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Abstract— Learning from human feedback using event-
related electroencephalography (EEG) signals has attracted
extensive attention recently owing to their intuitive communica-
tion ability by decoding user intentions. However, this approach
requires users to perform specified tasks and their success or
failure. In addition, the amount of attention needed for decision-
making increases with the task difficulty, decreasing human
feedback quality over time because of fatigue. Consequently,
this can reduce the interaction quality and can even cause
interaction breakdowns. To overcome these limitations and
enable the interaction of robots with higher complexity tasks,
we propose a closed-loop control system that learns affective
responses to robot behaviors and provides natural feedback
to optimize robot parameters for smoothing the next action.
Experimental results demonstrate our affect-driven closed-
loop control system yielded better affective outcomes and
task performance than an open-loop system with correlated
neuroscientific characteristics of EEG signals, thus enhancing
the quality of human-robot interaction.

I. INTRODUCTION

Physiological responses are widely used for effective
human feedback to develop closed-loop systems, thereby
increasing the ability of human-robot communication. Owing
to recent advances in various physiological sensor tech-
nologies, closed-loop systems have increasingly carried out
practical collaboration between humans and robots, thus
augmenting each intelligence [1]–[5]. Recently, electroen-
cephalography (EEG)-based approaches have been proposed
to develop human-robot collaboration systems [6], [7] as
an alternative. The exceptional advantage of EEG leans
on its high temporal resolution enables to study of neu-
rophysiological phenomena in cognitive processes. Event-
related potential (ERP) and error-related potential (ErrP) are
widely used signals to achieve this, which could enable
communication via a signal occurring naturally in the brain
while interacting with or observing a collaborating robot.
This evoked response in EEG has been widely used as
a feedback mechanism to confirm the correctness of their
responses.
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However, to provide physiological feedback for evaluating
the tasks, this approach requires an end-user to be always at-
tentive while interacting with a robot. In addition, the amount
of attention needed for decision-making increases with task
difficulty, thereby decreasing human feedback quality over
time because of fatigue. Furthermore, most EEG-based task
paradigms are cue-based tasks defined by discrete trials,
which provide robust test beds for new intuitive decoding
algorithms. However, they do not account for the randomness
invariably occurring in daily life. In real-world scenarios,
communication must be unobtrusive [8]. Otherwise, the robot
systems may lose their ability to justify their decisions or
actions, resulting in a loss of user trust.

To overcome this limitation, we focused on investigating
an affective process of a symbiotic relationship. By hypoth-
esis, a successful closed-loop system should enable users to
develop appropriate trust toward the robot system [9], by
which they can subsequently increase their understanding
and reduce negative feelings toward their perception of ma-
chine behavior. In turn, the robot reflects affective feedback
by changing how it makes decisions regarding the next action
for producing positive outcomes. Motivated by our previous
work [10], this study aims to develop a closed-loop control
system that learns emotional reactions to robot behaviors and
provides affective feedback to optimize their parameters for
smooth actions. The degree of valenced negative and positive
elicited emotions when the robot approaches the user with
objects is learned by the proposed feedback system, enabling
users to understand, appropriately trust, and effectively man-
age the system by comprehending the rationale behind the
closed-loop system decisions. Further, we consider how user
feedback of emotion can impact the user’s affective processes
in the brain associated with robot behaviors.

A. Problem Statement

Suppose a robot performs a set of tasks t in which the
robot grasps m ∈ M objects R(m) = (r1, r2, . . . , rt)
and provides them to an end user along with a sequence
of velocities S(m) = (s1, s2, . . . , st). In a closed-loop
system, each user provides an emotional response Z(m) =
(z1, z2, . . . , zt) as a feedback for the robot behavior. A suc-
cessful cyclic relationship should lead to end-users deepening
their understanding of the robot actions with positive feelings
and improve its performance with a fast task completion time
C(m) = (c1, c2, . . . , ct). Hence, we can measure the quality
of collaboration (ξ) in a closed-loop system simply as
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Fig. 1: Overview of the proposed closed-loop affective
system.

