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Behavioral performance of multi-robots driven by human drawing
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Abstract: This work addresses the problem of behavioral performance of multi-robots corresponding to human drawing
inputs in the sense of friendly human-robot interaction. We propose a drawing interface algorithm with multi-robots
based on the centroidal Voronoi tessellation and the continuous-time Lloyd algorithms which have popularly been used
for sensing and coverage control of multi-robots. Multi-robots can perform some meaningful behaviors through the real-
time density functional update which reflects human drawings. Three drawing modes (distribution, following, and dancing
modes) are implemented. Simulation tests verify the feasibility of the proposed algorithm.
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1. INTRODUCTION

The deployment of large groups of autonomous ve-
hicles is rapidly becoming possible because of techno-
logical advances in networking and in miniaturization
of electro-mechanical systems. In the near future, large
numbers of robots will perform challenging tasks includ-
ing search and recovery operations, manipulation in haz-
ardous environments, exploration, surveillance, and envi-
ronmental monitoring for pollution detection and estima-
tion.

The underlying algorithmic principles to realize vari-
ous multi-robot applications have extensively been inves-
tigated [1][2][3][7]. [1] explained the continuous Lloyd
algorithm for coverage control. The coverage problem
with heterogeneous robots was solved in [2]. Further-
more, it was proven that the same principles are still fea-
sible for anisotropic sensor types [3].

This paper presents a new application of the multi-
robot coverage problem, human drawing-based interface
with multi-robots. As a friendly human-robot interaction
method, especially, with multi-robots, drawing may be a
good choice because of its easiness and familiarity. This
paper suggests a way of interpreting the drawing with re-
spect to the multi-robot coverage problem, and evaluates
the feasibility of the proposed method through simulation
tests.

The remainder of this paper is organized as follows.
Section 2 reviews the locational optimization problem,
the centroidal Voronoi tessellations and the continuous
time Lloyd algorithms. In Section 3, we design density
functions that drive the motions of multi-robots corre-
sponding to drawings, and propose three drawing modes.
Section 4 illustrates the empirical simulation results to
verify the proposed approach, and section 5 concludes
this work and summarizes the future works.

This work was supported by the Korea government(MKE) under Hu-
man Resources Development Program for Convergence Robot Special-
ists.

2. LOCATIONAL OPTIMIZATION
Let Q be a convex polytope in RN including its inte-

rior, and R+ be the set of nonnegative real numbers.
A distribution density function is defined to represent a

measure of information or probability that an event takes
place overQ as a mapping ρ : Q→ R. Let P = (p1,...,pn)
be the locations of n robots, each moving in the space Q.
Because of noise and loss of resolution, the sensing per-
formance at point q taken from ith robot at position pi
degrades as the distance ‖ q − pi ‖ is longer where ‖ · ‖
denotes the Euclidean distance function. The degrada-
tion can be described with a non-decreasing differentiable
function f : R+ → R+. Accordingly, f(‖ q − pi ‖) is
a quantitative assessment of how poor the sensing perfor-
mance is. A partition of Q is a collection of n polytopes
W = W1, ...,Wn with disjoint interiors whose union is
Q.

We consider the task of solving the locational opti-
mization problem by minimizing a cost function of

H(P,W ) =
∑n
i=1

∫
Wi
f(‖ q − pi ‖)ρ(q)dq

under the assumption that ith sensor is responsible for
measurements over its dominance region Wi. The cost
function H is minimized with respect to both the robot
locations P and the assignment of the partitioned dom-
inance regions W . It is proven [8] that, with fixed
robot locations, the optimal partition of Q which is
a convex polytope in RN including its interior is the
Voronoi partition V (P )={Vi, ..., Vn} generated by the
points (pi, ..., pn) where

Vi = {q ∈ Q |‖ q − pi ‖ ≤ ‖ q − pj ‖,∀j 6= i}.

