface model
F simultaneously. The volumetric map [19] categorizes an
environment as three states (unknown, free, and occupied),
which is required for planning a collision-free path. The
surface model is represented as a collection of dense point
primitives, surfels, which is efficient for surface deformation
and rendering.

The path-planning module computes the exploration paths
to reconstruct a target structure. The module first plans a
global path by analyzing the volumetric map in order to
explore a large unknown area. Then, the module computes a
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Fig. 3. Examples of a reconstructed point cloud of a scene by (a) initial
depth, (b) fully-interpolated depth, and (c) partially-interpolated depth. (d)
Delaunay triangulation result of a set of support depth points. The weighted
least squares (WLS) filter is applied in planar areas (green triangles),
excluding non-planar areas (red triangles).

local inspection path that covers the defectively reconstructed
surfaces in the surface model. The planned local path is
refined to maximize the performance of MVS reconstruction.
The mobile robot constantly navigates along the planned path
while constructing the 3D models of the target structure.

IV. ONLINE MULTI-VIEW STEREO

The online MVS system is based on a monocular dense
mapping algorithm [11]. The system obtains images and the
corresponding camera poses using a SLAM module. We
use a keyframe-based SLAM method [33] that computes
a camera pose by estimating the sparse map points from
selected keyframes. When a new keyframe is extracted, the
image-pose pair is stored in a database, and the keyframe
is set as a reference image for depth estimation. Unlike
existing monocular mapping algorithms [11] [12], which use
subsequent sequential images as source images for stereo
matching, our method selects the best set of source images in
an online and active manner to improve the depth estimation
performance. (see Section V.E for active image selection)

A. Depth Estimation

A depth map Dt of a reference image Iref is obtained by
pixel-wise stereo matching, given a source image It at time t.
Obtained depth maps D1, ..., DT are sequentially integrated
using the REMODE [11], a recursive Bayesian estimation
approach, which integrates sequential depths. For each pixel,
the algorithm recursively updates the mean depth d and its
variance σ2, which follow a Gaussian distribution, and the
inlier probability ρ. A depth estimate is considered converged
when ρ > θinlier and σ2 < θvar. The algorithm then applies
a regularization filter, a variant of the total variation.

B. Depth Post-Processing

The depth maps estimated from REMODE relatively have
more number of unconverged pixels (in textureless regions)
and outliers in converged pixels than those from the offline
MVS methods [2] [3]. Therefore, we first remove the outlier
depths by checking whether a depth point is supported by
neighboring pixels as proposed in [34]. Next, we interpolate

the unconverged depth values while enforcing depth smooth-
ness of the coplanar surfaces. We employ the fast weighted
least squares (WLS) approach [35] for depth interpolation.
WLS performs the image-guided, edge-preserving interpola-
tion by solving a global optimization problem.

Although the WLS method is usually effective in texture-
less or planar regions, it causes noise in regions near depth
discontinuities and non-planar surfaces [36]. Furthermore,
depth values could be interpolated into empty areas, such
as the sky or distant blurry regions (Fig. 3b). To address this
issue, we extract piecewise planar areas in a target structure
and apply the WLS filter only to the planar areas.

First, we divide the entire image region into rectangular
grids and determine a sparse set of support depth points by
selecting the median depth point within each grid. Then, we
compute a two-dimensional (2D) Delaunay triangulation of
the pixel locations of the support depth points using the
fast triangulation method [37]. Triangular meshes each of
whose edges are longer than a certain threshold in 3D are
eliminated from the triangular set. We segment an image into
a set of triangular regions T = [T1, ..., TK ] according to the
constructed triangular meshes. Each triangular region Tk can
be described by its plane parameters τk = (τ1k , τ

2
k , τ

3
k ) ∈ R3;

a depth in a pixel p is defined as dp = τ1kpx + τ2kpy + τ3k
where px and py denote p’s x- and y-coordinates [38]. Given
a depth map D′ interpolated by the WLS filter, we define
the planarity of each triangular region Tk as

fpl(Tk) =
1

#(Tk)