ξ(m) =

t∑
i=1

(fC(ci) + fZ(zi)), (1)

where fC and fZ are a family of linear functions balancing
the two summation terms. For simplicity, we omit t in
the following sections. z ∈ R+ and c ∈ Z+ range from
negative to positive feelings and from slow to fast velocities
in the increasing order, respectively. Hence, the improved
symbiotic relationship in the measurement ξ should lead to
reduced negative feelings and increased robot performance
by increasing z and reducing c, respectively.

We should note that human-robot interaction naturally
involves an open-loop affective system in an iterative col-
laborative process where people can preserve lessons and
situational information from previous emotional experiences.
Hence, considering the quality of collaboration (ξ), we aim
to investigate the effectiveness of human affect as a feedback
element in a closed-loop affective system and compare it to
an open-loop affective system. We conducted an empirical
study for monitoring and learning an end-user’s affective
process through EEG signals while interacting with a robotic
arm.

II. EXPERIMENTAL METHODOLOGY

Fig. 1 shows the overview of the proposed system, which
consists of three major subsystems each associated with
training, evaluation, and test procedures.

A. Participants

We recruited 24 male participants between the ages of
21 and 39 years (mean = 27.4, std = 5.32) for the study and
provided an incentive of $10 to each participant. Two groups
containing half of the participants each were randomly
formed. The participants in the closed-loop group provided
affective responses z ∈ {zcatching, zgiving} to the robot behav-
ior r. After a tutorial in a lab setting, the participants were
required to conduct a sequence of training, evaluation, and
test procedures. The training procedure was carried out in
a monitor-based environment where a monitor was placed
on a table and positioned approximately 50 cm from each
participant. On the contrary, evaluation and test procedures
were carried out in a robot-based environment where a robot
was placed on a table and positioned at the maximum arm
length (= 60 cm) from the participant. This procedure was
approved by the Institutional Review Board (IRB) of Human

Subjects Research. All studies were performed in accordance
with relevant guidelines and regulations. Informed consent
was obtained from all participants.

B. Robot Arm Control System

We used an IRB 14000 Yumi robot manufactured by ABB.
It was a 2-arm robot with 7-degree of freedom on each arm1.
Each arm has a gripper on its end to grasp the desired objects
and deliver it to a human. The gripper was connected to the
main controller for signal and feedback transmission. The
variable parameters of the robot system to adjust its motion
are the robot arm velocity, acceleration, maximum area for
robot arms to move, and postures to grasp and deliver objects
to an end-user. In our work, the arm velocity was changed
or maintained constant after receiving feedback from the
main controller, which could choose the next appropriate
movement after analyzing human affective responses.

C. EEG-based Human Affect Learning System

1) EEG Setup and Preprocessing: We recorded EEG
signals using a Brain Products system2 in a laboratory
environment. These signals were recorded at a sampling rate
of 500 Hz on 32 active AgCl electrodes placed according
to the international 10-20 system. The EEG data were
downsampled to 250 Hz, common average referenced, and
high-pass filtered with a 2 Hz cutoff frequency.

2) Training Procedure: We collected EEG signals asso-
ciated with affective labels in terms of valence ratings using
the international affective picture system (IAPS) [11] having
956 color photographs ranging from everyday objects and
scenes. The IAPS dataset aims to provide a standardized set
of pictures for studying human affect. Affective responses
against all images were rated from 1-9 in terms of valence,
arousal, and dominance. Later, we re-scaled the IAPS ratings
from 1 to 6 because 1) the emotional response to robot
behaviors is simpler to process than pictures from everyday
objects and scenes, and 2) the distribution of IAPS ratings is
unbalanced. The rationale behind the IAPS usage for training
is to secure several EEG samples associated with affective
labels, thus preventing users from constructing affective
experiences against the robot before the main experiment.

