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Abstract. A recurrent integrator proportional integral
derivative (PID) model that has been used to account for
cerebrocerebellar stabilization and scaling of transcorti-
cal proprioceptive feedback in the control of horizontal
planar arm movements has been augmented with long-
loop force feedback and gainscheduling to describe the
control of human upright balance. The cerebellar com-
ponent of the controller is represented by two sets of
gains that each provide linear scaling of same-joint and
interjoint long-loop stretch responses between ankle, knee,
and hip. The cerebral component of the model includes
a single set of same-joint linear force feedback gains.
Responses to platform translations of a three-segment
body model operating under this hybrid proprioception
and force-based long-loop control were simulated. With
low-velocity platform disturbances, “ankle-strategy”-type
postural recovery kinematics and electromyogram (EMG)
patterns were generated using the first set of cerebeller
control gains. With faster disturbances, balance was main-
tained by including the second set of gains cerebellar con-
trol gains that yielded “mixed ankle-hip strategy”-type
kinematics and EMG patterns. The addition of small
amounts of simulated muscular coactivation improved
the fit to certain human datasets. It is proposed that
the cerebellum switches control gainsets as a function of
sensed body kinematic state. Reduction of cerebellar gains
with a compensatory increase in muscular stiffness yielded
posture recovery with abnormal motions consistent with
those found in cerebellar disease. The model demonstrates
that stabilized hybrid long-loop feedback with scheduling
of linear gains may afford realistic balance control in the
absence of explicit internal dynamics models and suggests
that the cerebellum and cerebral cortex may contribute to
balance control by such a mechanism.

1 Introduction

Engineering models have been developed that effec-
tively describe aspects of human balance (Kuo 1995),
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locomotor (Ogihara and Yanazaki 2001), and jumping
control (Spagele et al. 1999). However, few have made spe-
cific proposals for how this may be implemented by the
central nervous system (CNS). In particular, the perfor-
mance of CNS feedback control systems must be evaluated
carefully given that transcortical round trip (long-loop)
signal transmission delays to and from trunk and ankle
are on the order of 60–80 ms, respectively, and additional
phase lags occur due to neuromuscular excitation–acti-
vation coupling (Fuglevand and Winter 1993). Especially
the latter have been frequently neglected, which leaves in
question some conclusions regarding the stability of some
balance models. The issue of delay management in mo-
tor physiological feedback control has been specifically
addressed by other investigators. Models differ with re-
spect to whether they propose (Uno et al. 1989; Miall
et al. 1993; Paulin 1993b; Wolpert et al. 1998) or do not
propose (Lacquaniti and Soechting 1986; Massaquoi and
Slotine 1996; Kettner et al. 1997) that the CNS incorpo-
rates internal dynamics models to achieve sufficient sig-
nal prediction for stabilization of long-loop responses. In
a number of these descriptions, the function of the cer-
ebellum is represented prominently because of its estab-
lished importance in both movement control and postural
stabilization (Diener and Dichgans 1992; Thach et al.
1992b; Massaquoi and Hallett 1997). Internal-dynamics-
model-based approaches to physiological state estimation/
prediction, including those based on Kalman filtering
(Kuo 1995; Paulin 1997), Smith predictors (Miall et al.
1993), or other schemes (Uno et al. 1989; Kettner et al.
1997), are clearly powerful and well motivated from an
engineering viewpoint. Yet, while the CNS is presumably
sufficiently complex to include circuits that could match
the dynamic order and nonlinearity of the body itself,
there is no specific evidence that such mechanisms are
actually active. Therefore, the question of whether the
brain uses computational schemes that are simpler and/or
more efficient in terms of neuronal processing remains an
open one. For example, Ayaso et al. (2002) have demon-
strated that effective inverse kinematic modeling may be
achieved implicitly using relatively coarsely specified gain
settings within feedback control loops. Similarly, “direct”
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control approaches (Goodwin and Sin 1984), including
those linear schemes based on wave-variable process-
ing (Massaquoi and Slotine 1996; Massaquoi 1999), or
recurrent integrators (Massaquoi 1999), demonstrate that
internal dynamics models are not necessary for stable de-
layed long-loop control.

The recurrent integrator proportional integral deriv-
ative (RIPID) model of cerebrocerebellar control (Mas-
saquoi 1999) posits a particularly simple mechanism for
stabilizing long-loop proprioceptive feedback loops to
achieve arm posture and movement and postural control
in the horizontal plane. Specifically, it proposes that corol-
lary efference-copy discharge (Hore and Vilis 1984) trans-
mitted via a cerebellar integrator returns to the cerebral
cortex to afford effective differentiation and thereby phase
lead critical for long-loop stability. Once stabilized, linear
scaling of same-joint and interjoint feedback responses
by linear gains is sufficient to manage plant dynamics. A
number of features of human arm control, both for intact
and compromised cerebellar function, appear to be well
described by the model. However, it is not clear that this
type of mechanism would be able to properly address the
nonlinear and inherently unstable dynamics of an upright
multisegment plant. An initial application of the RIPID
model to controlling the upright posture of a simple three-
segment body model that included lumped nonlinear but
not activation-dependent joint stiffness and viscosity was
only partially successful. It was able to supplement com-
paratively low (<100 Nm/rad) ankle muscular stiffness to
reproduce low-velocity body balancing that depends pri-
marily upon control of ankle torques (“ankle strategy”,
Horak and Nashner 1986; Nashner and McCollum 1985).
In this regard, the model afforded a neuroanatomical-
ly plausible implementation of PID balance control that
had been posited previously by Johansson et al. (1988)
and Peterka (2001, 2003). However, for stronger distur-
bances that called for coordinated ankle and hip motion
(“mixed ankle-hip strategy”, Horak and Nashner 1986;
Nashner and McCollum 1985), the RIPID model was un-
able to reproduce human balancing kinematics unless the
cerebellar gains were switched during motion. Three sets
of linear gains, a base set for quiet standing, a “catch-
ing” set, and a “recovery” set, were ultimately found to
be sufficient to reproduce characteristic human kinemat-
ics following platform translations over a large range of
velocities (Jo 2002). To accomplish this, it was postulated
that cerebellar control switched between the three gain-
sets on the basis of sensed body kinematic state. While
the approach appeared promising, it was found (unpub-
lished) that when using more realistic muscle models, the
switching required for comparable performance became
considerably more complicated.