∑
p∈Tk

1[|τ1kpx + τ2kpy + τ3k − d′p| < dthr]

(1)
where #(Tk) is the number of pixels in Tk, dthr is the depth
threshold, and 1[·] is the indicator function. This measure
simply represents the ratio of interpolated depths that are
consistent with a plane parameter τk. If the ratio is higher
than a threshold (0.95 in this study), the region is labeled
as a planar area (Fig. 3d). Similar to the method in [36],
the interpolated depth d′ is applied in the planar area, and
the initial depth d is used in the non-planar area. Fig. 3c
illustrates an example of the post-processed result.

C. Surfel Mapping

The surface model F , which represents a reconstructed
surface, is composed of 3D surfels, where each surfel has
the following attributes: a 3D position, normal, color, weight,
and radius. We employ the surfel initialization and surfel
fusion method as described in [14]. An initial weight w is
directly mapped by a depth variance σ2 as: w = σmax−

√
σ2,

where σmax is user defined maximum standard deviation (1.0
in this study). Weight of an interpolated depth is set as a
constant wconst = σmax −

√
θvar. As in [14], we label the

surfels that have not been fused in a period as inactive, and
filter out low-weight inactive surfels.

D. Processing Loop Closing

When the SLAM module performs loop closing, our
method deforms the surface model and the volumetric map
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(a) Global Path Planning (b) Target Surface Extraction (c) Local Path Planning

Fig. 4. Overview of proposed path-planning method. The proposed method is composed of three steps. (a) First, a global path is determined by computing
the global coverage of unexplored regions. (b) Second, target surfaces (gray arrow points) are extracted by evaluating the reconstruction quality. (c) Third,
local path planning provides an inspection path for the target surfaces. The inspection path is optimized to improve the performance of MVS.

according to the updated pose graph. We employ the surfel
deformation method of [39] for the surface model. Instead
of using a deformation graph [40], the method individually
transforms the position of each surfel to preserve the global
consistency with the SLAM module. After surfel deforma-
tion, we re-initialize the volumetric map to an unknown
state and determine the occupied volumes directly from the
deformed surfel position. We then update the free space
by casting rays from each updated pose to the occupied
volumes. The volumes that are already assigned to occupied
state are excluded when free space is updated. The ray-
casting is performed at twice the coarseness of the resolution
of M for the fast update.

V. PATH PLANNING METHOD

The aim of this study is to reconstruct a high-confidence
surface model by exploring an unknown and bounded space
as fast as possible. Algorithm 1 presents the pseudocode
of the proposed path-planning method, which consists of
three steps, as depicted in Fig. 4: Global path planning,
Target surface extraction, and Local path planning. At every
iteration, the proposed method first determines a global
path that maximizes the coverage of the unexplored region
(Section V.A). Then, it plans a local path that completes to
reconstruct the surface model while maximizing the perfor-
mance of the online MVS. To compute a local path, the
proposed method extracts low-confidence surfaces (Section
V.B) and determines a set of view configurations to acquire
reference images of each low-confidence surface (Section
V.C). Finally, it computes an optimal path that maximizes
the performance of MVS when traversing all the reference
viewpoints (Section V.D).