Our training procedure started with a 1-sec baseline ses-
sion, displaying a fixation cross to collect each participant’s
neutral baseline. The participants sat at a desk, on which
a monitor was positioned 50 cm from them. Then, they
completed a set of 30 trials in which five pictures per
rounded off label were randomly selected3. In each trial, the
participants were made to see only a visual stimulus extracted
from the IAPS for 3 s without rating their feelings. After
removing eye artifacts using independent component analysis
with two manually selected components, the 3-second EEG
signals were augmented by separating them into two 2-
second EEG segments with 1-second sliding windows in

1For controlling, ROS source codes developed by KTH RPL were used
(https://github.com/kth-ros-pkg/abb)

2https://www.brainproducts.com
3Video link: https://www.bhyung.me/files/training.html
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the time domain. While the IAPS contains various images
stimulating human affect rated from negative to positive, the
valence ratings cannot be directly applied to build a robust
subject-wise classifier owing to inter-subject variability. To
overcome this limitation, we first group the segments of the
EEG signals into two affective states:

P = {∀xi|byic > yth},N = {∀xi|byic < yth}, (2)

where xi ∈ RNc×Ns indicates the i-th EEG multivariate
time-series signals (xi > 0) and Nc and Ns are the number
of channels (= 32) and samples (= 500), respectively. yi is
the valence rating associated with xi. P and N represent the
positive and negative affective states divided by the threshold
yth = 3.5, respectively.

3) Valence Estimation: We used a geodesic distance-
based regression to estimate a continuous scale of valence
ratings. Owing to the continuity from negative to positive
valence, measuring the semantic distance between a query
sample and the two sets is reasonable. A query associated
with a positive valence should be located outside the bound-
ary of the negative valence set. Furthermore, the positivity
increases farther from the opposite boundary. Hence, we first
compute the mean of the two sets P and N on Riemannian
geometry, which is shown to be a promising solution for
learning EEG signals within their structured 2D feature
representation [12], [13].

Σ̄S = arg min
Σ∈Σ(S)

NS∑
i=1

δ2
R(Σ,Σ(xi)), (3)

where S ∈ {P,N}. δR(·, ·) is the Riemannian dis-
tance measured by the affine-invariant Riemannian metric
(AIRM) [12]. The i-th EEG signal xi is represented by a
channel × channel covariance matrix Σ(xi), estimated using
second-order statistics with a shrinkage estimator [14]. More
details on Riemannian geometry refer to this study [13].

Given the two Riemannian mean matrices Σ̄P and Σ̄N ,
we assign a query Σ(xi) to one of the two affective sets
P and N , where the distance is minimized. Denoting the
mean matrix selected by the minimized distance as Σmin and
its label as ymin, the confidence-based similarity between the
query and two means is computed for confirming the degree
of continuous valence as follows:

Σmin = arg min
Σ∈{Σ̄P ,Σ̄N }

δ2
R(Σ,Σ(xi)),

d{min, max}(xi) = δ2
R(Σ{min, max},Σ(xi)),

zi = yth + T ∗ (1− exp(dmin(xi))

exp(dmax(xi))
), (4)

where Σmax is the opposite valence set of Σmin. zi increases
the polarity of the valence by computing the relative distance
between dmin and dmax. T is the temperature scaling to make
z range from 1-6. In our work, T = −2.5 if Σmin ∈ N ;
otherwise, T = 2.5. The parameter was set through a five-
fold cross-validation scheme between the self-assessment and
the predicted valence values.

4) Evaluation Procedure: Participants were asked about
their feelings regarding robot behaviors, randomly chosen
to evaluate the proposed EEG-based human affect learning
system. The participants completed a set of 10 trials, in
which they were asked to observe the robot positioned at the
robot arm maximum length (60 cm) from their eyes, while
sitting at a desk without any body movement. At the end
of each robot behavior, a beep sound notifies participants to
perform a self-assessment of their level of affective scores
from 1–6 in terms of valence, which were displayed in the
middle of a tablet screen. When participants indicated their
self-assessment level by pressing a digit on the screen, they
were required to hit a blue button to proceed to the next trial4.
We recorded EEG signals between the robot initial movement
and beep sound notification. The time-variant EEG signals
were extracted continuously into 2-second segments. The
EEG signals obtained 2 s before the initial movement of
the robot were used as a baseline to correct for unrelated
variations [15].