Another important approach to antigravity and bal-
ance control appears to be the use of force feedback.
Positive force feedback has been shown to be valu-
able in managing ground impact during robotic locomo-
tion (Song et al. 1999). In this case, it can compensate
strongly for declining mechanical advantage as the body
or joint bends under gravity. In relation to stance, Pe-
terka (2003) has pointed out that, at least for gentle (≤1◦

excursion) induced body sway about the ankle, positive
force feedback added to PID control appears to provide
low-frequency phase advance that contributes to stabil-
ity. For the low-frequency (<2 Hz) movements studied,
additional mechanisms for long-loop delay compensa-
tion were not required. There is no indication, however,
that the addition of positive force feedback to simple
PID control is itself sufficient to stabilize stance against
large, rapid disturbances. On the other hand, negative
force feedback may have a role in this situation. Prelim-
inary simulations subjecting the switched RIPID model
with activation-dependent muscular stiffness to strong
disturbances demonstrated that it readily achieved upright
posture but exhibited excessively rapid return to vertical.
This inappropriately large effective stiffness about vertical
indicated that the addition of negative rather than posi-
tive force feedback might provide more realistic responses.
The hybrid force feedback RIPID (FRIPID) model is
designed to agree with accepted or highly plausible motor
system neuroanatomy and has been assessed with respect
to its ability to reproduce human kinematics and EMG
patterns in the context of intact and compromised cer-
ebellar function. It was found that the incorporation
of negative force feedback enables the proprioception-
based switched RIPID control model to reproduce human
behavior across a range of disturbance intensities using a
simpler kinematic state-based gainscheduling scheme than
was possible before. The model’s qualitative reproduction
of balance dysfunction in cerebellar disease supports its
formulation of the role of cerebrocerebellar circuitry in
balance control.

2 Methods

2.1 Musculoskeletal plant model

A three-segment kinematic chain with pivot joints rep-
resenting the ankle, knee, and hip was used to represent
human rigid body dynamics in the sagittal plane (Fig. 1).
Positive angular motion was consistent with anatomical
flexion at the hip, knee, and dorsiflexion at the ankle. The
feet were assumed to be always in flat stable contact with
the ground (platform). After computation of motion, it
was verified that ankle torques and center-of-mass loca-
tion would not have caused heel lift or loss of balance.
The body model’s dynamics in response to applied total
muscular and disturbance torques applied to the joints,
�M(�, �̇,u�) and �D(D̈,�), respectively, is given by:

H(�)�̈+C(�, �̇) = �M(�, �̇,u�)

+�D(D̈,�)+G(�), (1)

where �= [θ1 θ2 θ3]T , �̇= [
θ̇1 θ̇2 θ̇3

]T
, and u� is the

3×1 central command vector from brain. H(�) is the 3×3
symmetric configuration-dependent body inertia matrix,
C(�, �̇) is the 3×3 matrix related to centrifugal and Cori-
olis forces, G(�) is the 3×3 gravitational effect matrix, and
�D(D̈,�) is the 3×1 vector related to external disturbance
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Fig. 1. a Body segment parameters and body configuration angle
conventions: �ankle = �1,�knee = −�2,�hip = �3. b Muscle diagram:
GM gluteus maximus, IP iliopsoas, BFL biceps femoris long, BFS
biceps femoris short, RF rectus femoris, VA vastus intermedius, GC
gastrocnemius, SO soleus, TA tibialis anterior

generated by backward platform acceleration (D̈). See
appendix A for more detailed definitions.

Joint torque is determined by the total muscular force
(passive + active) F(l, l̇,u) and the moment arms of each
muscle according to:

�M(�, �̇,u�)=ATF(l, l̇,u) (2)

AT =
[−a1 0 0 0 −a5 a6 0 0 aa

9
0 0 a3 −a4 0 0 ak

7 −ak
8 −ak

9
0 a2 0 0 0 0 −ah

7 ah
8 0

]

, (3)

where ai is the estimated average moment arm of the ith
muscle in Table 1. This formulation substantially follows
that employed by Katayama and Kawato (1993) except
that muscles are activated simply in relation to intended
joint control (Equation 8) and muscles undergo a sim-
ple step change in stiffness with activation. For biartic-
ular muscles, superscripts h, k, and a represent moment
arms at, respectively, the hip, knee, and ankle. Flexor mo-
ment arms are negative, reflecting the relationship between
length change and direction of rotation.

Passive muscular force is expressed by:

Fp = [Kp(leq − l)−Bp l̇]+ , (4)

where [x]+ =
{
x x >0
0 x ≤0

Fp is passive tension, Kp,Bp are

passive muscle stiffness and viscosity, leq is muscle length
at equilibrium, and l is actual muscle length.

Active muscular force as a function of neural input to
each muscle (u) is represented by:

Fa = [Kasgn([l(u)− l]+)(l(u)− l)−Basgn([l(u)− l]+)l̇]+ ,(5)

where sgn(x) =





1 x >0
0 x =0
−1 x <0

Fa is active tension, Ka,Ba

active are flexor muscle stiffness and viscosity, leq is mus-
cle length at equilibrium, l is actual muscle length l(u)=
leq +αu, where α is constant (activation-to-length gain),
and u is neural input.

When both passive and active tensions are applied
together,

F(l, l̇,u)=Fp(l, l̇)+Fa(l, l̇,u) , (6)

l = leq +A(�−�eq) , (7)

u =Au� (8)

(α is set at 1 for simulation).
The activation of muscle force by neural input occurs

according to low-pass dynamics that can be approximated
by:

EC(s) = ρ2

(s +ρ)2
ρ =30 rad/s

(Fuglevand and Winter 1993) . (9)

The model views the similarly acting muscles of the trunk
and legs as operating together as functional groups of uni-
and biarticular flexors and extensors as shown in Fig. 1b.
Assuming that stiffness is proportional to the physiolog-
ical cross-sectional area (PCA) (Brand et al. 1986), the
relative muscle stiffness scaling is given based on morph-
metric data in Table 1. The effective preset (i.e., before
reflex neural activation) rotational stiffness of the ankle
during standing is about 90 Nm/rad (Fujita and Sato
1998). This value was used to determine the absolute pas-
sive stiffness of each muscle given its relative scaling.

The muscle viscosity was set at one tenth the mus-
cle stiffness as has been done in arm modeling (Flash
1987). The passive stiffness is assumed to include the
action of segmental reflexes as in the “lambda model” of
Feldman (Feldman 1986). The dynamics of series elas-
ticity, filtering action of spindles, segmental propriocep-
tive and force feedback, and spinal processing by alpha
motorneuron–Renshaw cell networks were not modeled
explicitly, although it is likely that these could improve the
accuracy of the simulations (Winters 1995). It was not felt
that these features would bear significantly upon the ques-
tion of FRIPID control feasibility. Finally, it was assumed
that muscular activation simply doubled the modest pas-
sive stiffness and viscosity of each muscle, which increases
the damping ratio by 40%. This was considered based
on human arm modeling where stiffness and damping
ratio have been shown to increase up to 500 and 50%,
respectively (Lacquaniti and Soechting 1986), with strong
activation, and this was considered conservative leaving a
larger portion of the control to the CNS model.

