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Letters__________________________________________________________________________________________

Random Neural Networks With State-Dependent
Firing Neurons

Sungho Jo, Jijun Yin, and Zhi-Hong Mao

Abstract—This letter studies the properties of the random neural net-
works (RNNs) with state-dependent firing neurons. It is assumed that the
times between successive signal emissions of a neuron are dependent on the
neuron potential. Under certain conditions, the networks keep the simple
product form of stationary solutions and exhibit enhanced capacity of ad-
justing the probability distribution of the neuron states. It is demonstrated
that desired associative memory states can be stored in the networks.

Index Terms—Associative memory, random neural networks (RNNs),
spiking neurons, state-dependent firing rate.

I. INTRODUCTION

Networks of spiking neurons have been proposed as alternatives to
the classical perceptron networks [14]. A spiking neuron computes by
transforming dynamical input into a train of spikes. This represents
closely the manner that signals are encoded and transmitted in real
neuronal networks: neural signals travel as action potentials (voltage
spikes) rather than fixed analog levels. The spiking neural networks are
therefore more biologically plausible than the perceptron-type models
[8]. Though carrying less information than real-valued signals, binary-
valued spiking signals benefit from the higher rate at which informa-
tion may be reliably sent. It has been indicated that the spiking sig-
nals aremore efficient for information transfer than the high-resolution,
real-valued analog signals [15]. Furthermore, several types of spiking
neural networks have proved to bemore computationally powerful than
the perceptron networks [12], [13].

This letter considers a specific model of spiking neural networks—
the random neural network (RNN) model, which was proposed by Ge-
lenbe more than a decade ago [2]. Compared with the models that aim
at describing accurately cellular dynamics of neuron firing and may,
thus, be computationally expensive (see [9] for an excellent review), the
RNNmodel reasonably balances the biological plausibility and compu-
tational efficiency. The RNN model is based on a direct point process
representation of signals and a discrete state–space representation of
neurons. It neglects some details of pre-/post-synaptic interactions, and
focuses on behaviors of networks rather than single cell dynamics. The
power of the RNN model has been demonstrated in terms of efficiency
in computation [2], capability in universal function approximation [5],
competence in learning [3], and tractability in hardware implementa-
tion [11]. In addition, the RNN model has been developed for effective
applications in a number of domains such as network communication
[4] and image processing [7].
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TABLE I
MAIN NOTATION USED IN THE RANDOM NEURAL NETWORK MODEL

In this letter, we generalize the original RNN model by taking into
account state-dependent firing neurons. In the extended model, the
times between successive signal emissions of a neuron are dependent
on the neuron potential. We prove that under certain conditions the
extended RNN still has simple product form stationary distribution.
Compared with the original model, the extended model possesses en-
hanced capability of adjusting the probability structure of the network
stationary distribution. This brings new features to the computational
power of the RNN.

II. RANDOM NEURAL NETWORK MODEL

Consider a network with n neurons in which positive and negative
signals circulate. Positive signals (+1) represent excitation, and neg-
ative signals (�1) represent inhibition. Each neuron i (i = 1; . . . ; n)
is represented at time t by its potential ki(t), which is a nonnegative
integer. An arriving positive signal adds 1 to the neuron potential; an
arriving negative signal reduces by 1 the neuron potential or has no
effect on the neuron potential if the potential is already zero. If the
neuron potential is positive, the neuron may “fire,” sending signals out
toward other neurons or to the outside of the network. As signals are
sent, the neuron potential decreases by the same number of the sent sig-
nals. The times between successive signal emissions are exponentially
distributed with the firing rate ri > 0. Excitatory and inhibitory signals
also arrive at neuron i from the outside of the network at rate �i and
�i, respectively.
A signal leaving neuron i heads for neuron j as a positive signal with

probability p+ij or as a negative signal with probability p�ij , or departs
from the network with probability di. Assume that the signals leaving
a neuron will not return directly to the same neuron, i.e., p+ii = p�ii = 0
for all i, and assume that di is greater than 0 for all i—this is to reflect
the loss of information or energy during the transmission of signals. It
is obvious that

j
[p+ij+p�ij ]+di equals 1, i = 1; . . . ; n. In this model,

the exogenous arrival of signals and firing of neurons are independent
of each other. The main notation used in the RNN model has been
summarized in Table I.
Let k(t) be the vector of neuron potentials at time t, i.e., k(t) =

