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a b s t r a c t

By introducing a biologically inspired robotic model that combines a modified feedback error learning,

an unsupervised learning, and the viscoelastic actuator system in order to drive adaptive arm motions,

this paper discusses the potential usefulness of a biomimetic design of robot skill. The feedback error

learning is consistent with the cerebellar adaptation, the unsupervised learning, the synergy network

adaptation, and the viscoelastic system of the muscles. The proposed model applies a feedforward

adaptive scheme in the low dimensional control space and an adaptive synergy distribution to control

redundant actuators effectively. The combination of the two adaptive control schemes is tested by

controlling a two-link planar robot arm with six muscular actuators in the gravitational field. The

simulation-based study demonstrates that the control scheme adapts the robot arm motions quickly

and robustly to generate smooth, human-like motions.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Humans can routinely attain complex motions by coordinating
many degrees-of-freedom skillfully and effortlessly. Current
robotic technology still suffers relatively difficulties in performing
with such behaviors that are quite natural to humans. Biological
inspiration may be able to provide a design framework to achieve
smooth motions with less effort. Two major challenges of the
biomimetic approach are (1) an efficient and autonomous way of
controlling redundant actuators which are potentially a key factor
of the efficient and robust generation of motions, and (2) an
adaptive control mechanism to acquire skillful motions interact-
ing with the environment or the disturbance.

Computational studies have made progress to attack the
problem especially in arm motion control. Reinforcement learning
algorithm was used to implement robotic arm movement control
[7]. The biological system limited the control subspace where the
reinforcement learning is applied in order to handle the
redundancy of actuators and demonstrated motion learning
without a priori knowledge. However, the model required many
trials during learning to attain a simple point-to-point motion.
Nakayama and Kimura [14] designed a computational model
combining the muscle and muscle spindle system with the
cerebellum. The muscle and the muscle spindles are modeled by
linear spring-damper systems. The cerebellum does the feedback
error learning (FEL) [5,9]. The feedforward torque is calculated
through the inverse dynamics, which is computed by the adaptive

sliding control [16]. The model performed arm motion tracking
tasks quickly and adaptively, but no redundant muscular actuators
are considered, and detailed plant inverse dynamics computation
is required due to the feature of the adaptive sliding control.

In this paper, we propose a biomimetic adaptive scheme to
achieve human-like motions of robot arm in short learning
process using redundant actuators, and a simple and less
computing adaptive mechanism. The biomimetic approach avoids
detailed plant inverse dynamics computation even though it uses
the FEL. The effectiveness will be shown by computational
experiment.

2. Feedback error learning and viscoelastic muscular actuator

FEL describes the adaptive feedback control as a computational
model of the functional role of the cerebellum [5,9,18]. The
cerebellum is regarded as a locus of the approximation of the
plant inverse dynamics. Initially, a crude feedback controller
operates influentially. However, as the system learns the estima-
tion of the plant inverse, the feedforward controller commands
the body more dominantly. Fig. 1 illustrates the principal scheme
proposed by Gomi and Kawato [5].

The feedback controller is linear as:

t̄fb ¼ K1ð
€̄yd �

€̄yÞ þ K2ð
_̄yd �

_̄yÞ þ K3ðȳd � ȳÞ (1)

where K1, K2, K3 are feedback control gains, ȳd denotes the desired
position vector, and ȳ the actual position vector.
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To acquire the inverse model, different learning schemes could
be used. In general, a learning scheme can be expressed by t̄ff ¼

fðȳd; ȳ;
_̄yd;

_̄y; €̄yd;
€̄y;WÞ where W represents the adaptive parameter

vector. The adaptive update rule for the FEL is

dW

dt
¼ Z

qf
qW

� �T

ðt̄fb þ t̄extÞ (2)

where t̄ext is the external torque and Z is the learning ratio which
is small.

The convergence property of the FEL scheme was shown in
Gomi and Kawato [5], and Nakanishi and Schaal [12].