2.2 Neural control model

2.2.1 Cerebellar computation. Incorporating ideas from
Oscarsson (1979), Ito (1984, 1997) proposed that cerebel-
lar processing is performed by functional corticonuclear
microcomplexes of various forms. Using this framework,
it may be argued specifically that the cerebellum could
afford proportional scaling, integration, and differentia-
tion (Massaquoi 1999; Massaquoi and Topka 2002). Fig-
ure 2a indicates how proportional scaling, with or without
approximate differentiation, could be implemented by a
corticonuclear microcomplex in lateral cerebellum.The
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Table 1. Length, moment arm, and physiological cross-sectional area (PCA) parameter values of muscles determined on the basis of Ogihara
and Yamazaki (2001), Delp et al. (1999), and Winter (1990)

Muscle Location Length (m) Moment arm (m) PCA (cm2)

Iliopsoas (IP) Mono, hip flexor 0.35 0.002 17
Gluteus maximus (GM) Mono, hip extensor 0.30 0.03 30.4
Rectus femoris (RF) Bi, hip flexor, knee extensor 0.48 0.049 (h), 0.025 (k) 12.5
Biceps femoris long (BFL) Bi, knee flexor, hip extensor 0.46 0.054 (h), 0.049 (k) 15.8
Vastus (VA) Mono, knee extensor 0.26 0.04 30
Biceps femoris short (BFS) Mono, knee flexor 0.29 0.049 6.8
Tibialis anterior (TA) Mono, ankle dorsiflexor 0.30 0.023 9.1
Gastrocnemius (GC) Bi, knee flexor, ankle plantarflexor 0.56 0.050 (k), 0.040 (a) 30
Soleus (SO) Mono, ankle plantarflexor 0.35 0.036 58

Fig. 2a–c. Neural computation
in cerebellar corticonuclear
complex (a) differentiation, (b)
integration band-limited
differentiation

input signal x(t) is conveyed by mossy fibers (MF) and
the output signal y(t) is transmitted from the dentate
nucleus (Dn). A sidepath through the cerebellar cor-
tex (CbCtx) contains a potentially significant time de-
lay Tpf due to comparatively slowly conducting paral-
lel fibers (PF) (Braitenberg 1967). Synaptic connection
strengths between MF and dentate nuclear cells and be-
tween PF and Purkinje cells (PC) are represented as β1
and β2, respectively. The latter gain is generally considered
to be adaptable (Ito 1984). The proposed input–output
relationship is therefore y(t) = β1x(t) − β2x(t − Tpf ), or
y(t) = βxx(t) − β2(x(t) − x(t − Tpf )). Therefore, y(t) ≈
βxx(t) + Tpfβ2dx(t)/dt , where βx = β1 − β2, and output
signal scaling and character can be modified by adaptation
of β2. When β1 ≈β2 and Tpf is nontrivial, output is pro-
portional to an approximate derivative of the input. Other-
wise, the output consists of a signal proportional to input,
possibly together with an additional derivative term.

Figure 2b suggests that integration may be afforded by
interaction between cerebellar corticonuclear complexes
in the medial cerebellum together and certain precerebel-
lar nuclei. Input x(t) is transmitted by cells in magno-
cellular red nucleus (RNmc) and lateral reticular nucleus
(LRN) to interpositus nuclear cells (Ip) (Allen and Tsuka-
hara 1974). RNmc units are modeled as a leaky integrator
with nontrivial time constant � because of their large size.
In this case, dz(t)/dt = x(t) + (β1 − β2)z(t) − (1/�)z(t).
For (β1 −β2)≈ (1/�), we have dz(t)/dt ≈ x(t) and hence
z(t)≈∫

x(t)dt . This proposed adaptive (via changes in β2)
cancellation of integrator leak is analogous to that pro-
posed for eye control (Leigh and Zee 1991). Therefore,

y(t) ≈ β3z(t) − β4z(t − Tpf ). By the analysis in Fig. 2a,
y(t)≈βx

∫
x(t)dt +Tpfβ3x(t), whereβx =β3 −β4. The out-

put is therefore approximately a scaled version of the inte-
gral of the input and/or a term proportional to the input
if Tpf is not negligible.

Finally, Fig. 2c depicts how a band-limited differenti-
ator may be implemented using the cerebellar integrator
in Fig. 2b scaled by an arbitrary gain βyx =βx =β3 −β4
and connected in negative feedback configuration
with respect to the cerebral cortex CCtx. Here,
c(t) is a high-level command signal and the out-
put is scaled by βux also possibly by cerebellar
circuits. The net motor command is u(t) = βux(c(t) −
βyx

∫
(u(t)/βux)dt). By differentiating and rearranging,

u(t) + (1/βyx)du(t)/dt = (βux/βyx)dc(t)dt . Because for
any sinusoid, max

t
|du(t)/dt | = ω max

t
|u(t)|, the second

term on the left can be neglected for signals hav-
ing all frequency content w � βyx. In this case, u(t) ≈
(βux/βyx)dc(t)/dt , and the recurrent integrator provides
effective differentiation.

It should be noted that in principle velocity informa-
tion potentially available from muscle spindles could be
used for the derivative component of control. In prac-
tice, however, this could be problematic. Spindle signals
depend upon both muscle stretch and gamma biasing.
Accurate computation of muscle stretch rate involves can-
celing the effect of bias rate of change, which is nontriv-
ial because spindle response is not a simple function of
bias input (Hasan 1983; Rosenthal et al. 1970). More-
over, arm control appears to benefit from double deriv-
ative control (Massaquoi 1999), which would be even
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more difficult to extract from spindle information. RIPID
models emphasize central differentiation. First, as argued
above, this appears to be eminently feasible. Second, many
phasic features of motor commands remain after periph-
eral deafferentation (Hallett et al. 1975), while instabil-
ity consistent with loss of phase lead is prominent with
cerebellar outflow lesions (Massaquoi 1999; Massaquoi
and Topka 2002; Hore and Flament 1986). Third, central
areas felt to receive spindle information show compar-
atively suppressed position information consistent with
central differentiation (Hore et al. 1976). Still, the FRIPID
model attempts to demonstrate that, for balance control,
peripheral measurement of joint angular velocity is not
necessary, rather than to insist that it does not occur.

2.2.2 Cerebrocerebellar long-loop feedback systems. The
rotational stiffness of passive muscle at the ankle is not
sufficient to maintain the body in upright balance. Based
on a simple linear analysis about the vertical (unstable)
equilibrium with knee assumed to be locked, the mini-
mum effective stiffness needed at the ankle joint for static
erect posture is about 700 Nm/rad (for a 70-kg individual
with height of c.o.m =1 m). Therefore, some additional
muscular activation is necessary. This may take the form
of either feedforward coactivation of flexors and extensors
around a joint to increase its effective stiffness and viscos-
ity or neural feedback pathways. We seek a model that
incorporates the minimum level of muscular coactivation
consistent with observed behavior.

The hybrid force feedback RIPID (FRIPID) model is
shown in Fig. 3. The model formally contains a vertical ref-
erence signal (�ref ) to acknowledge the fact that the CNS
presumably can compute body orientation with respect to
vertical (Peterka 2003). As even subjects with significant
vestibular dysfunction may be able to balance (Nashner
et al. 1982), the orienting mechanism can utilize multisen-
sory inputs. For simple upright balancing on a horizontal
platform, �ref and �ref can be set to zero. We propose that
the linear PID processing shown in Fig. 2 can be extended
directly to three-joint control such that the cerebellar out-
put is given by:

ucb(i) =
∑

j=1,2,3

G(m)

b (i, j)ẋcb(j)+
∑

j=1,2,3

G(m)

k (i, j)xcb(j)

+
∑

j=1,2,3

I(m)

1 (i, j)

∫
xcb(j), (10)

where
∫

x = ∫ t
0 x(�)d�.