(k1(t); . . . ; kn(t))
0, k = (k1; . . . ; kn)

0 be a particular value of the
vector, and K be the set of all states (i.e., the state–space). Denote
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p(k) = lim
t!1

P (k(t) = k), and p(ki) = lim
t!1

P (ki(t) = ki), where

P (X) is the probability of event X .
Gelenbe proved that the stationary distribution of the RNN can be

written as the product of the marginal probabilities of the state of each
neuron. This leads to simple expression for the network state distribu-
tion. Let �+i and ��i be the average arrival rate of positive and negative
signals to each neuron, respectively, and qi the probability that the po-
tential of neuron i is positive. Gelenbe showed [2] that �+i , �

�

i , and qi
satisfy the following system of nonlinear simultaneous equations:

qi =
�+i

ri + ��i

�+i =
j

qjrjp
+

ji +�i

��i =
j

qjrjp
�

ji + �i (1)

for i = 1; . . . ; n, and if a unique nonnegative solution f�+i ; �
�

i ; i =
1; . . . ; ng exists to (1) such that qi < 1, then

p(k) =

n

i=1

(1� qi)q
k

i : (2)

III. EXTENDED MODEL OF RNN WITH STATE-DEPENDENT

FIRING NEURONS

In the RNN model presented previously, the times between succes-
sive signal emissions of neuron i are exponentially distributed with rate
ri, and ri is fixed; in other words, ri is independent of the neuron poten-
tial as long as the potential is greater than 0. According to neurophys-
iology, however, it may be more biologically plausible to assume that
the firing rate of a neuron depends on the neuron potential level. Nor-
mally, the higher a neuron’s excitation level is, the stronger the neuron
fires signals. Therefore, we make a natural generalization of the RNN
model by including a new feature in the model such that the firing rate
of a neuron is now a function of the neuron potential.

We assume that the times between successive signals emissions are
exponentially distributed with rate rifi(ki(t)), where ki(t) is the po-
tential of neuron i and fi(�) is a function of ki(t) satisfying fi(ki) > 0
for ki > 0. A factor fi(�) is multiplied to ri in order to represent that the
signal emissions are dependent on the neuron potential. Note that the
role of function fi(�) in the extendedRNNmodel is similar to that of the
activation function [14] in the conventional perceptron networks: both
functions indicate the dependency of neuron firings on the neuron po-
tentials. Like the activation function, function fi(�) may take the form
of threshold functions, e.g., fi(ki) = 1 for ki � b and fi(ki) = 0.1
for ki < b (b is some threshold), the form of sigmoidal functions, e.g.,
fi(ki) = 1=(1 + e�k ), or other forms of functions that characterize
neuron firing properties.

It can be tested [1] that, in an RNN with potential-dependent signal
emissions, the product form solution may not hold under the original
definition of negative signals. Therefore, an updated interpretation has
to be given to the effect of negative signals in order to retain the simple
product form of solutions, which is computationally efficient. In this
letter, we assume that the cancellation effect of negative signals also
depends on the potential of the targeting neuron. In fact, this assump-
tion is biologically plausible since a neuron with high excitation level
tends to be influenced by inhibitory signals to a greater extent than a
neuronwith low excitation level. In particular, we assume that (i) fi(ki)
is bounded from above by Bi, a positive constant, for any ki > 0,
and (ii) the negative signals have the following effect: when a negative
signal arrives at neuron i, it reduces by 1 the potential of the neuron
with probability fi(ki)=Bi if ki > 0, otherwise no effect.