D. Human Affect-based Feedback System

The underlying model architecture, which uses a user’s
affect dynamics to estimate his/ her emotional reaction to
robot behavior, was developed to improve the affective
transparency in a closed-loop robot system. The emotional
feedback zi against the current robot behavior causes a
change in the next behavior of the robot with the newly
computed states si+1. This change is computed using the
following equation:

si+1 = 150 · f(zi) + si, (5)

where f(·) a family of linear functions. In our study, we use

f(zi) = sgn(zi − yth)
1

ln yth
ln |zi − yth + 1|, (6)

where sgn(zi − yth) is the sign function, which returns −1
if zi < yth. A robot increases si+1 smoothly in the next trial
when a user feels positively (zi > yth = 3.5) against the
current robot behavior in trial i.

1) Testing Procedure: Experimental Paradigm: The ob-
jective of the experiment is to realize affective transparency
in a closed-loop system for human-robot interaction, which
examines whether internal decisions of the robot regulated
by affective feedback not only yield positive outcomes but
also reduce negative feelings toward the robot so that the
quality of human-robot interaction is improved by fostering
trust. To explore the feasibility of EEG-based human affect
for robotic tasks in a closed-loop manner, a paradigm of
the feedback system was designed to allow users to interact
with a robot. Fig. 2 shows the training, evaluation, and
testing procedures, where the human observes the robot
and influences its behavior using natural feeling patterns.
As a robot comes closer to a human, the potential risk of
inter-collision increases. This may decrease valence, which
leads to negative feelings, such as fear, of the end-user.

4Video link: https://www.bhyung.me/files/evaluation.html
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Fig. 2: Experimental Paradigm. After training and evaluation procedures, all participants conduct six tasks which consists
of “catching”, “giving”, and “finishing” stages with different levels of robot approaches during five iterative times (= a set
of 30 iterative trials) in terms of the task completeness time and valence. Each interactive trial starts and ends by pushing
the blue button.

The paradigm aims to study 1) the emotional difference
with different levels of robot approaches and 2) effect of
affective feedback in a closed-loop system on the different
levels of approaches during iterative tasks in terms of the
task completeness time and valence.

Similar to the evaluation procedure, the robot was placed
on a table positioned approximately 60 cm from the partic-
ipants sitting at the table. The blue button is also located
right down on the table to avoid any collision with the
robot behaviors. The participants were required to conduct a
sequence of interactive trials with the following three tasks:

1) Task 1: The robot grasps the empty container and
provides it to the participant. Then, the participant was
required to fill the container with small objects, which
were filled in a bottle. The task is completed when
they hit the blue button after placing all objects in the
container.

2) Task 2: The robot grasps the full container with small
objects and provides it to the participant. Then, the
participant was required to empty the container by
pouring the objects into an empty bottle. The task is
finished when they hit the blue button after emptying
the container.

3) Task 3: The robot grasps the container with a small
snack and provides the same to the participant. Then,
the task was finished when the participant successfully
caught the food with their mouth with a hit on the
button.