Here G(m)

k ,G(m)

b , and I(m)

1 are 3×3 matrices that belong
to gainset m=1,2 as described in the next section. There-
fore, (10) represents linear control for any m and piece-
wise linear control overall. Empirically, differentiation of
xcb was found to be unnecessary for balance simulations.
Therefore, the elements of G(m)

b were set to zero.
As in the basic RIPID model (Massaquoi 1999), the

3×3 matrices Ia and I� are proposed to represent scal-
ing of signals related to hypothesized sensorimotorcorti-
cal integrators. The 3×3 diagonal matrices F2 and MC
affect the relative balance of cortical and cerebellar cir-
cuitries. Proprioceptive feedback processing accesses the

cerebellar system directly through F2. Descending signals
from parietal or motor cortices that bypass the cbCtx are
scaled by MC.

A very similar scheme that includes activity related to a
reverberating circuit between ucb and xcb involving precer-
ebellar brainstem nuclei (Allen and Tsukahara 1974) is
taken to implement integration (Massaquoi 1999; Mas-
saquoi and Topka 2002). A mechanism similar to that
producing recurrent integration for band-limited differ-
entiation (Figure 2c) is assumed to also provide descend-
ing integration. This integral signal is scaled by the 3×3
diagonal matrix I2 and projected to cerebral cortex in a
recurrent feedback manner. The circuit has closed-loop
transfer matrix sI(sI+ I2)

−1 (where I is an identity matrix)
and provides significant phase lead that is responsible for
delay compensation.

In particular, examining for simplicity a single joint rep-
resentation in terms of scalars gk, i1, i2, f2, ia, and mc in
Fig. 3, the transfer function from xc to ucb is given by
(sgk + i1)/(s + i2), and the overall transfer function from�
to umc is −(sgkf2 + i1f2 +gkia + i1ia/s)/(s + i2)− iamc/s,
and therefore for |s| << i2, this becomes −(i1f2/i2 +
gkia/i2)− (i1ia/i2 + iamc)/s − s(gkf2/i2). Thus, for lower
frequencies, proprioceptive control is approximately PID.
However, it should be noted that inclusion of exci-
tation–activation muscular dynamics [Equation 9] ren-
ders the control between � and �M to be slightly
more complex than PID even before force feedback is
included.

The FRIPID model adds a torque feedback loop that
represents force-related information from the pressure dis-
tribution on the feet or muscle tension sensed by Golgi ten-
don organs (Peterka 2003). For the moment, it is assumed
that this signal traverses the cerebral cortex where force
information is felt to arrive at the cerebral cortex via the
VPL thalamic nucleus (Brodal 1981). By symmetry with
the processing of proprioceptive information in the basic
RIPID model and consistent with the predominantly low-
frequency effect of force feedback as explored by Peterka
(2003), force feedback is processed by a (thalamo-) cortical
integrator associated with 3×3 scaling matrix I�.

Closed-loop transmission delays through spinal and
peripheral nerves (Tspr) are conservatively taken to be 60,
70, and 80 ms for long-loop responses to and from the hip,
knee, and ankle, respectively, based on 2 m height, 50 m/s
neural conduction velocity, and five synaptic delays of less
than 1 ms.

It was also found empirically that the use of feedforward
muscular coactivation in concert with long-loop control
improved the fit to some human datasets. It was assumed
that for healthy subjects, the magnitude of this compo-
nent should be comparatively small. However, it was sus-
pected a priori based on clinical observations (Massaquoi
and Hallett 1997) that coactivation might be increased to
compensate for degraded cerebellar processing of long-
loop responses. To accommodate this, the FRIPID model
was augmented by a hypothetical system that triggered a
prespecified level (CA) and duration of muscular coacti-
vation when a sufficiently large ankle velocity signal was
detected at the cortex.



193

Fig. 3. Force feedback RIPID
cerebrocerebellar balance con-
trol model (see text for explan-
ation of features)

2.2.3 Cerebellar control gainscheduling. Preliminary sim-
ulations demonstrated that, while a basic balance control
RIPID model can recover upright posture following gen-
tle platform disturbances, it was inadequate for more vio-
lent disturbances. Many investigators (Brindley 1969; Ito
1972; Thach et al. 1992a; Wolpert et al. 1998) have con-
sidered the possibility that the cerebellar function var-
ies with physiological context. As the cerebellum receives
rich input from many parts of the body, and Purkinje
cell activity has been related to joint kinematic activity
(Johnson and Ebner 2000), it is highly conceivable that
different corticonuclear microcomplexes become active
in different kinematic states. A straightforward applica-
tion of this idea to the FRIPID model is therefore the
proposition that the cerebellar system gains G(m)

b ,G(m)

k ,
and I(m)

1 may be scheduled according to sensed kinematic
state.

Figure 4 shows a simple proposal for a gainset selec-
tion mechanism in which a “beam” of activity on sup-
pressor parallel fibers (PFsup) inhibits (via basket cells,
not depicted explicitly (Eccles et al. 1967; Ito 1984)) Pur-
kinje cells some distance away (“off beam”). This dimin-
ishes the net inhibition in those modules, allowing them to
process the input xcb that arrives on signal parallel fibers
(PFsig). Conversely, the beam activates local Purkinje cells,
thereby suppressing the activity of “on beam” modules.
The principal characteristic required of PFsup fibers in
this scheme is that, unlike PFsig fibers, they should con-
tact Purkinje cells relatively more strongly than the cor-
responding deep nuclear cells – if they contact the same
DCN cells at all. This appears to be generally consistent
with the studies of Eccles et al. (Eccles et al. 1974a,b;
Ito 1984). A prime candidate source for suppressor PF is
the dorsal spinocerebellar tract (DSCT) elements, which
are known to convey mixtures of proprioceptive and
other information from multiple muscles within a limb
(Oscarsson 1965; Bloedel and Courville 1981; Osborn

Fig. 4. A model of proposed gainscheduling circuitry in CbCtx;
Mossy fibers (MF), parallel fibers (PF), Purkinje cells (PC), and cer-
ebellar deep nuclear cell (Dn)

and Poppele 1992) while typically maintaining a steady
level of background firing in the absence of afferent in-
put (Mann 1973). We may formalize these observations
by proposing that the DSCT fibers transmit [n̄i · q̄]+,
where q̄ = [�̂1 �̂3

˙̂
�1 1]T and n̄i = [ni − n0i ]T for many

different values of directional unit vector ni and offset
n0i . It would be expected that, in vivo, q̄ would be the
average signal of a large number of primary afferents
(Mann 1973), thereby reducing the noise transmitted to
the cerebellum. Thus, certain suppressor fibers become
relatively more active when the sensed kinematic state
is located in a region of the state space bounded by the
plane perpendicular to ni at distance n0i from the origin.
Depending upon the signs of ni and n0i , the region may or
may not include the origin (Fig. 5). The net gainscheduling
action can therefore be written as:

G(i, j) = G(i, j)(1)[1− [1−γ [n̄1 · q̄]+]+]+
+G(i, j)(2)[1− [1−γ [n̄2 · q̄]+]+]+ , (11)
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Fig. 5. a Two sensed (delayed) recovery trajectories and one (for clar-
ity) of two closely spaced parallel switching planes separating gainset
regions in �̂1 × �̂3 × ˙̂

�1 space. b Projection of sensed trajectory onto
�̂1 × �̂3 space with two large dots corresponding to points of their
intersection with switching plane. Dashed lines show approximate
limits of feasible balance region as in Fig. 6

where γ represents the strength of lateral inhibition pro-
vided by basket cells. This parameter regulates the steep-
ness of the transition zone between scheduling regions.