Muscle force is generated by the muscular viscoelastic
property. The following muscle model has rigorously been studied
[4,6,8,11]:

T̄ ¼ KðāÞðl̄ðāÞ � l̄Þ � BðāÞ_̄l (3)

where KðāÞ and BðāÞ are, respectively, muscle stiffness and
viscosity matrices, l̄ and _̄l are, respectively, the vectors of muscle
length and its velocity, and ā is the vector of the descending neural
command.

The muscular actuator is functionally a feedback controller for l̄

to track l̄ðāÞ, which determines a desired motion. In this case, both
control gains (KðāÞ,BðāÞ) and shift (l̄ðāÞ) are controllable by neural
command. How to adjust the parameters affects energy efficiency,
flexibility and rigidness, adaptability and so on in motion
performance. For example, increasing stiffness can drive robust
motions, but may require high energy consumption. Even with
flexed gains, quick shift of l̄ðāÞ would drive fast motions.

The muscle forces and joint torques, and the muscle length and
joint angles, are, respectively, in the geometric relation of

t̄ ¼ ATT̄ ¼ ATKðāÞðl̄ðāÞ � l̄Þ � ATBðāÞ_̄l

and

l̄ ¼ l̄0 þ Aȳ

where A is the moment arm matrix and l̄0 is the reference length
that indicates the muscle length when joint angles are all zero:

MðȳÞ €̄yþ Nðȳ; _̄yÞ ¼ t ¼ ATKðāÞðl̄ðāÞ � l̄Þ � ATBðāÞ_̄l (4)

ATKðāÞðl̄ðāÞ � l̄0 � AȳÞ � ATBðāÞA _̄y ¼ MðȳÞ €̄yþ Nðȳ; _̄yÞ (5)

When a desired steady state motion is achieved, it is satisfied that

ATKðāÞðl̄ðāÞ � l̄0Þ ¼ ATKðāÞAȳd

The form of l̄ðāÞ ¼ l̄0 þWsā is chosen to satisfy the requirement,
and ām ¼Wsā can be interpreted as the motor command to
muscles. Therefore, Ws determines the distribution of the
descending command to muscles and limits the control command
space.

A feature of the model structure is to compute the descending
commands ā in a low dimensional space and distribute them via

Ws rather than to compute the motor command ām directly. It is
similar to the muscle synergy concept. The muscle synergy terms
a muscle group specified by a principal waveform [2,3,17]. The
concept proposes that various muscular motor commands (which
correspond to ām) can be constructed by a small number of
principal waveforms (which correspond to ā). Experimentally it
was observed that, using a frog hind limb, synergy underlies a
variety of muscular activations that produce different behaviors,
and proposed that the synergy is coded within the spinal cord
[3,17] and furthermore the spinal motor system participates
actively in the behavioral adaptation [2]. Ws may be compared
with the spinal motor network to effectively and appropriately
activate muscles. Eq. (4) can be taken to say that the muscle
system includes both characteristics of the alpha and lambda
models mentioned in the equilibrium point hypothesis [1].
Stiffness and viscosity can be intensified by the descending
command ā as in the alpha model. The command ā also shifts as in
the lambda model. Therefore, The command ā is consistent with
the virtual equilibrium trajectory in the equilibrium point
hypothesis [1]. In this paper, the computation of the descending
command ā is implemented by FEL. The following biologically
plausible learning system combines the FEL and the viscoelastic
muscle model.

The descending neural command ā consists of the feedforward
component āff and the feedback component āfb.

When the muscle model in Eq. (3) is used, Fig. 2 illustrates that

ATKðāmÞWsāff þ ATKðāmÞWsāfb ¼ MðȳÞ €̄yþ Nðȳ; _̄yÞ

þ KyðāmÞȳþ ByðāmÞ
_̄y (6)

āff þ āfb ¼ ðA
TKðāmÞWsÞ

�1
ðMðȳÞ €̄yþ Nðȳ; _̄yÞ þ KyðāmÞȳþ ByðāmÞ

_̄yÞ

¼ M̂ðām; ȳÞ €̄yþ N̂ðām; ȳ; _̄yÞ (7)

where

KyðāmÞ ¼ ATKðāmÞA; ByðāmÞ ¼ ATBðāmÞA

M̂ðām; ȳÞ ¼ ðA
TKðāmÞWsÞ

�1MðȳÞ

and

N̂ðām; ȳ; _̄yÞ ¼ ðA
TKðāmÞWsÞ

�1
ðNðȳ; _̄yÞ þ KyðāmÞȳþ ByðāmÞ

_̄yÞ
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Fig. 1. Feedback error learning scheme.