Each of the three tasks consists of “catching” and “giving”
a container (r ∈ {rcatching, rgiving}) and ”finishing” the task
to study the emotional difference with different levels of

robot approaches and effect of affective feedback. In each
“catching” stage, the robot catches the container placed on
the middle of the table. Then, in each “giving” stage, the
robot gives the container either 1) close to the user at the face
level or 2) on the desk in front of him. Hence, all participants
conducted six trials to finish the three tasks iteratively5.
They were required to iterate five times, that is, a set of 30
interactive trials as fast as possible without dropping any of
the objects. Each interactive trial starts and ends by pushing
the blue button. In between iterations, the participants could
have a small break, if necessary. EEG signals of various
lengths during the two stages were extracted continuously
into 2-second segments as inputs for estimating valence.
The EEG signals recorded 2 s before the initial movement
of the robot were used as a baseline to correct unrelated
variations [15]. As described in [16], the current emotional
outcome may guide the next behavior. Hence, affective
residues from the current trial could have some effects on
the subsequent trials in both groups. However, in this study,
we aim to focus on how such an affective residue can be
used in a robotic system to accelerate task completeness
performance.

We measured the task completion time unless any of the
small objects or snacks were dropped under the table. The
tasks with containers #2 and #3 were designed to have
unreliable velocities. If the velocity value s is too fast,
the object was easily dropped from containers, so more
time was required to finish their goals, such as eating and
emptying. The initial velocity is set to 500, which the three
experienced users who are not involved in either the closed

5Video link: https://www.bhyung.me/files/testing.html
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TABLE I: Correlates of affective response and the com-
pleted time. Only significant correlations were reported (p <
0.001).

Open-loop Closed-loop

Catching Giving Catching Giving

Container #1 -0.14 -0.19 -0.2 -0.26

Container #2 -0.55

Container #3 -0.63 -0.72

or open loop groups agree. The participants in the closed-
loop group provided affective responses z ∈ {zcatching, zgiving}
to the robot behavior r. Based on the affective feedback, the
closed-loop system computes the velocity configuration s ∈
{scatching, sgiving} for the next robot behavior. On the contrary,
the participants in the open-loop group were not allowed
to provide any affective feedback; the robot maintained the
same configuration during the experiments.

III. RESULT AND DISCUSSION

Fig. 3 shows the valence values and the completed times
throughout the experiment for the two groups, respectively.
Both groups of participants reduced the task completeness
time and increased valence while carrying out tasks with
container #1. This suggests that anticipating the next behav-
ior of the robot can help the participants learn a lesson and
leave a strong affective cue that may guide future behavior
for a simple task. Thanks to training and practicing from
consecutive trials, people chose a different course of action
for completing some tasks (i.e., the container #1) faster than
before with better emotional outcomes. This also implies that
the participants develop their understanding through memory
retention and recall processes about its reasoning through
consecutive and repeated trials.

Affective residues further facilitated interaction when they
were used as feedback elements. We observed the closed-
loop mechanism exhibited greater improvements in com-
pleted time and valence than the open-loop system. Changes
in the scores (the last–first trial) of both values for the closed-
loop group were greater than those for the other group. From
the fact that the giving stages are designed to have unreliable
velocities of the robot arm and require closer approaches
than the catching stage, the participants in the closed-loop
group were more likely to correctly and confidently agree
with the robot behaviors of grasping and giving objects.
These results imply that participants perceived using the
closed-loop affective system to be more productive (=faster
completed time) and comfortable (=less negative feeling)
than using the open-loop affective system when performing
the iterative tasks.

We analyzed the Spearman’s rank correlations (p < 0.001)
between the completed times c and valence values z, which
suggests a highly negative correlation in the closed-loop
group, as reported in Table I. In addition, we observed that
the giving stage exhibits a stronger relationship than catch-

TABLE II: Electrodes for which EEG signal was significantly
correlated with valence (p < 0.01). Mean of the subject-wise
correlations (R), the most negative (R-), and the most positive
correlation (R+).

