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Abstract- This paper proposes the online Support Vector
Regression (SVR) based value function approximation method
for Reinforcement Learning (RL). This approach conserves the
Support Vector Machine (SVM)'s good property, the generaliza­
tion which is a key issue of function approximation. Online SVR
can do incremental learning and automatically track variation of
environment with time-varying characteristics. Using the online
SVR, we can obtain the fast and good estimation of value function
and achieve RL objective efficiently. Throughout simulation
tests, the feasibility and usefulness of the proposed approach
is demonstrated by comparison with SARSA and Q-Iearning.

I. INTRODUCTION

By using RL, an autonomous agent that interacts with the
environment can learn how to take a reasonable action for
a specific situation [1]. Because of this merit, RL has been
of interests not only in machine learning, but also in control
engineering and other related fields [1], [2], [6]-[9]. RL
provides a general methodology to solve complex uncertain
sequential decision problems, which are very challenging in
many real-world applications. The RL problem is, in many
applications, modeled as a Markov Decision Process (MDP),
which has been popularly studied [1], [2], [6]-[9]. An RL
agent is assumed to learn the optimal or near-optimal policies
from its experiences without knowing the parameters of the
MDP.

To find the optimal or near-optimal policy, a value function
should be defined to specify the total reward an agent can
expect at its current state. RL algorithms estimate the value
function usually by observing data generated from interaction
with the environment. Various value-function estimation tech­
niques for RL have been proposed. The temporal difference
(TD) algorithm suggested by Sutton [2] is one of popularly
used techniques in these days. Especially finite-state MDPs
have been approached throughout tabular method and tile cod­
ing or CMAC under the condition that states and actions are
discrete. As for continuous state and discrete action problems,
least square methods have proposed to estimate value functions
using radial basis functions or kernels [7], [8]. For continuous
state and action problems, gradient descent method and actor­
critic network approach have been applied for value function

approximation [1], [9]. In this paper, we propose an algorithm
to handle the problems with continuous states and discrete
actions.

Generalization property is an important factor to determine
prediction performance with function approximation. SVM is
known to have good properties over the generalization [5].
Therefore, applying SVR, which is the regression method of
SVM, could be a good approach to estimate value functions.
[6] proposes a method using SVR for state value function
approximation used in RL. They use the TD error to ap­
ply SVR to RL. However, their approach is inattractive to
solve online learning problem. Because it estimates a value
function after visiting all states using the uniform random
policy. In their approach, an RL agent can neither cumulate
its experiences continuously nor adapt itself to the changing
environment readily. An RL agent should generally be able
to learn from data obtained sequentially from interaction with
the environment.

This paper proposes to use online SVR to more effectively
and quickly approximate value functions used for RL. The
idea about the online SVR is originated from the online SVM
proposed by Cuwenberghs and Poggio [4]. The online SVR
can be equivalent to approaches obtained by applying exact
methods such as quadratic programming, However, the online
SVR enables the incremental addition of new sample vectors
and removal of existing sample vectors, and its process is
quicker. A key idea of the online SVR consists in finding the
appropriate Karush-Kuhn-Tucker (KKT) conditions for new or
updated data by modifying their influences in the regression
function while maintaining consistence in the KKT conditions
for the rest of data used for learning.

Our approach applies the TD error-based online SVR to
estimate state-action value functions, which are directly used
in RL. It does not require exact computation like quadratic
programming. Therefore, computation load is low and learning
speed is fast.

An introduction to RL and online SVR is summarized in
Section II, and our method is presented in Section III. In
Section IV, some simulation results are shown to evaluate
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the performance of the proposed method. Section V draws
conclusions.

II. BACKGROUND

A. Reinforcement learning

As mentioned previously, a RL agent learns to find an
optimal policy by interacting with the environment (Fig. I)
The optimal policy is defined as follows [1].

(4)
l l

+ I' L(O:i + 0:;) + bL(O:i - 0:;)

Fig. 2. Data set seperation (this figure is adapted from [5]).