2.3 Simulations of physiological and pathological balance
control

Several experimental methods have been employed to
study human balance control (Horak and Nashner 1986;
Nashner and McCollum 1985), including platform trans-
lations. Humans have been noted to exhibit characteristi-
cally different balancing kinematics that emphasize either
ankle or hip motion depending upon the magnitude and
speed of the platform disturbance. Backward platform
movement and kinematic data in Henry et al. (1998),
Runge et al. (1999), and Park et al. (2004) covered a fairly
wide range of disturbance velocities, but they were not
identical. Also, platform kinematics were not reported in
detail. These studies were used to establish a useful set of
nominal model gains with respect to which other changes
were made as described.

For simulations, platform movements were 2.97-, 4.50-,
5.94-, 6.75-, and 9.00-cm displacements lasting 300 ms and
were sigmoidal in time. An important check on the pre-
sumed cerebellar locus of the control system is whether
simulated lesions yield balance control deficits that cor-
respond to clinical findings. In particular, diffuse cere-
bellar injury, especially of the anterior lobe that results

in general loss of cerebellar tissue (atrophy), would be
expected to reduce the strength of the cerebellar gains.
It is also conceivable that this deficit might engender
increased active muscular stiffness from the cerebral cor-
tex and/or elsewhere to help compensate for the loss of
long-loop control.

No attempt was made to obtain precisely optimal fits
according to any abstract mathematical cost function.
Rather, reproduction of human behavior was sought that
yielded approximate that were visually satisfactory. The
tuning procedure involved first obtaining a stabilizing lin-
ear quadratic regulator (Franklin et al. 1994) that approx-
imated human behavior for small disturbances. Then, the
behavior was tuned manually to fit human data with force
feedback and muscular coactivation.

3 Results

Successful balancing reactions to the full range of tested
disturbances were achieved by the FRIPID model using
just two, slightly overlapping, gainscheduling regions in
�̂1 × �̂3 × ˙̂

�1 space. In principle, there is no reason to expect
that the cerebellum does not have access to the equiva-
lent of full state information from all joints. However, we
sought the smallest number of kinematic variables that
could enable the model’s switching mechanism to account
for the data. The components �̂1 and �̂3 provide significant
information about the body’s center of mass when there
is little knee motion, and ˙̂

�1 provides rapid information
about platform velocity. Figure 5 depicts the projection of
a low-velocity and high-velocity recovery trajectory into
this subspace and the scheduling zones determined by two
closely spaced planes. The planes are defined by the equa-
tions:

n̄i · q̄ =0, i =1,2 . (12)

For the simulation, n̄1 = [−0.992 0.111 − 0.061 0.773]T,
n̄2 = [0.992−0.111 0.061−0.605]T.

The quantity [n̄1 · q̄]+ is positive for sensed state space
locations on the origin side of the outer plane. [n̄2 · q̄]+
is positive at locations beyond the inner plane. The in-
ner part of the space was considered the base region, and
its associated gain matrices G(1)

k , I(1)

1 yielded ankle strat-
egy. The outer zone, designated the catching region, was
associated with G(2)

k , I(2)

1 and generated mixed ankle-hip
strategy.

A number of human studies have shown the same basic
patterns of body movement in relation to platform transla-
tion (Henry et al. 1998; Runge et al. 1999; Park et al. 2004;
Allum and Honegger 1992; Horak and Nashner 1986;
Nashner and McCollum 1985). Figure 6 shows the model
tuned to most closely approximate the data of Henry et al.
(1998). Attention is paid here to the relative amplitudes
and timings of the joint excursions and smoothness of set-
tling. It is noteworthy that, although the joint angle vs.
time plot of the data of Henry et al. did not show initial
hip undershoot, the ankle-hip body configuration trajec-
tory plot did (Henry et al. 1998, Fig. 2). We consider the
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Fig. 6a–d. Left (a) Simulated
and (c) actual (Henry et al. 1998;
with permission from IEEE
Transactions on Rehabilitation
Engineering for Reproduction)
kinematics showing ankle (thick
solid line), knee (thin solid line),
and hip (dashed line) motion in
response to backward platform
movement. Right: (b) Simulated
c.o.m. trajectory and (d)
simulated torque profiles

Fig. 7. a Simulated joint trajectories for a family of
different sized disturbances (details in Sect. 2.3).
b Left: Simulated ankle vs. hip configuration plots.
Right: Configuration plot adapted from Park et al.
(2004); with permission from Experimental Brain
Research for Reproduction. Dotted lines indicate
boundaries in ankle-hip joint space where c.o.m.
remains within feasible region for balance

possibility that in this study the feature was variable and
was averaged out in the time domain plot. Other stud-
ies have typically shown initial hip motion undershoot
(Fig. 5 in Park et al. 2004; Fig. 3 in Runge et al. 1999),
as does the simulation. The simulated vertical projection
of the center of mass onto the ground remains within the
base of support assuming a length from the ankle to the
first metatarsophalangeal joint of at least 8 cm, which is a
conservative estimate, and the peak ankle torque remains
below 60 Nm, a value which Park et al. (2004) found to be
consistent with the heels remaining flat on the platform.
From this point on, we will refer to the parameter settings
used in the top left of Fig. 6 as the base FRIPID scheduled
control model.