θ α

Elec R R- R+ Elec R R- R+

O1 0.08 -0.11 0.35 P7 0.14 -0.19 0.35

P7 0.07 -0.33 0.39 O1 0.07 -0.14 0.22

O2 0.05 -0.24 0.42

β γ

Elec R R- R+ Elec R R- R+

FC5 0.08 -0.51 0.38 O1 0.06 -0.24 0.45

F3 0.07 -0.40 0.28 Fp1 0.11 -0.24 0.32

O2 0.05 -0.24 0.33 Fp2 0.04 -0.32 0.44

Oz 0.09 -0.33 0.49

FC2 -0.06 -0.41 0.22

ing. Because the giving stage requires a robot to approach
a user closer, the statistical relationships between the two
objects implies that increased valence improves the overall
performance when their tasks require mutual approaches in
interaction. When the participants in the closed-loop group
felt negativity due to the personal affective experience or
the interactive outcomes (i.e., mistakes) against the robot
approach behaviors during the initial trials, the robot reduced
its velocity properly following the proposed feedback sys-
tem. Inversely, the robot velocity in the closed-loop system
increased when the participants felt positive toward the
approaches. This strategy contributes to improve the intimacy
between the two objects, not only increasing the number of
successes during the interactive trials but also decreasing
negative feelings. For instance, we observed that giving
small objects and snacking on containers #2 and #3 enabled
users to empty the container and eat the snack successfully.
This consecutive success further led to a reduction in task
completion times. It should be noted that the participants
in the open-loop group could also reduce the completed
task times owing to training and practicing from consecutive
trials, as shown in Fig. 3d. However, they failed to show any
statistical relationships between interactive trials (Fig. 3d)
and correlation between valence and task completion times
(Table I). Hence, one side change in the open-loop system is
insufficient to build a high-quality interaction, which requires
appropriate trust between the two objects.

Fig. 3 and Table I indicate that the users elicited various
valenced emotions when the robot approached them with
three containers. To investigate EEG activities when people
have different affective responses using the robot approach,
we analyzed the statistical difference of mean changes in the
four frequency bands (theta, alpha, beta, and gamma) of the
EEG signals. Between the four frequency bands and valence
ratings, we computed the p-values of the Spearman for the
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(a) Container 1 (b) Container 2 (c) Container 3 (d) All Containers

Fig. 3: (a, b, c) Comparative results of the the averaged valence values between the two groups (Red - the closed-loop
affective group, Blue - the open-loop affective group). End-users of the closed-loop affective group finished the interactive
tasks while eliciting less negative feelings. (d) The averaged ratios of task completed time at the last to the first trial between
the two groups.

left- (positive) and right-tailed (negative) correlation tests for
all participants in the closed-loop group. Then, we combined
them into one p-value using Fisher’s method [17]. The
resulting p-values for the correlation directions, electrodes,
and frequency bands are reported in Table II. The frequency
in the frontal and occipital cortices such as FC5, FC2, F3,
O1, and O2 was significantly correlated with valence when
the robot approached participants. We also found that EEG
powers in the alpha and beta bands over the cortices were
significantly different against the baseline emotion when the
users felt strongly positive (z > 4) and negative valence (z <
3) response to the robot approach. The discovered activation
supports neuroscientific studies on emotional progress with
visual processing [18]. EEG activation between the frontal
and occipital regions was also reported to be related to
positive and fear emotions [19].

IV. CONCLUSION

We demonstrated that our closed-loop affective system
yielded better affective outcomes and task performance. The
robot could improve its choice of subsequent behavior as they
received a user’s affective responses as feedback elements
and provided actions on those decisions to the user. We also
analyzed the neuroscientific characteristics of EEG signals
when taking objects toward users in human-robot interaction.
In future, we will develop an EEG-based computational
model to capture social signals behind the human-robot in-
teraction. Particular geometry such as Riemannian manifolds
will be exploited to build reliable automated systems, which
are expected to accelerate the usability evaluation process in
real-world robotic applications.

REFERENCES

[1] J. DelPreto, A. F. Salazar-Gomez, S. Gil, R. Hasani, F. H. Guenther,
and D. Rus, “Plug-and-play supervisory control using muscle and brain
signals for real-time gesture and error detection,” Autonomous Robots,
vol. 44, no. 7, pp. 1303–1322, 2020.

[2] A. F. Salazar-Gomez, J. DelPreto, S. Gil, F. H. Guenther, and D. Rus,
“Correcting robot mistakes in real time using EEG signals,” in
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), 2017, pp. 6570–6577.