A. Global Path Planning

Our method divides the entire frontier in M into a set of
clusters Vfront (line 1) and computes the global coverage
of the clusters. It explores the unknown region following
the coverage sequentially. We formulate the problem of
global coverage path planning as a generalized traveling
salesman problem (GTSP) [41]. Let q ∈ Q be a feasible view
configuration in configuration space Q, and ξ : [0, 1] → Q
be a path. For each frontier cluster Vi ∈ Vfront, we generate
a set of view configuration samples Qi in which more than
a certain percentage of frontiers in Vi are visible (line 2).
Given a set of sample sets {Q1, ..., QN}, the GTSP algorithm

Algorithm 1 Proposed path planning algorithm
Input: Volumetric map M, Surface model F , and Current con-

figuration qcurr .
/* Global path planning */

1: Vfront ← FrontierClustering(M)
2: {Q1, ..., QN} ← GlobalSampling(Vfront)
3: {q1, ..., qN} ← SolveGTSP ({Q1, ..., QN}, qcurr)
4: {qNBV , ξglobal} ← GetPath(qcurr, q1)

/* Local path planning */
5: while qcurr 6= qNBV do
6: if TravelT ime > θtime then
7: X̄target ← GetTargetSurfPoints(F)
8: {Q̇1, ..., Q̇N} ← LocalSampling(X̄target, ξglobal)
9: {q̇1, ..., q̇N} ← SolveGTSP ({Q̇1, ..., Q̇N}, qcurr, qNBV )

10: {Qref , ξlocal} ← GetPath(qcurr, {q̇1, ..., q̇N}, qNBV )
11: ξ∗local ← OptmizePath(X̄target, Qref , ξlocal)
12: end if
13: MoveToward(ξ∗local)
14: Update(M,F , qcurr)
15: end while

selects a representative point qi from each sample set Qi and
obtains the shortest tour, departing from a current view qcurr
and visiting all the representative points qi (line 3). Paths
are generated using the A* planner, which examines the
minimum Euclidean distance among visiting points. Given
the resulting coverage path, we select the first sample q1 to
be the next view configuration qNBV and compute the global
path ξglobal to qNBV (line 4).

B. Target Surface Extraction

Our method first reconstructs a tentative surface model F̄
from the surfels in F using the screened Poisson reconstruc-
tion algorithm [42]. We represent the reconstructed surfaces
in F̄ as a set of surface points X , where each point x ∈ X
contains 3D position and normal values. The method then
groups adjacent surface points by Euclidean clustering. Let
Xj ⊂ X be a set of clustered surface points and x̄j be
the averaged surface point of Xj . We define the confidence
of x̄j as the average weight w̄j of neighboring surfels in F .
Finally, the averaged surface points whose confidence values
are lower than θthr−conf are determined as the target surface
points X̄target (line 7).

C. Local Inspection Path Planning

This section describes a method to compute an inspection
path that provides coverage of the target surfaces. For each
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target surface point x̄j , the method generates a set of
view configurations Q̇j that observe the target point x̄j by
inversely composing a view frustum from x̄j to its normal
direction [23] (line 8). We reject a sample configuration q̇j
if the distance of the path via q̇j is γ times (1.3 in this
paper) larger than the distance of the direct path from qcurr
to qNBV . Similar to Section V.A, the GTSP algorithm is used
to determine a tour starting from qcurr, visits exactly one
sample q̇j per sample set Q̇j , and ends at qNBV (line 9). The
local path ξlocal is computed by sequentially connecting the
selected samples (line 10). We refer to the selected tour set
{q̇1, ..., q̇N} as the reference configuration set Qref , which
is used to reference views for each target point.

D. Trajectory Optimization

After determining a local inspection path for the target
surfaces, our method refines the path to maximize the MVS
performance (line 11). The following subsections introduce
stereo-pair heuristics for predicting the reconstruction quality
of MVS and describe how to apply these to the trajectory
optimization problem.

1) Multi-view Stereo Heuristics: Given a stereo-pair of a
reference view configuration qref and a source view con-
figuration qsrc, the reconstruction quality of a target surface
x̄ is related to geometric factors, such as parallax, relative
distance, and focus.

Parallax: There is a trade-off between the triangulation
accuracy and the matchability according to the parallax of
a stereo pair. Let α be a parallax angle between pair sets
in a stereo pair. We describe the informativeness of α to
reconstruct the correct surface as a score function [10]:

fprx(α) = exp

(
− (α− α0)2

2σ2
prx

)
(2)

where α0 is the desired parallax angle, which is heuristically
determined as 15◦, and σprx is a constant value.