Fig. 2. Modified feedback error learning.
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Assuming that the equation on the right hand side represents new
body dynamics, āff and āfb are, respectively, equivalent to t̄ff and
t̄fb in the original FEL scheme as long as ATKðāÞWs is invertible.

When the position converged to the desired (i.e., €̄yd ¼
€̄y, _̄yd ¼

_̄y,
ȳd ¼ ȳ), āfb ¼ 0 and āff ¼ ðA

TKðāff ÞWsÞ
�1
ðt̄ff þ Bðāff Þ

_̄ydÞ þ ȳd.

3. Model derivation

3.1. Biological robot arm model

An arm is modeled as in Fig. 4. Shoulder and elbow angles are,
respectively, y1 and y2 (ȳ ¼ ½ y1 y2 �

T). The skeletal system
consists of two rigid body segments, upper arm and forearm+
hand. The arm is affected by the gravitational force.

The skeletal dynamics are described by:

t̄ ¼ MðȳÞ €̄yþ Nðȳ; _̄yÞ þ GðȳÞ þ DðȳÞ, (8)

where MðȳÞ is the 2�2 inertia matrix, Nðȳ; _̄yÞ is the Coriolis and
centrifugal force vector, GðȳÞ is the vector related to gravitational
force, and DðȳÞ is the vector to represent an external disturbance
effect if any disturbance is applied to:

MðȳÞð1;1Þ ¼ m1r2
1 þm2ðl

2
1 þ r2

2 þ 2l1r2 cos y2Þ þ I1 þ I2

MðȳÞð1;2Þ ¼ MðȳÞð2;1Þ ¼ m2ðr
2
2 þ l1r2 cos y2Þ þ I2

MðȳÞð1;1Þ ¼ m2r2
2 þ I2 (9)

Nðȳ; _̄yÞ ¼ �m2l1r2 sin y2

_y2ð2_y1 þ
_y2Þ

�_y
2
1

2
4

3
5 (10)

GðȳÞ ¼
m1gr1 sin y1 þm2gðl1 sin y1 þ r2 sin ðy1 þ y2ÞÞ

m2gr2 sin ðy1 þ y2Þ

" #
(11)

where mi, Ii, li, and ri are, respectively, the mass, moment of
inertia, length, and distance to the center of mass from the
adjacent joint of each segment (i ¼ 1: upper arm, i ¼ 2: forearm)
(Table 1).

Six muscular actuators, two bi-articular and four mono-
articular, are around the joints. The actuator’s force is determined
by the Eq. (3).

The muscle stiffness and viscosity, KðāÞ and BðāÞ, are 6� 6
diagonal matrices where each element is expressed by:

KðāÞði; iÞ ¼ KðāmÞði; iÞ ¼ k0;i þ k1;iam;i

BðāÞði; iÞ ¼ BðāmÞði; iÞ ¼ b0;i þ b1;iam;i

i ¼ 1; . . . ;6 (12)

where k0,i, k1,i, b0,i, and b1,i are coefficients.
For simulation, k0,i ¼ 1621.6, k1,i ¼ 810.8, b0,i ¼ 108.1, b1,i ¼ 54.1

for all i, and the moment arm matrix

A ¼
�0:04 0:04 0 0 �0:028 0:028

0 0 �0:025 0:025 �0:035 0:035

� �T

adapted from Katayama and Kawato [8].
From the FEL, the feedforward controller in this paper is

modeled as follows:

āff ¼ fðx̄d; _̄xd; €̄xd;WÞ ¼W1x̄d þW2
_̄xd þW3

€̄xd (13)

where each Wi (i ¼ 1, 2, 3) is a 2�2 matrix and
W ¼ ½W1 W2 W3 �.