The responses of the scheduled FRIPID model to dis-
placements of different velocities are shown in Fig. 7.
If the generally small variation in knee angle motion is
neglected, the body configurations that are consistent with
balance can be determined to lie approximately between
the diagonal dashed lines shown. The “strategy” being
implemented can be characterized by assessing the deter-
minants of center of mass (c.o.m.) control. Slow distur-
bances result in comparable peak excursions at the ankle
and hip. In this case, because the body center of mass is
much farther from the ankle than the hip, ankle motion
has the dominant control over c.o.m. positioning and,
therefore, over balance. This type of motion is considered
“ankle strategy” (Nashner and McCollum 1985). On the
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Fig. 8. a Simulated hip vs. ankle joint torque trajectories. The dot-
ted line indicates the maximum allowable ankle torque for which feet
remain flat on the ground [as indicated in Park et al. (2004)]. b Tra-
jectories of c.o.m. forward displacement corresponding to different
platform velocities. The dotted line indicates the time at which plat-
form movement ends

Fig. 9a, b. Peak values of ankle (solid) and hip (open) angles vs. plat-
form velocity. a Simulations with different cocontractions. b Actual
data from Runge et al. (1999) (left) and Park et al. (2004) (right)

other hand, rapid disturbances yield progressively greater
hip motion until both joints contribute more equally to
balance, especially later within the recovery motion. This
pattern may be termed “mixed ankle-hip strategy”. It
enables the body to remain within the feasible balance con-
figuration region by limiting ankle movement and restrict-
ing ankle torque to levels consistent with maintaining heel
contact with the platform (Fig. 8a). The flexion at the hip
and extension at the ankle that promote c.o.m. recovery
are aided by the abrupt deceleration of the platform at all
translational velocities, as was described by Runge et al.
(1999). The same pattern of platform promotion of c.o.m.
recovery was noted in the simulations (Fig. 8b). The base
FRIPID scheduled control model settings produce a dis-
tinct transition between strategies at a platform velocity of
about 25 cm/s, qualitatively similar to the data of Runge
et al. (1999) (Fig. 9).

Fig. 10. Simulated EMGs in low-velocity (thin lines) and high-veloc-
ity (thick lines) platform disturbances. PS paraspinals, RA rectus
abdominis

Figure 10 shows the distribution of simulated electro-
myogram (EMG) activity: [l(uk)− lk]+, for six muscles, k.
Horak and Nashner (1986) recorded hip joint EMG from
rectus abdominis (RA) rather than iliopsoas, and from pa-
raspinals (PS) rather than gluteus maximus. The RA and
PS have mechanical functions very similar to the PS and
GM and were found to show similar EMG patterns. The
two principal EMG features are that for low disturbance
velocities there is extremely little activation of ventral mus-
culature while the dorsal muscles are activated in ascend-
ing sequence, despite the shorter long-loop reflex times of
the knee and hip musculature. This is a recognized pattern
in ankle strategy motions (Horak and Nashner 1986). Sec-
ond, at higher velocities there is early activation of ven-
tral muscles at the knee and hip and late activation of
the dorsal muscles at these joints. This is the characteristic
muscle activation pattern associated with mixed ankle-hip
strategy (Horak and Nashner 1986). Tibialis anterior (TA)
activity varies between studies from zero for all velocities
as predicted here to zero only for low velocities. This may
be related to varying levels of coactivation at the ankle.

The contributions of different proposed CNS signal
components to the three joints are shown in Fig. 11 for
the base model. For all joints, the cerebellum contributes
the largest signals. The signal spike is related to the time
of gainset transition. It generally does not manifest itself
in the EMG due to low-pass EC filtering. Force feedback
contributes to ankle and hip control gradually. Even at
high disturbance velocities as shown here, ankle activation
is strongest (note the different scales). This is presumably
related both to the larger torque requirement and to the
relatively less inherent stiffness of ankle muscles in com-
parison to larger muscles above. Knee activation is always
quite modest. Muscular cocontraction contributes very
slightly to the ankle, but significantly to the knee, to min-
imize buckling. The time course of uca was determined
empirically to improve fit with data.

The FRIPID model qualitatively reproduces the pos-
tural disturbance responses of persons with cerebellar
disease, especially of the anterior lobe as in nutritional
deficiency-related cerebellar degeneration (Massaquoi
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Fig. 11. Simulated cerebrocerebellar signals descending to
ankle, knee, and hip, respectively, from left to right: thick line
ucb, dotted line uca, dashed line u�, dash-dotted line uc

Fig. 12a, b. Predicted response of person with cerebellar disease to
a low-velocity (11.55 cm/s) backward platform disturbance. a Simu-
lated joint trajectories: ankle (thick solid line), knee (thin solid line),
and hip (dashed line). b Simulated c.o.m. trajectory

and Topka 2002) in Fig. 12. To simulate cerebellar disease,
the magnitudes of cerebellar control gains (G(m)

k , I(m)

1 )
were reduced by 40%. This would correspond to loss
of deep cerebellar nuclear cells, mossy or PF with or
without Purkinje cell loss. On the other hand, muscu-
lar coactivation was increased to simulate the apparent
typical compensation strategy employed by patients. A
relatively mild ramp platform displacement of 3 cm over
about 300 ms was applied to qualitatively reproduce
experimental observations of Horak and Diener (1994).
Consistent with clinical observations, patients develop sig-
nificantly larger amplitude ankle and hip motions but
only relatively minor disturbance in c.o.m. location. Thus,
patients tend to oscillate, but not fall, unless they trip. In
simulations, it was also noted that body oscillation may
become more sustained, yielding a typically 2- to 3-Hz
postural tremor termed titubation (Massaquoi and Topka
2002). It is apparently engendered by the muscular coac-
tivation and/or by reduction in recurrent integrator func-
tion associated with reduced I2 (Massaquoi and Hallett
1998).

4 Sensitivity analysis

Aside from the changes in parameters that correspond
to damage to the cerebellum itself, the sensitivity of the
model to other components was explored as shown in
Fig. 13. Principal observations are: First, as expected,
model function is most sensitive to the integrity of I2 the
recurrent integrator path gain and F2 the gain of direct
long-loop feedback to cerebellum. The former may be re-
duced by interruption of cerebellar outflow destined for
the cortex as often occurs in multiple sclerosis and gives
rise to a violent, destabilizing tremor that may affect arms
or body. Attenuation of the latter signal as occurs with

deafferentation by peripheral sensory nerve or spinal dis-
ease may be compensated for by visual input to some ex-
tent. Eye closure results clinically in the catastrophic fall
depicted here. Moderate changes in the cerebellar gainsets
or switching in general provide appreciable but generally
modest changes in balancing motion trajectory. This is
appropriate for an adaptive control mechanism. The rele-
vance of gainset switching is shown by raising the switch-
ing plane to greater than 200% of its setting in the base
model. In this case, only ankle strategy occurs. Although
the c.o.m. excursion increases only slightly, the peak an-
kle torque rises to 70 Nm, thereby exceeding the criterion
for maintaining heel contact on the platform. The marked
robustness of the control system to increases in neural sig-
nal transmission delays is demonstrated by the less than
2% increase in c.o.m. excursion engendered by a 40%
increase in loop transmission time. Force feedback is nec-
essary to prevent violent recoil of the ankle that could
otherwise be destabilizing as described earlier. Finally,
muscular coactivation is not necessary for balance recov-
ery. However, it does enhance the speed of c.o.m. return
to zero.