Relative distance: The image patches from the reference
and source images must have a similar resolution for accurate
stereo matching [2]. We assume that the views at the same
distance to a surface have the same resolution of the surface.
A score function regarding the relative distance is defined as

frd(distsrc, distref ) =
min(distsrc, distref )

max(distsrc, distref )
(3)

where distsrc and distref denote the distance between x̄ and
qsrc, and the distance between x̄ and qref , respectively.

Focus: The surface region preferably projects to the prin-
cipal point of the source image to reduce the reprojection
error in triangulation [29] [30]. Let rco and rcx be rays from
a camera center c of a source image to the principal point o
and to a surface point x̄, respectively. We define a penalizing
function for large angle β between the rays rco and rcx as

ffoc(β) = exp

(
− β2

2σ2
foc

)
(4)

where σfoc is a constant value.

Integration: We integrate the heuristics into a score func-
tion that predicts the reconstruction quality of MVS:

fsrc(qsrc, qref , x̄) = fvis · fprx · frd · ffoc (5)

where fvis is the visibility function that returns the value 1
if x̄ is visible from qsrc, and the value 0 otherwise.

2) Informative Path Planning: A set of disjoint path
segments ξ = {ξ1, ..., ξN} is based on each reference
configuration in Qref . Each segment ξs is a path connecting
the consecutive reference view configurations. Let IG(ξs)
be a function that represents the information gathered along
ξs and TIME(ξs) be the corresponding travel time. The
optimal path is determined by solving the following problem:

ξ∗ = argmax
ξ

∑
ξs∈ξ

IG(ξs)

TIME(ξs)
,

s.t TIME(ξs) ≤ Bs for every segment s

(6)

where Bs is a time budget of segment s. We define a budget
as Bs = γ′× TIME(ξs), where γ′ is a constant value, and
ξs is the shortest path from the starting point to the end point
of ξs. An information gain function is defined as

IG(ξs) =
∑
qi∈ξs

∑
qr∈Qref

fsrc(qi, qr, x̄r) (7)

where qi is a discrete configuration along ξs, qr is a reference
view configuration, and x̄r is the target surface of qr. Eq. 6 is
an informative path-planning problem that can be solved as
an optimization problem. To solve the problem, we employ
the local optimization step in [43], which uses the covariance
matrix adaptation evolution strategy [44]. The strategy is
based on a Monte Carlo method; it uses the process of
repeated random sampling to estimate the solution.

E. Reference and Source Image Selection

Our method consistently determines reference images
every time a keyframe is extracted. The keyframes are
consistently extracted at a regular frame interval. Given a
reference image, N keyframes (10 in this paper) are selected
for a source image set by evaluating the score function Eq. 5
for each path segment ξs. The qNBV at the end of ξ∗local does
not have a target point; thus, it uses N -neighbor keyframes
that share most map-point observations for source images.

VI. EXPERIMENTAL RESULTS

In this section, we conducted the simulation experiments
to evaluate the performance of the proposed method. A
firefly hexacopter MAV was used as a mobile robot in the
RotorS simulation environment [45]. The forward-looking
stereo camera, mounted on the MAV, had a pitch angle 5◦

downward and a field of view [60◦, 90◦]. It captured images
with a resolution 752×480px. We used a stereo version of the
ORB-SLAM [46] to obtain a metric scale of the motion and
map points. For a reliable pose estimation, we restricted the
maximum translational speed 0.5m/s and rotational speed
0.25m/s and covered an textured scene to the ground. We
used only the left images on the stereo camera for MVS
computation.
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Fig. 5. Experimental results of scenario 1 (upper) and scenario 2 (lower). Reconstructed 3D models and volumetric maps with trajectories taken by the
MAV at the end of executions of (b, g) circular trajectory, (c, h) NBV [5], (d, i) Sub-Cov [9], and (e, j) our method.