The feedforward command āff depends on kinematic informa-
tion in Cartesian coordinates. W is the adaptive weight matrix of
the neural network that implicitly approximates the transforma-
tion from the Cartesian to joint coordinates and the inverse
dynamics as well. The adaptive rule of the FEL is used to find the
optimal weight matrices:

dW1

dt
¼ Zx̄dāT

fb;
dW2

dt
¼ Z _̄xdāT

fb;
dW3

dt
¼ Z €̄xdāT

fb (14)

where Z is a learning coefficient.
The hand end position is also geometrically a function of joint

angles: x̄ ¼ pðȳÞ.
Furthermore, differentiating both sides of x̄ ¼ pðȳÞ also results

in _̄x ¼ JðȳÞ _̄y. Using equations, the hand end position, and its
velocity are obtained from joint kinematic information:

x̄
_̄x

� �
¼ Pðȳ; _̄yÞ ¼

pðȳÞ

JðȳÞ _̄y

" #
(15)

Human sensory information such as visual, proprioceptive, and
cutaneous information may be used to detect the hand end
location and movement in the spatial configuration and
human brain may estimate somehow spatial information such
as Pðȳ; _̄y; €̄yÞ.

Comparison of the estimated hand end position and its
velocity with their desired values drives error signals: ē ¼ x̄d � x̄,
_̄e ¼ _̄xd �

_̄x.
The error signals are with respect to Cartesian coordinate.
The feedback controller is designed in the form of:

āfb ¼ Zðē; _̄eÞ ¼ J�1
ðȳÞðK1ēþ K2

_̄eÞ (16)

where Ki is a diagonal matrix.
J�1
ðȳÞ is multiplied to describe the feedback command in terms

of the joint coordinate. From the geometric relation,

x̄ ¼ p̄ðȳd � dȳÞ � p̄ðȳdÞ �
qp̄ðȳdÞ

qȳ
dȳ

where dȳ is small.
The error in Cartesian coordinates,

ē ¼ x̄d � x̄ffi
qp̄ðȳdÞ

qȳ
dȳ ¼ JðȳdÞdȳ

and

dȳ ¼ J�1
ðȳdÞē

Because the desired joint angles are not directly available, J�1
ðȳdÞ

is replaced by J�1
ðȳÞ. As long as ȳ is close to its desired value, it will

hold good.
An unsupervised learning scheme updates the synergy net-

work weight Ws. The Ws is selected to minimize the descending
command with respect to the joint coordinate. The minimization
has an effect in two aspects, energy efficiency, and feedback error
minimization. Therefore,

dWs

dt
¼ ZsWsā āT

¼ ZsāmāT (17)

where Zs is a learning coefficient.
In another viewpoint, the learning scheme is equivalent to the

Hebbian rule [10]. The input to the synergy network is ā, and the
output from the network is Wsā.

Fig. 3 illustrates the whole system. A feature of the model is that
the descending command (ā) is generated in the lower dimensional
space than actuators. The command is distributed to muscles by a
network (represented by the matrix Ws) as mentioned previously.
In addition, the feedforward controller adapts the command in

ARTICLE IN PRESS

Table 1
Parameter values for simulation

mi (kg) Ii (kg m/s2) li (m) ri (m)

Upper arm (i ¼ 1) 1.59 0.0477 0.35 0.18

Forewarm (i ¼ 2) 1. 44 0.0588 0.35 0.21

S. Jo / Neurocomputing 71 (2008) 3625–3630 3627
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Cartesian coordinate different from the body joint configuration.
Therefore, the adaptive weight matrix (W) of the feedforward
controller includes implicitly the space transformation or the
dimensional reduction of the controller space.