SVR generally calculates the optimal weights by using exact
methods such as quadratic programming. However, online
SVR find optimal weights by reflecting the influences of new
data or removal data readily not requiring exact computations
while maintaining the KKT conditions.

From the dual formulation for e-insensitive SVR to find
values for 0: and 0:* (lagrange multipliers introduced to derive
the dual form), we can obtain the following quadratic cost
function [5].

l l

W = ~ 2:)O:i - 0:;) Qij(O:j - 0:;) - LYi(O:i - 0:;)
ij i

(1)

(2)

Action

Environment

r + "(Q(s', a') - Q(s,a)

Statel
Reward

Fig. I. The agent-environment interaction in RL.

7I"*(S) = arg max Q(s,a)
aE A (s)

where s represents a state, a an action by the agent, A(s) a set
of all possible actions, 7I"*(s) the optimal policy and Q(s,a)
the state-action value function.

If we know the state-action value function, we can easily
find the optimal policy. But the state-action value function
requires information on future rewards, so that it should
generally be estimated. TD method is popularly used for
the value function approximation. The method uses an error
defined as follows [2].

where sand s' represent the current and next states respec-
tively, a and a' current and next actions respectively, r reward subject to
at current state, and "( discount factor.

There are many value function approximation methods
using the above TD error such as tabular method, radial basis
function/kernel function method, least square method, etc.

o< O:i, 0:; < C
l

L(O:i - 0:;) = 0

(3)

B. Online SVR

e-insensitive SVR problem is to find optimal values of
weights w such that a parametric function f( x) = (w,x) + b
can approximate output y within previously set error bound f .

It can be formulated as follows [3] .

1 l

min "2 llw l12 + C L(l;i + ~;)
i = l

subject to

Y· - (w x ·) - b < I'z , 1. _

(w x ·) + b - Y· < f, 't 'l. _

where i = 1, ... l, i is the number of training data, b represents
the bias term, and the constant C > 0 determines the trade­
off between the flatness of f (x) and the amount up to which
deviations larger than I' are tolerated [3].

where Q is the positive definite kernel matrix whose element
is Qij = K(Xi , Xj) (K( ·, ·) is a kernel function).

From partial deri vatives of W with respect to 0:, 0:*, and b,
the following equations can be obtained.

D. oW l
gi = 00: = L Qij (3j - Yi + I' + b

, j

l

g* ~ oW = _ '" Qij (3j + Yi + I' - b = - gi + 21' (5), 00:* ~
, j

oW l

ob = L (3j = 0
j

where (3i ~ O:i - 0:;
The first two gradient functions in (5) lead to the KKT

conditions, that will allow the reformulation of SVR by
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dividing the whole training data set D into the following sets :
margin support vectors S (where gi = 0 or gi = 0), error
support vectors E (where gi < 0), error star support vectors
E * (where gi < 0 ), and the remaining vectors R . Fig. 2
shows how data space is divided . Specifically centering on gi
, the KKT conditions are:

2E < gi ----t gi < O, f3i = - c.i E E *

gi = 2E ----t gi = 0, - C < f3i < 0, i E S

0 < s. < 2E ----t o< gi < 2E, f3i = 0, i E R

gi = 0 ----t gi = 2E, 0 < f3i < C, i E S

gi < 0 ----t gi > 2E, f3i = C, i E E (6)

A new vector c is added by inspecting ge and g~ . If both
values are positive, c is added as a R vector because that means
that the new vector lays inside the e-tube and it does not affect
on the existing data in D. When ge or g~ are negative, a new
vector is added by setting its initial influence on the regression
(f3e) to O. Then this value is carefully modified (incremented
when ge < 0 or decremented when s; < 0) until its ge, s;
and f3e values become consistent with respect to the KKT
conditions (that is, ge < 0 and f3e = C, or g~ < 0 and f3e =
- C , or 0 < f3e < C and ge = 0, or - C < f3e < 0 and
g~ = 0 ). Fig .3 (a) shows the whole process of adding new
vector. ~ in the algorithm is a matrix to be maintained and
upda ted to calculate the f3;'s (see equations (12) and (13)) .
The procedure for removing vector from the data set uses the
similar principles for adding new vector as in Fig . 3 (b) . The
detai ls can be found in [5].