TABLE I
EXPERIMENTAL RESULTS OF TWO SCENARIOS.

Methods Time
(min)

Path
Length
(m)

Error
(m)

Comp.
0.05m
(%)

Comp.
0.10m
(%)

Comp.
0.15m
(%)

Sc
en

ar
io

1 Circular 12.68 239.6 0.1596 29.33 52.77 66.64
NBV 29.60 643.8 0.0987 53.06 71.97 82.19

Sub-Cov 28.72 654.5 0.0805 57.45 73.98 82.71
Ours 18.37 383.1 0.0746 56.85 72.35 84.46

Sc
en

ar
io

2 Circular 15.60 290.3 0.1560 30.10 46.20 59.70
NBV 43.12 891.6 0.1273 48.38 65.77 77.67

Sub-Cov 46.65 1016.5 0.0961 52.24 69.60 82.92
Ours 29.64 498.2 0.0736 62.51 80.07 86.75

There are two-simulation scenarios [47]: a structure with
highly textured surfaces (Catholic Church: 36× 28× 30m3)
and a structure with relatively less-textured surfaces (Col-
orado State Capitol: 50×46×30m3). The proposed method
was compared with the NBV [5] and submodular coverage
(Sub-Cov) [9] methods. These methods use the explore-then-
exploit strategy; after constructing an initial coarse model
from a default trajectory, they compute the coverage path
[9] or NBVs [5] for the coarse model. The NBV method
iteratively determines the best viewpoint online from a partial
reconstruction. The Sub-Cov method computes the coverage
path of the initial model offline. Both the initial and final
models were constructed using our online modeling system.
We performed an initial scan of a circular trajectory around
the target space with a camera pitch of 20◦. We tuned the
travel budget of Sub-Cov to obtain the best modeling perfor-
mance in each scenario. Every reconstructed surface model
was post-processed using the Poisson surface reconstruction.

The performance of the proposed method, compared to
the other methods, was evaluated from two different perspec-
tives: path efficiency and modeling quality. To evaluate the
path efficiency, we computed the completion time and total
path length. The modeling quality refers to the accuracy and

completeness of the surface model [48]. The accuracy was
estimated by calculating the mean errors. The completeness
was defined as the percentage of surface points that have
distance error smaller than thresholds. Fig. 5 depicts the
paths and the corresponding models of the best trial. Table
I presents the average results of five executions. The results
of NBV and Sub-Cov show the cumulative time and path
length during the whole explore-then-exploit process.

Our method had the best performances in terms of the
path efficiency. Our method provided an efficient coverage
path that did not frequently overlap while taking less travel
time without an initial scanning. Moreover, even with these
short trajectories, our method achieved the best modeling
performances in terms of the accuracy and completeness.
Particularly in Scenario 2, our method outperforms the others
in terms of overall performance. The modeling system does
not guarantee a complete and accurate depth estimate of a
reference image; therefore, several factors such as recon-
struction quality and MVS heuristics should be considered
online. However, NBV and Sub-Cov do not consider these
factors during path planning. Especially, NBV focuses only
on the viewpoint that covers the largest surface area while
disregarding minor surfaces, so their reconstructed models
can be incomplete. Our method, on the other hand, focuses
on completing the insufficiently reconstructed regions by
examining the completeness of reconstructed surfaces. It also
optimizes a path to obtain the best reference and source im-
ages; these approaches enhance the modeling performances.

VII. CONCLUSION

We proposed an online MVS algorithm for view path
planning of a large-scale structure. The proposed method
computes a view path using the online feedback based on
the quality of the reconstructed surface. The computed path
provides full coverage of low-quality surfaces while maxi-
mizing the reconstruction performance of MVS. To the best
of our knowledge, this is the first work that implements an
exploration planning approach to model unknown structures
using an online MVS system.
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