2.1 Centroidal Voronoi tessellation
An important concept to solve the locational optimiza-

tion problem is the Voronoi tessellation. Given a set of
points P = {p1, ..., pn}, often called sites, distributed
over the bounded domain Q, with boundary ∂Q, the
Voronoi region, or Voronoi cell, Vi, associated to the
point Vi is defined according to a given distance function
d as



Vi = {q ∈ Q | d(q, pi) ≤ d(q, pj),∀j 6= i}.

The generalized Voronoi tessellation of the set P ,
V (P ), is the collection of such regions. The Voronoi
boundary ∂Vi is defined as

∂Vi =
⋃n
j=1 lij

⋃
{∂Q

⋂
Vi},

where lij = {q ∈ Q | d(q, pi) = d(q, pj), j 6= i}.

Assuming that W is determined by the Voronoi
tessellation of the points in P , then H(P,W ) =
H(P, V (P )) = H(P ).

In this work, f(‖ q − pi ‖) = ‖ q − pi ‖2.
By recalling some basic quantities associated to a re-

gion V ⊂ RN and a density function ρ. the (generalized)
mass, the centroid (or center of mass), and the polar mo-
ment of inertia are defined respectively to be

Mv =
∫
V
ρ(q)dq, CV = 1

MV

∫
V
qρ(q)dq,

JV,p =
∫
V
‖ q − p ‖2ρ(q)dq.

[4] explains closed form expressions of the mass, the
centroid, and the polar moment of inertia for uniform
densities over RN . See also [1] for their expressions in
the R2 setting.

Application of the parallel axis theorem leads to com-
putational simplification

HV (P ) = HV,1 +HV,2

where HV,1 =
∑n
i=1 JVi,CVi and

HV,2 =
∑n
i=1MVi‖ pi − CVi ‖

2. Then, ∂HV,1
∂pi

= 0,
∂HV,2
∂pi

= 2MVi(pi − CVi) and therefore,

∂HV
∂pi

(P ) = 2MVi(pi − CVi).

Local minimum points for the location optimization
problem are computed by setting the partial derivatives
to zero. Hence,

CVi = argminpi HV (P ),
HV,1 = min(p1,...,pn)HV (P ).

A local optimal point of is the centroid of the Voronoi
cell and the generator of the cell as well. Accordingly, the
cell partitions and optimal points employ the centroidal
Voronoi tessellation. See [5] for details.

2.2 Continuou-time LloydAlgorithm
A typical discrete-time method to compute the cen-

teroidal Voronoi Tessellation is the Lloyds algorithm [7].
The method executes three steps over iterations,

i. Computation of the Voronoi regions;
ii. Computation of the centroids;

iii. Point relocation to the corresponding centroid.

[1] proposed a gradient descent flow-based algorithm
to evolve the partitions and the locations in continuous
time. In [1], a continuous-time version of this approach
is proposed considering a first order dynamic motion in
the form of ṗi = ui. By designing a controller to be

ui = −k(pi − CVi)

where k is a positive gain and where CVi is computed
according to continuously updated partition V (P ) =
{V1, ..., Vn}, locational stabilization to local minima is
guaranteed. The control algorithm is a gradient descent
flow, since

∂H
∂pi

= −2k
∑n
i=1MVi‖ pi − CVi ‖

2 ≤ 0.

3. HUMAN DRAWING INPUT
This work proposes to make use of the multi-robots lo-

cational optimization problem described in previous sec-
tion to implement an interface method with multi-robots.
A scenario under consideration is as follows. A human
draws figures, and multi-robots behave correspondingly
to the figures in real-time. The robot motion can be inter-
preted visually meaningful.
q = (x, y) ∈ Q ⊂ R2 denotes a location in a pla-

nar environment. Consider a uniform distribution density
function, for example, ρ(q) = 1. Using the density func-
tion, the locational optimization solution deploys robots
uniformly over the space.