Plugging Eqs. (13) and (16) into Eq. (7) results

W3JðȳdÞ
€̄yd þ ðW2JðȳdÞ þW3

_JðȳdÞ þ K2J�1
ðȳÞJðȳdÞÞ

_̄yd

þ ðW1 þ K1J�1
ðȳÞÞPðȳdÞ ¼ M̂ðām; ȳÞ €̄yþ N̂ðām; ȳ; _̄yÞ

When a task is stably achieved, i.e., ȳ! ȳd, it is expected that

ATKðāmÞWsW3JðȳdÞ ! MðȳdÞ

and

ATKðāmÞWsððW2JðȳdÞ þW3
_JðȳdÞ þ K2J�1

ðȳÞJðȳdÞÞ
_̄yd

þ ðW1 þ K1J�1
ðȳÞÞPðȳdÞÞ ! Nðȳd;

_̄ydÞ

and

ām ! āff

Eqs. (14) and (17) adapt parameters to closely satisfy the above
convergence. Each learning rule is simple, however, biological
inspiration implicates that combination of such learning rules with
viscoelastic actuator and coordinate translation may be able to
imitate nonlinear system dynamics without computing detailed
inverse dynamics directly. This does not guarantee stable task
achievement explicitly. In case that the simple feedforward form of
Eq. (13) may not be sufficient to generate quite complicated
motions, biological inspiration suggests hierarchical or cascade
control structure rather than a specific highly nonlinear control
structure. This is relevant to gain scheduling or switching control
scheme. This issue is further mentioned in discussion.

The proposed learning structure is simpler with respect to
inverse dynamics computation than using neural nets or reinforce-
ment learning. On the other hand, the proposed control structure is
more effective to implement quick motions variously in compar-
ison with servo-type control, or equilibrium-point hypothesis [11].

3.2. Simulation problems

To test the proposed learning mechanism computationally, five
arm motions in the gravitational field are selected by defining the
desired motions of the hand end point. In this model, each desired
motion is described in Cartesian coordinates. Five desired hand
end trajectories are as follows in 0ptpTf:

� Case (1):

xdðtÞ ¼ 0:35
t

T f
þ 0:2; ydðtÞ ¼ 0:35

t

Tf
; T f ¼ 1.

� Case (2):

xdðtÞ ¼ 0:35; ydðtÞ ¼ 0:6062
t

Tf
; T f ¼ 1.

� Case (3):

xdðtÞ ¼ 0:1 sin
p
2

t �
p
2

� �
þ 0:45,

ydðtÞ ¼ 0:1 cos
p
2

t �
p
2

� �
,

Tf ¼ 4.

� Case (4):

xdðtÞ ¼
0:6 t

Tf
þ 0:2; 0pto T f

2 ;

0:5; Tf
2 ptpT f ;

8<
:

xdðtÞ ¼

0:3� 0:6 t
T f
; 0pto T f

2 ;

0:6 t
T f
� 0:5

� �
; T f

2 ptpT f ;

8><
>:

Tf ¼ 2.

� Case (5):

xdðtÞ ¼ 0:17 sin ðptÞ þ 0:35,

ydðtÞ ¼ 0:17 cos
p
2

t �
p
2

� �
,

Tf ¼ 4.
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Fig. 3. The model of biological robot arm movement control.

Fig. 4. The biological robot arm musculoskeletal model: (a) body configuration and (b) muscle actuators.
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Initially, W is a zero matrix, and Ws is set to A. The learning
coefficients Z and Zs are, respectively, 0.5 and 0.1:

K1 ¼
2 0

0 2

� �
; K2 ¼

0:6 0

0 0:6

� �

The initial position of hand end is equal to (xd(0), yd(0)), however,
the hand remains still. The iterative learning continues until the

condition of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðek � ek�1Þ

2
q

o0:0001 is satisfied where k is the

iteration number and ek ¼
R T f

0

ffiffiffiffiffiffiffi
ēTē

p
dt.

4. Results

In all cases, the hand end follows its desired position reason-
ably under the gravitational force after learning in several trials
(Fig. 5). The hand position is static initially, but its desired velocity
at time zero is nonzero. Therefore, the hand end tends to lag the
desired position initially. The third column in Fig. 5 shows that

integrated least square errors (ek) during a task decrease as
learning is processed, and finally converge.