5 Discussion

The present study demonstrates that the combination of
stabilized, scheduled long-loop proprioceptive and force
feedback could provide flexible and powerful control to
facilitate postural defense despite the presence of signifi-
cant signal transmission delays and phase lags. Negative
force feedback attenuates the otherwise large and poten-
tially injurious or destabilizing force transients that could
be engendered more often by PID control alone. The find-
ings also suggest that the body’s control could be substan-
tially linear within regions of the kinematic state space
with switching driven by a small number of sensed vari-
ables. The control segmentation need not be fine-grained,
and there is apparently no requirement for precise pre-
diction of body state that would necessitate an internal
forward dynamics model. Finally, the ability to reproduce
at least qualitatively the balance dysfunction in cerebel-
lar disease supports the model’s attribution of long-loop
scaling and stabilization to cerebellar circuitry.

It has already been shown (Kuo 1995) that for
disturbances of the magnitude that occur within these
experiments, human body dynamics can be effectively lin-
earized. Therefore, in the context of effective full body
state estimation/prediction by a linear internal dynam-
ics model, it is possible to reasonably describe human
responses to platform translation in terms of optimal
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Fig. 13. Sensitivity to several
parameters: ankle (thick solid
line), knee (thin solid line), and
hip (dashed line) motions. max
(c.o.m.): the maximum value of
forward c.o.m. displacement,
max (�a): the maximum value
of ankle torque trajectory

linear (linear quadratic Gaussian) control (Kuo 1995). In
this and other models (Hemami and Katbab 1982; Miall
et al. 1993), the control portion as opposed to estimation
component is designed as if there were no delays. Stud-
ies (Miall et al. 1993) have argued that the experimental
disruption of visuomotor tracking produced by delays is
consistent with the presence of an internal dynamics model
used for prediction of target motion and internal feed-
back signals. And, more generally, the potential advan-
tages of physiological model-based state estimation have
been well summarized (Wolpert et al. 1995). However, it
has not been established that such internal models exist,
and even if some do, low-level subconscious propriocep-
tion-dependent all of postural control does not necessarily
depend upon all of the same mechanism as does visuomo-
tor tracking.

The distinction between high-level tracking and low-
level body stabilization is potentially important for any

animal in an open environment where body motion in the
context of novel loads may not be well predicted by exist-
ing internal dynamics models. If control system stability
depended sensitively on state estimation/prediction, then
the estimator would have to be accurately updated dur-
ing the motion itself. This would be especially challeng-
ing in high-speed multijoint, environmentally interactive
behaviors such as predation. It is not clear where or how
such learning would likely occur in the CNS. Effective
adaptation in cerebellum, basal ganglia, and motor cor-
tex seems to require at least several repetitions of move-
ment even under constantly maintained novel conditions
(Martin et al. 1996; Tremblay et al. 1998; Li et al. 2001).
Continuous reorganization of cerebral sensory cortical
activity does not seem to be a likely candidate for improv-
ing low-level control on the scale of fractions of a second.
And spinal circuitry does not appear to have the requi-
site complexity for such flexible general-purpose internal
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modeling. On the other hand, if the control scheme does
not require accurate estimation/prediction of body state
or environmental forces, then internal forward dynamics
and/or delay models may not be needed. In this case, the
computational circuitry may be simpler, the stability and
performance more robust, and the adaptation allowed to
proceed at a more moderate rate.

Proportional integral derivative (PID)-type control for-
mulas have been used to describe frequency domain
characteristics of human body sway involving primar-
ily ankle motion (Johansson et al. 1988; Peterka 2001).
However, balance maintenance in reaction to rapid exter-
nal disturbances necessitates multijoint, e.g., mixed hip
and ankle, responses. And rapid disturbances may excite
high-frequency dynamics that give rise to undesirable
oscillations or destabilize a nonlinear system with delays
or other phase lags. Therefore, it must be explicitly verified
that PID control can be extended to explain the kinemat-
ics of both gentle and more violent disturbance recoveries.
Moreover, it is desirable to determine how such control
may be implemented physiologically.

The RIPID models (Massaquoi 1999) were devel-
oped in the context of wave-variable teleoperation ideas
(Niemeyer 1996) as an effort to account for the apparent
robustness of the animal motor control system to time
delays and phase lags. Wave variables are linear com-
binations of velocitylike and force signals that can be
exchanged between a master site and a remote slave site
in a manner that can ensure stable feedback control over
any distance and with any object so long as the remote
environment and load are passive. Wave-variable-based
models of animal motor control have been investigated
and proposed (Massaquoi 1999) with some ability to ac-
count for both input-output arm movement control and
nonvertical postural stability, and possibly several internal
signals observed experimentally. The RIPID models use
the core simplicity of the wave-variable approach without
fulfilling all of the latter’s formal requirements. As such,
RIPID stability tends to be quite robust under the typical
operating conditions of human arms, although it is not
guaranteed.

Managing the dynamics of upright posture presents a
particular challenge for the purely proprioception-based
RIPID models. First, the plant is inherently unstable due
to an external force that varies nonlinearly with respect
to body configuration, potentially accentuating the desta-
bilizing effects of control system delays. Second, in the
presence of external forces, applied muscular torque can-
not be deduced from kinematic state alone without an
internal model of the kinematics–force relationship if such
could be known. Third, the goal of upright balance is not
necessarily the immediate return to vertical. Rather, it is,
first, roughly to prevent excursion of the vertical projec-
tion of the center of mass beyond the base of support, and
secondarily to return to vertical at a comfortable rate. In
certain high performance situations, the latter phase may
not even be required. Thus, early simulations indicated
that the scheduled, purely proprioception-based RIPID
model could not account well for natural postural recovery
kinematics without resorting to multiple, precisely timed

switches in controller gains. While not physiologically
inconceivable, this lack of robustness was unattractive.

The inclusion of negative force feedback significantly
improved the realism of the RIPID model responses. To
investigate the most challenging possibility with regard
to delay-engendered instabilities, a transcortical path was
simulated. However, the long-loop processing of force
information is not well understood. It is conceivable that
shorter paths involving only the cerebellum might be most
important. In any case, it was still found to be necessary
to posit that a different gainset became active as distur-
bances became more violent. Relatively simple interpola-
tion between the gainsets on the basis of sensed kinematic
state was found to be sufficient even with sensing time
lags. The proposed gainset selection mechanism based on
sensed state represented by augmented vectors n̄i is sim-
ple and flexible. Though clearly speculative, it appears to
be consistent with an implementation by spinocerebellar
pathways that apparently carry a mixture of signals from
the periphery (Osborn and Poppele 1992) and with pre-
vious proposals for operation of cerebellar corticonuclear
circuitry (Eccles et al. 1967; Ito 1997). It has a flavor sim-
ilar to the expansive recoding of kinematic state used by
Kettner et al. (1997). However, the function of this input
is purely one of gainset selection, not in direct generation
of a control output. With force feedback incorporated,
only two cerebellar gainsets were needed to achieve realis-
tic kinematics with appropriate limitation of c.o.m. excur-
sion and peak ankle torque. This represents a significant
improvement in efficiency and robustness of stability with
respect to prior efforts (Jo 2002). Importantly, a 40% in-
crease in loop signal transmission time accentuated hip
and ankle motions but resulted in only a trivial decrease
in c.o.m. control. Still, the mechanism by which appropri-
ate gainsets would be learned within the cerebellum is not
clear. This remains an important issue for physiological
credibility and is therefore an important target for future
investigations.