Theorem 1: Under the proposed assumptions on the state-depen-
dent firing of neurons and negative signals, if the network stationary
distribution exists, it is given by

p(k) = c

n

i=1

k

m=1

qi
fi(m)

(3)

with

qi =
�+i

ri +
�

B

(4)

where qi, �+i , and ��i satisfy the system of nonlinear simultaneous
equations

�+i =
j

qjrjp
+

ji + �i

��i =
j

qjrjp
�

ji + �i (5)

and c is a normalizing constant defined by

c =
k2K

n

i=1

k

m=1

qi
fi(m)

�1

: (6)

The state stationary distribution p(k) exists if and only if c > 0.
Proof: Since fk(t); t � 0g is a continuous time Markov chain, it

satisfies Fokker–Planck equations. Thus, in steady state it can be seen
that p(k) satisfies the following global balance equation:

p(k)
i

�i + �i
fi(ki)

Bi

+ rifi(ki) 1(ki > 0)

=
i

p k+i rifi(ki + 1)

� 1�
j

p+ij

�
j

p�ij
fj(kj)1(kj > 0) +Bj1(kj = 0)

Bj

+ p k�i �i1(ki > 0) + p k+i �i
fi(ki + 1)

Bi

+
j

p k+�ij rifi (ki + 1)p+ij1(kj > 0)

+ p k++ij rifi(ki + 1)p�ij
fj(kj + 1)

Bj

+p k+i rifi(ki + 1)p�ij1(kj = 0) (7)

where the vectors used are defined by

k+i =(k1; � � � ; ki + 1; � � � ; kn)
0

k�i =(k1; � � � ; ki � 1; � � � ; kn)
0

k+�ij =(k1; � � � ; ki + 1; � � � ; kj � 1; � � � ; kn)
0

k++ij =(k1; � � � ; ki + 1; � � � ; kj + 1; � � � ; kn)
0

and 1(X) is the characteristic function that takes the value 1 if X is
true and 0 otherwise. Since fk(t); t � 0g is an irreducible Markov
chain, if a nonnegative stationary solution exists, it is unique. Now we
only need to verify that (3) satisfies (7). We omit the verification, which
is similar to that in [2]. The proof of the latter part of Theorem 1, i.e.,
existence of p(k), is similar to the proof of Jackson Theorem [6].
Note that, unlike the quantity qi in the original RNN model, qi in

Theorem 1 is no longer equal to the probability that the potential of
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neuron i is positive. However, it can be tested that �+i and ��i in The-
orem 1 still represent the average rate of positive and negative signal
arrival to neuron i, respectively.

The following two theorems present some sufficient conditions for
the existence of the RNN stationary distribution.

Theorem 2: There exists a nonnegative solution fqi; �+i ; �
�

i ; i =
1; . . . ; ng to the system of (4) and (5). If lim

m!1
fi(m) > qi for i =

1; . . . ; n, the network stationary distribution exists and is given by (3)
and (6).

Proof: The existence of a nonnegative solution to (4) and (5) fol-
lows Brouwer’s fixed-point theorem. If lim

m!1
fi(m) > qi for i =

1; . . . ; n, then
k

n

i=1

k

m=1
(qi=fi(m)) converges and, thus, c >

0. By Theorem 1, the network stationary distribution exists and is given
by (3) and (6).

According to Theorem 2, wemay ensure the existence of the network
stationary distribution by constructing appropriate fi(�) that satisfies
lim
m!1

fi(m) > qi for i = 1; . . . ; n. However, the value of qi is not

independent of the choice of fi(�), sinceBi in (4) is an upper bound of
fi(�), which depends on fi(�). It is still not clear so far if we can find
fi(�) such that lim

m!1
fi(m) is greater than qi. To answer this question,

we propose the following theorem.
Theorem 3: Consider an RNN with fqi; �+i ; �

�

i ; i = 1; . . . ; ng
being a nonnegative solution to (4) and (5). Then each qi is no greater
than q0i : fq0i; i = 1; . . . ; ng is a solution to the following system of
equations:

q0iri =
j

q0jrjp
+

ji +�i; i = 1; . . . ; n: (8)