Our idea is to present input commands using a real-
time change of a density function. In a canvas region
on the PC, we draw lines or objects using a mouse or
a similar tool. The drawing generates a corresponding
density function. The density function is updated con-
tinuously in real-time as further drawing is implemented.
Then, multi-robot operations are performed through the
centroidal Voronoi tessellation and the continuous-time
Lloyd algorithms using the density function. We declare
three types of density functions. The density functions
specify different drawing modes respectively: distribu-
tion mode, following mode, and dancing mode.

During the distribution model, robots are distributed
corresponding to the most recently updated density func-
tion. Sometimes, the robot distribution depicts the over-
all drawing. In the following mode, the robots tend to
converge the most recent part of drawing. Therefore, ap-
parently robots seem to chase a drawing tool. Lastly, the
dancing mode pursues more dynamic robot motions.

First, to implement the distribution mode, a density
function is declared. Let qm(t) = (xm(t), ym(t)) indi-
cate a drawing point in spaceQwhere t represents a sam-
pling time (t = 0, 1, 2, ..., T ) and let T be the number of
drawing points until now. Considering the Gaussian den-
sity function,

ρt(q) =
1√

2πσ2
e−

(x−xm(t))2+(y−ym(t))2

2σ2 ,

where σ specifies the width of the Gaussian function, we
define a density function of the drawing as follows.

ρ(q) = maxt=0,1,...,T (ρt(q))

In the following mode, the effectiveness of drawing
points in the past is faded out, and recent drawing points
are relatively more influential in the density function. The
characteristics can be realized as follows.

ρ(q) = ωρT−1(q) + ρT (q)



where ω is a decaying factor whose value is greater than
zero and less than one.

The dancing mode takes into account the drawing
speed in order for robot motions to be more variant and
diversified, therefore, to be more likely to be dancing.
The density function formulation in this mode is equal
to that in the following mode, but quick or slow drawing
motion is employed to set the variance term to be, instead
of a constant, as follows.

σ(T ) =

σ0

√
(xm(T )− xm(T − 1))

2
+ (ym(T )− ym(T − 1))

2

where σ0 is a constant.
When drawing is fast, the σ value tends to be large,

and robots tend to spread out relatively. Slow drawing
drives a small σ value, therefore, robots tend to gather
together.

4. SIMUALATION TESTS

Fig. 1 A simulated multi-robot performance in the dis-
tribution mode (n = 15, σ = 3). Snapshots in the
left column illustrate human drawing and snapshots
in the right column show corresponding robot perfor-
mance in real-time.

We developed a drawing interface software integrated
with a robot simulator, Simbad 3D [9]. A human draws in
a drawing window and a density function is extracted ac-
cordingly from the drawing and the locational optimiza-
tion algorithm is applied based on the density function.
Then, the interface software simulates multi-robot per-
formances computationally.

Fig. 1 illustrates a multi-robot performance in the dis-
tribution model. Each robot location is expressed by a
dot. The robots are randomly located initially, but even-
tually converge to a certain placement corresponding to
the drawing input.

Fig. 2 shows a simulation in the following mode.
Robots tend to chase the recent part of drawing. In the
dancing mode, the drawing speed affects the robot be-
haviors. In Fig. 3, a simulation test demonstrates that
robots are spread or gathered depending on the drawing
speed.

Fig. 2 A simulated multi-robot performance in the fol-
lowing mode (n = 15, σ = 3, ω = 0.7). Snapshots
in the left column illustrate human drawing and snap-
shots in the right column show corresponding robot
performance in real-time.



Fig. 3 A simulated multi-robot performance in the danc-
ing mode (n = 15, ω = 0.7, σ0 = 5).Snapshots in
the left column illustrate human drawing and snap-
shots in the right column show corresponding robot
performance in real-time.

5. CONCLUSION
This work presented a friendly interface method with

multi-robots using drawings. Multi-robots move re-
sponding to human drawing inputs. The drawing is ex-
pressed by a corresponding density function, which is ap-
plied to the locational optimization problem. Three draw-
ing modes are proposed to demonstrate different robot
performances. In the future work, the proposed approach
will be used to conduct experiments with real robot im-
plementation.
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