Table 2 shows the adapted control weights. In cases (1), (2),
and (4), desired accelerations are all zeros, so that there is no
adaptation in corresponding locations and zero elements appear.
In Ws, the principal activations of extensor and flexor by
commands are conserved over all motions (signs of elements
are consistent). However, relative contributions are differently
adapted depending on motion tasks.

5. Discussion

The learning algorithm combined with viscoelastic muscular
property drives the biological robot arm motion skillfully and
autonomously. The model proposes the feedforward control
scheme in Fig. 6.

The FEL in the feedforward control scheme does not compute
the exact inverse dynamics but only approximates it, and uses the

ARTICLE IN PRESS

Fig. 5. Simulated motions: four different motions are tested. The first column: stick figures, the second column: motion trajectories, the third column: error in each

iteration.

S. Jo / Neurocomputing 71 (2008) 3625–3630 3629
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Cartesian coordinate space. The space transformation from the
Cartesian to the joint configuration is implicitly implemented by
the learning algorithm. In addition, the control scheme generates
simply the control command in the lower dimensional space than
the redundant actuator. The synergy network is self-adaptively
updated to map the control command appropriately to the
actuators according to each task goal. Therefore, two adaptive
control schemes, FEL and adaptive synergy network, operate
synchronously. Several example tests illustrate the effectiveness
of the proposed learning scheme. However, for future research, it
is necessary to investigate gainscheduling inverse dynamics
approximations or synergy networks. To implement more com-
plicated or more rapidly converging or highly accurate robot arm
motions, a linear approximation of the inverse dynamics and a
constant synergy distribution may not be sufficient. In fact,
composite adaptive control schemes [13] have been proposed for
piecewise linear approximations of the inverse dynamics. How-
ever, the biomimetic approach in this study proposes that
piecewise adapted synergy distributions or a mixture of the
gainscheduling of both linear approximation and synergy dis-
tribution may be a more efficient strategy for motion tasks. The
enhancement would be further effective to generate complicated
multi-joint motions. In addition, a more sophisticated feedback
controller would be helpful to implement high-degree-of-freedom
motions dexterously. An example of such feedback controller was
studied in Ref. [15]. The adaptive schemes in this study could be
integrated with a more intelligent feedback controller to improve
performance.
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Table 2
The values of W and Ws after learning

W Ws

Case (1) �0:4812 �0:2868 �0:3402 �0:3402 0 0

�0:4077 �0:0807 �0:5723 �0:5723 0 0

� �
0:1592 �0:1280 0:0037 �0:0027 0:0964 �0:0812

0:0219 �0:0176 0:1467 �0:1087 0:2461 �0:1357

� �T

Case (2) 0:0214 �0:8844 0 0:0371 0 0

�0:3317 0:9314 0 �0:5744 0 0

� �
0:3599 �0:2893 0:0865 �0:0641 0:3424 �0:2501

0:1178 �0:0947 0:2183 �0:1617 0:4147 �0:2438

� �T

Case (3) �0:3368 �0:0120 �0:0377 0:0463 0:1455 0:1186

�0:5083 0:0071 0:0222 �0:0558 �0:1752 �0:0698

� �
0:1906 �0:1532 0:1185 �0:0877 0:2970 �0:1943

0:1360 �0:1093 0:2881 �0:2134 0:5361 �0:3121

� �T

Case (4) �0:5938 �0:2426 �0:1846 �0:0570 0 0

�0:7195 �0:2393 �0:4418 0:3144 0 0

� �
0:2372 �0:1907 0:0555 �0:0411 0:2233 �0:1636

0:0757 �0:0609 0:1255 �0:0929 0:2428 �0:1440

� �T

Case (5) �0:1491 �0:1568 0:2938 �0:0274 0:1499 0:0967

�0:2858 �0:0238 �0:2362 0:0167 �0:2910 0:0147

� �
0:4533 �0:3643 0:2791 �0:2066 0:7016 �0:4595

0:3368 �0:2703 0:5988 �0:4435 1:1442 �0:6746

� �T

Fig. 6. The proposed biomimetic feedforward control scheme.
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