(a)

[Set Pc = 0 / I
Calculate 9c

1
19c > 0 and 9~ > 0 Add c to R and exit ]

Increment Pc. updatin g Pi for i E S and 9i. 9i for i ct S
until one of the following condit ions holds:

19c:S 0 ?~
- 9c = 0: add c to S. update lR and ex it
- Pc = C: add e to E and exit
- One vector migrates from/to sets E . E ' or R to/from
S: update set member ships and update lR

Decrem ent Pc. updating Pi for i E S and tu . 9i for i ct S
unt il one of the following co nd itions holds:

' !I~ :S O ?~
- 9~ = 0: add e ta S . update lR and exit
- Pc = -C: add c to E' and ex it
- One vector migrates from/to sets E. E' or R to/from
S : update se t membe rships and update lR

(b)

I e E R I

[!lc > 0 and 9~ > 0 Remove c fro m R and ex itI

Decrement Pc. updating Pi for i E S and 9i. 9i for i ct S
unt il one of the fo llowing co nditions holds:

[9c ::; 0 ? )---- - Pc = 0: Remove c from R and ex it
- One vector migrates from/to sets E. E ' or R to/from
S : update set memb erships and update lR

Incremen t Pc. updating Pi for i E S and 9i. 9i for i ct S
until one of the following co nd itions holds:

[ 9~ ::; 0 ?)---- - Pc = 0: Remove e to R and exit
- One vect or migrates from/to sets E. E' or R to/f rom
S: update set membe rships and update lR

(7)

III. ONLINE SVR TO RL

We propose to use online SVR to provide the state -action
value function approximation to RL. App lications of online
SVR so far have used output approximation error to find
optimal weights, but we propose to use the TD error. There­
fore, our online SVR aims to find optimal weights to make
the TD error less than the allowed maxim um devia tion E. In
our method, the state-action value function is approximately
set to Q(s ,a) = wT¢(s ,a) + b where ¢ (s , a ) is the feature
vector (radial basis functio ns can be chosen as the feature for
example). With this approximation, the problem formulation
is modified from (3) as follows .

1 I

min "2 llw l12+ C 2)~i + ~n
i = 1

Fig. 3. Procedure for (a) adding and (b) removing a vector.

Then, the corresponding cost function is as follows .

1 I
W = "2 (a - a *fVVT(a - o") + E L ) a i + an

i = 1

I I

- L ri (ai - an + (1 - 1')b L (a i - an
i =1 i = 1

subject to

o< a i , a; < C
I

L (a i - an = 0

(9)

(10)

V ij = l'¢j (s~, aD - ¢j (Si' ai)

From (9), new gradient functions can be obtained as follows.

gi = V iVT f3 + E - ri + (1 - 1')b

gi = - V iV T f3 + E+ ri - (1 - 1')b = - gi + 2E

where

ri + I'Q (s~ , a~) - Q(Si ' ai) ~ E + ~i
A " A *- r i - I'Q (Si' ai) + Q(Si ' ai) ~ E + ~i

By applying the definition of Q, the constraints can be
rewritten to be:

subject to

The main difference between (5) and (10) is that Yi and b is
rep laced by ri and (1 - 1')b respectively. When a new vector
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with influence (3c is added, the variation in gi, gi , and (3i can
be calculated by (11) without migration of vectors between
sets S, E, E * and R.

6gi = Qic6 (3c + L Qij6(3j + (1 - 1')6 b
j ES

0.1 0.1 0.1

The influence of the new vector for i 'f- S can be calculated
by the following equations.

300

0.1

.. .I.~.~ ~ , .
4 . .