[3] I. Akinola, Z. Wang, J. Shi, X. He, P. Lapborisuth, J. Xu, D. Watkins-
Valls, P. Sajda, and P. Allen, “Accelerated robot learning via human
brain signals,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2020, pp. 3799–3805.

[4] Z. Wang, J. Shi, I. Akinola, and P. Allen, “Maximizing BCI human
feedback using active learning,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2020, pp. 10 945–10 951.

[5] X. Chen, B. Zhao, Y. Wang, and X. Gao, “Combination of high-
frequency SSVEP-based BCI and computer vision for controlling a
robotic arm,” Journal of Neural Engineering, vol. 16, no. 2, p. 026012,
2019.

[6] C. S. Nam, A. Nijholt, and F. Lotte, Brain–computer interfaces
handbook: technological and theoretical advances. CRC Press, 2018.

[7] S. M. Alarcão and M. J. Fonseca, “Emotions recognition using EEG
signals: A survey,” IEEE Transactions on Affective Computing, vol. 10,
no. 3, pp. 374–393, 2019.

[8] B. H. Kim, S. Jo, and S. Choi, “ALIS: Learning affective causality
behind daily activities from a wearable life-log system,” IEEE Trans-
actions on Cybernetics, 2021.

[9] L. Schiatti, J. Tessadori, N. Deshpande, G. Barresi, L. C. King, and
L. S. Mattos, “Human in the loop of robot learning: EEG-based reward
signal for target identification and reaching task,” in Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA),
2018, pp. 4473–4480.

[10] B. H. Kim, S. Koh, S. Huh, S. Jo, and S. Choi, “Improved explanatory
efficacy on human affect and workload through interactive process
in artificial intelligence,” IEEE Access, vol. 8, pp. 189 013–189 024,
2020.

[11] M. M. Bradley and P. J. Lang, “Measuring emotion: the self-
assessment manikin and the semantic differential,” Journal of Behavior
Therapy and Experimental Psychiatry, vol. 25, no. 1, pp. 49–59, 1994.

[12] Y.-J. Suh and B. H. Kim, “Riemannian embedding banks for common
spatial patterns with EEG-based SPD neural networks,” in Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), 2021, pp.
854–862.

[13] A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, “Multiclass
brain–computer interface classification by riemannian geometry,” IEEE
Transactions on Biomedical Engineering, vol. 59, no. 4, pp. 920–928,
2011.

[14] Y. Chen, A. Wiesel, Y. C. Eldar, and A. O. Hero, “Shrinkage
algorithms for MMSE covariance estimation,” IEEE Transactions on
Signal Processing, vol. 58, no. 10, pp. 5016–5029, 2010.

[15] B. H. Kim and S. Jo, “Deep physiological affect network for the
recognition of human emotions,” IEEE Transactions on Affective
Computing, vol. 11, no. 2, pp. 230–243, 2020.

[16] R. F. Baumeister, K. D. Vohs, C. Nathan DeWall, and L. Zhang,
“How emotion shapes behavior: Feedback, anticipation, and reflection,
rather than direct causation,” Personality and social psychology review,
vol. 11, no. 2, pp. 167–203, 2007.

[17] T. M. Loughin, “A systematic comparison of methods for combining
p-values from independent tests,” Computational statistics & data
analysis, vol. 47, no. 3, pp. 467–485, 2004.

[18] D. E. Sander and K. R. Scherer, The Oxford companion to emotion
and the affective sciences. Oxford University Press, 2009.

[19] G. Mattavelli, M. Rosanova, A. G. Casali, C. Papagno, and L. J. R.
Lauro, “Timing of emotion representation in right and left occipital
region: Evidence from combined TMS-EEG,” Brain and cognition,
vol. 106, pp. 13–22, 2016.

4167

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 10,2022 at 03:18:04 UTC from IEEE Xplore.  Restrictions apply. 