That the FRIPID model yielded simulated EMG pat-
terns with several semiquantitatively realistic features is
not completely trivial because of the redundancy of mus-
culature around joints and the possibility of muscular
coactivation. Thus, EMG patterns are not fully deter-
mined by the kinematic behavior of the body model.
On the other hand, the exploration of muscle acti-
vation patterns was very limited in this study. More
sophisticated muscle models that include continuously
varying activation-dependent stiffness and segmental
stretch responses would be essential for future efforts in
this direction.

The finding that central features of the abnormal bal-
ance displayed by persons with cerebellar disease could be
approximated at least qualitatively by reducing the gains
of the cerebellar component of the model mirrors a sim-
ilar finding in the modeling of arm control (Massaquoi
1999). The further improvement in realism by the addi-
tion of muscular coactivation appears reasonable, though
it remains somewhat speculative. Enhancement of extrac-
erebellar long-loop responses might have a similar effect.
Perhaps both changes occur. In any case, simulating the
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effects of cerebellar system lesions further supports the
neuroanatomical specificity and architecture of the model.
In this regard, we found it very interesting that G(m)

b
gainsets were not needed for the balance task stud-
ied. In retrospect, this was likely attributable to the
fact that the desired recovery motions of the body seg-
ments did not contain high frequencies. In the RIPID
model, the G(m)

b are used to scale differentiated sig-
nals attributed to lateral cerebellum whose output is
through the Dn (Massaquoi 1999). While it has been
noted that there is apparently a complete somatotopic
body representation of within the dentate (Thach et al.
1992b), the dentate is generally seen to be less active
with truncal and leg movements than with arm and hand
movements. This is especially true in comparison with
the activity of the interpositus and the fastigial nuclei,
which we associate more strongly with G(m)

k and I(m)

1
and which are known to be strongly involved in proximal
arm and truncal control. This suggests that the apparent
difference in the distal-to-proximal preferences of dentate
and interpositus control may be related to differences in
the frequency content of typical body segment movements.

While the findings of this study do not preclude the pres-
ence of more complex processing in the cerebellum, we find
the potential simplicity and applicability of RIPID-type
models to different control problems appealing. Still,
model behavior must be examined with respect to a much
larger set of experiments to confirm this impression. An
anatomically more detailed version of the RIPID model
has already been used to account for a number of inter-
nal signals within the motor system during arm movement
(unpublished). Ultimately, it would be important to test
the FRIPID model against recordings from primate cere-
bellar neurons during upright stance, but we are not aware
that such datasets exist.

Appendices

A The dynamic equations of motion

A three-link inverted-pendulum model represents the
model of human body with three segments, e.g., lower
leg, upper leg, and trunk. The segments are connected
by frictionless hinge joints, and the feet remain flat on the
ground.

The mi is the mass of a segment i, li is the length of a
segment i, and hi is the moment of inertia of a segment i at
center. Segment 1 is the lower leg, 2 is the upper leg, and 3
is the trunk. Body model parameter values are: m1 =4 kg,
m2 = 7 kg, and m3 = 49 kg; l1 = 0.4 m, l2 = 0.5 m, and l3 =
0.8 m; h1 =0.12 kgm2, h2 =0.14 kgm2, and h3 =2.3 kgm2;
and g=9.81 m/s2 (adapted from Van der Kooij et al. 1999).

H(�)�̈+C(�, �̇)= �M(�, �̇,u�)+ �D(D̈,�)+G(�)

M(�)=
[
M(1,1) M(1,2) M(1,3)
M(2,1) M(2,2) M(2,3)
M(3,1) M(3,2) M(3,3)

]

,

C(�, �̇)=
[
C(1)
C(2)
C(3)

]

,

G(�)=
[
G(1)
G(2)
G(3)

]

, �D(D̈,�)=
[
W(1)
W(2)
W(3)

]

.

M(1,1) = h1 +h2 +h3 +m1r
2
1 +m2(l

2
1 + r2

2 )

+m3(l
2
1 + l2

2 + r2
3 )+2(m2l1r2 +m3l1l2)

+2m3l2r3 cos θ3 +2m3l1r3 cos(θ2 + θ3)

M(1,2) = h1 +h2 +m2r
2
2 +m3(l

2
2 + r2

3 )+m2l1r2 cos θ2

+(m2l1 +2m3r3)l2 cos θ3 +m3l1r3 cos(θ2 + θ3)

M(1,3) = h3 +m3r
2
3 +m3l2r3 cos θ3 +m3l1r3 cos(θ2 + θ3)

M(2,1) = M(1,2)

M(2,2) = h1 +h2 +m2r
2
2 +m3(l

2
2 + r2

3 )+2m3l2r3 cos θ3

M(2,3) = m3l2r3 cos(θ1 + θ2)

M(3,1) = M(1,3)

M(3,2) = M(2,3)

M(3,3) = h3 +m3r
2
3

C(1) = (m2r2 +m3l2)l1(2θ̇1 + θ̇2)θ̇2 sin θ2

+m3l2r3(2θ̇1 +2θ̇2 + θ̇3)θ̇3 sin θ3

+m3l1r3(2θ̇1 + θ̇2 + θ̇3)(θ̇2 + θ̇3) sin(θ2 + θ3)

C(2) = (m2r2 +m3l2)l1θ̇
2
1 sin θ2 +m3l1r3θ̇

2
1 sin(θ2 + θ3)

+m3l1r3(2θ̇1 +2θ̇2 + θ̇3)θ̇3 sin θ3

C(3) = m3l1r3θ̇
2
1 sin(θ2 + θ3)+m3l2r3(θ̇1 + θ̇2)

2 sin θ3

G(1) = (m1r1 + (m2 +m3)l1)g sin θ1

G(2) = (m2r2 +m3l2)g sin θ2

G(3) = m3r3g sin θ3

W(1) = (m1r1 + (m2 +m3)l1)D̈ cos θ1

W(2) = (m2r2 +m3l2)D̈ cos θ2

W(3) = m3r3D̈ cos θ3

B Parameter values used in the base FRIPID scheduled
control simulation

G(1)

k =
[ 91 −60 26
−24 25 −8
20 −12 10

]

, G(2)

k =
[60 −90 32
−7 25 −4
−7 −55 8

]

,

I(1)

1 =
[470 −220 164
−46 200 −17
200 −113 125

]

,

I(2)

1 =
[503 −286 176
−60 170 0
212 −113 125

]

, I2 =
[60 0 0

0 60 0
0 0 60

]

,

Ia =
[0.1 0 0

0 0.1 0
0 0 0.1

]

,

I� =
[0.07 0 0

0 0.01 0
0 0 0.16

]

, F2 =
[0.65 0 0

0 0.65 0
0 0 0.65

]

,

MC=
[0.1 0 0

0 0.1 0
0 0 0.1

]

,

CA =
[0.32 0 0

0 0.04 0
0 0 0

]

.
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