No. of state movements

5 r----:-----,----,

5r----,----,-----,

~ ~~~ : .

} I.....:..':.-:-:::-.:: :-::::.-:- -
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4 ., .
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Fig. 4. 4-slale chain walk problem (this figure is adapted from [7]).

(II)

(13)

where

~ ~l;
1 1

rQS1,Sl QS1,Sl

QSl ,Sl QSl,Sl

6g7 = - 6 9i

6 (3c + L 6 (3j = 0
j ES

Because 6g i = 0 for i E S, the influence of the new vector
can be calculated by the following equations.

= 1'i6(3c

Equations (12) and (14) are valid while vectors do not
migrate from set S, E, E *and R to another one . But in order
to satisfy KKT conditions consistently for the new vector c,
it could be necessary to change first the membership of some
vectors to these sets or to update matrix ?R in some cases. (3c is
modified incrementally or decrementally until one migration
is forced. If the migration occurrs, membership change for the
data should be executed, and then the variation of (3c continues.
The whole process of adding new vector or removing existing
vector is according to Fig. 3. Online SVR can be trained
from sequentially added data using this algorithm and the
approximated state-action value function can be calculated to
be:

6gi = Qic6 (3c + L Qij6(3j + (1 - 1')6 b
j ES

= (Q ic + L Qij c5j + c5)6(3c
j ES

Q( x) = wT ¢ (x ) + b
I

= - L (3d1'¢( xD - ¢ (Xi)) ¢ (x ) + b
i = l

(14)

(15)

Fig. 5. State-action value function estimate for 4-state chain walk (the solid
line indicates Q (s, R), the dashed line indicates Q (s , L)) .

IV. SIMULATION

We apply proposed method to two problems. The first one is
the 4-state chain walk problem, which is a simple toy problem
introduced in [7] . The other one is cart pole balancing problem,
which has been popularly used for algorithm evaluation [I] ,
[7]. In both cases , the state-action value function is estimated
by the proposed method.

A. 4-state Chain Walk

Fig. 4 shows the 4-state chain walk. There are 2 actions
available (L: going to the left and R: going to the right)
and 4 states . The rewards over states are 0, +I, +I, and 0
respectively. If one action is selected, the agent takes that
action with probability 0.9 and the other with probability 0.1.
Radial basis kernel is used to estimate the state-action value
function. The optimal policy of this problem is (R, R, L, L).
In Fig . 5 the state -action values are depicted. The solid line
represents the state-action value for action R and the dashed
represents that for action L. We can see the state-action values
converges eventually after 128 state movements in Fig. 5.

where x represents a new state-action pair and x~ and Xi means
the next state-action pair and current state-action pair of i1h

sample respectively.

B. Cart-Pole Balancing Problem

Fig. 6 shows the cart-pole balancing system. An agent
applies forces to the cart in appropriate directions to maintain
the pole's upright position on the cart. There are two actions:
pushing the cart to the left with force f = - ION and to the
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Symbol Description Value

x Position of cart on track [-2.4, 2.4] m

(J Angle of pole from vertical [-45, 45] deg.

f Force applied to cart -10 N or 10 N

I Half length of pole 1=0.5m

M Mass of cart 1.0kg

m Mass of pole O.lkg

TABLE I

PARAM ET ERS FOR THE DO UBL E POLE BALA NCI NG PROB LEM

Fig. 6. Cart-pole Balancing System.

(b)

right with f = ION. The dynamics of the system is described
in (16), but unknown to the agent. Table I describes variables
and parameters.

4 states (cart position, cart velocity, pole angle, and pole
angular velocity) are used to train the online SVR. Radial basis
kernel is used to estimate to the state-action value function.
If the cart position is less than -2.4 m or greater than 2.4 m,
the system returns reward -1. Also, if the angle of pole is less
than -45 deg or greater than 45 deg, it also returns -1. In the
other states, the reward is 0. If the reward is -1, that episode
terminates and a new episode starts. The initial state is (0,
0, 0, 0). We assume that the task is successfully achieved if
the cart-pole system still maintains balancing in 3000 steps.
The simulation results of online SVR based RL are depicted in
Fig. 7 (a). To evaluate the performance, the results of applying
SARSA and Q-Iearning for the same problem are presented
in Fig. 7 (b) and (c) respectively. In SARSA and Q-Iearning,
tabular method is used to estimate state-action values. There
are 324 state-action values ( 3 cart positions x 3 cart velocities
x 6 pole angles x 3 pole angular velocities x 2 actions).
Fig. 7 (a) to (c) depicts the best, the worst, and the average
performance of each method. we can see the proposed online
SVR based RL learns and finds an optimal policy much more
quickly than SARSA and Q-Iearning. In the best performance
case, SARSA achieves the task successfully after 200 episodes
and Q-Iearning does after 170 episodes. But, online SVR based
RL succeeds the task after 3 episodes only. In both SARSA
and Q-Iearning, the tabular method cannot estimate state­
action values properly until the states are visited. Furthermore,
it affects negatively for RL agents to estimate other state-action

200 250 300 350 400 450 500
No. of episodes

500

5OOr··· ·· ·'. · ·1I

2500 r ·· · ·...; · · · · · · · ·:-· ·· · · · ··, · · · · · · · I

30JJ ~ ; c , ,.----'-rr""T"i"- -'-- -;-- '--........:.- --j

(e)

30JJr , c , ,.-------'----.._--'---___,_---;

<J)

~ 200J ~ · · · · · · · , · · · · · · · · ; · · · · · · · · : · · I

<J)

0)
c:g 1500r · ·····:········;········,· ,

'"0;
co

100) r······.; , ,.•

Fig. 7. Balancing steps of cart-pole system using (a) proposed method, (b)
SARSA, and (c) Q-Ieaming (the solid, the dashed, and the dash-dotted lines
indicate the best, the worst, and the average performances respectively).

(16)

e = (gsine - Fcose) j (~l - mlcos2e j(M + m))

i = F - mlecose j(M + m)

F = (J + mliPsine)j(M + m)
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values and select actions. RL agents should visit most state­
action space to generate appropriate estimates. On the other
hands, the online SVR based method computes estimates of
state-action values quickly from continuously obtained data.
Because of the generalization properties of SVR, RL agents
can estimate state-action values of unvisited states reasonably
from experience with other states and actions. Radial basis
or other kernel function methods can be applied instead
of tabular method. But center positions of basis or kernel
functions should be assigned appropriately. The assignment is
critical to their performance. Therefore, required is a decision
algorithm on number of required basis functions and their
center positions. In [8], a sparsification procedure is considered
to resolve the additional burden. However, our online SVR
based RL does not need such consideration. During online
learning, Data to estimate the state-action value function are
automatically managed throughout additions and removals.
Useful data is kept and useless data is removed from data
set.

V. CONCLUSION

In this paper, online SVR based value function approxima­
tion method for RL application is proposed. The SVR gener­
ally has some limits to be applied directly to RL. However, the
online SVR can be properly applicable using the TD error. The
online SVR can provide quickly the function approximation
with good generalization properties. Furthermore, it enables
a RL agent to change its behavior adaptively in interaction
with environment. It is known that tabular method or radial
basis function methods can be used to solve continuous state
problems such as the cart pole balancing. But, to use tabular
method, the state discretization is necessary and seriously
influential in its performance. Furthermore, the dicretization
generally generates a large number of states, which may cause
slow learning and heavy computation. Radial basis function
method is another choice for function approximation, but
generally needs to select center positions. Its performance
depends critically on the selection. The proposed online SVR
based RL suffers no such problems because it updates its
data set and removes useless data automatically throughout
online learning. The remaining samples in data set are used to
estimate state-action values. The good generalization property
of SVR and the adaptation ability of TD error based online
scheme make a RL agent learn and find an optimal policy
effectively and quickly.
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