Further, if lim
m!1

fi(m) > q0i for i = 1; . . . ; n, the network stationary

distribution exists and is given by (3) and (6).
Proof: First prove the existence of a solution to (8). De-

note n � n-matrix P+ = (p+ij)
0

(the transpose of matrix (p+ij)),
� = (�1; . . . ;�n)

0, �+0 = (q01r1; . . . ; q0nrn)
0. Then we have

�+0 = P+�+0 + �, i.e., (I � P+)�+0 = �. Since di > 0, it
can be tested that lim

m!1
(P+)

m
= 0, so I � P+ has an inverse

and (I � P+)
�1

= 1

m=0
(P+)

m
[10]. Thus, we can write

�+0 = 1

m=0
(P+)

m
�, which implies the existence of the nonegative

q0i, i = 1; . . . ; n.
If we have qi � q0i, i = 1; . . . ; n, then the conclusion that

k

n

i=1

k

m=1
(q0i=fi(m)) converges leads to the conclusion that

k

n

i=1

k

m=1
(qi=fi(m)) converges and, thus, the second part of

Theorem 3 holds.
So the only thing left is to prove qi � q0i, i = 1; . . . ; n. Let G =

diagfg1; g2; . . . ; gng, where gi = (ri=(ri + ��i )=(Bi)) � 1, and
denote �+ = (�+1 ; . . . ; �

+
n )
0

. Then we have �+ = P+G�+ + �
and, thus, �+ = 1

m=0
(P+G)

m
�, following the same argument as

shown previously. Since �+0 = 1

m=0
(P+)

m
� as shown previously

and gi � 1, we have �+i � q0iri, i = 1; . . . ; n, thus, qi = (�+i =(ri +
��i )=(Bi)) � (�+i =ri) � (q0iri=ri) = q0i, i = 1; . . . ; n.

Theorem 3 provides an upper bound of qi, i.e., q0i, i = 1; . . . ; n, for
the network, and shows that the existence of the stationary distribution
of an RNN can be guaranteed by choosing appropriate fi(�) such that
lim
m!1

fi(m) > q0i. One nice thing about introducing q0i is that q0i is

independent of the choice of fi(�), i = 1; . . . ; n. This property makes
it easy to ensure existence of the network stationary distribution.

IV. DISCUSSION

In the original model of RNN, the network stationary distribution
is completely determined if qi, i = 1; . . . ; n, are determined. In the

extended model of RNN with state-dependent firing neurons, however,
the network stationary distribution depends not only on qi, but also on
fi(�), i = 1; . . . ; n. As shown in the following, the introduction of the
state-dependent factor fi(�) brings new features to the computational
power of the RNN. We will find soon that the extended model of RNN
has enhanced capacity to adjust the probability structure of the network
stationary distribution. As an example, this section demonstrates how
desired associate memory states can be stored in the network dynamics.
What are associative memory states? In this letter, an associative

memory state is defined as a state with the maximum probability in
the steady-state distribution. The associative memory state of an RNN
with state-dependent firing neurons depends on both the inputs and pa-
rameters of the network. Denote U = (�; �)0 the input vector, where
� = (�1; . . . ;�n)

0 and � = (�1; . . . ; �n)
0, and denoteW the vector

containing all adjustable parameters of the network. For instance, in
the original RNN,W is comprised of p+ij , p

�

ij , and ri, i, j = 1; . . . ; n;
while in the RNN with state-dependent firing neurons, since fi(�)may
have adjustable parameters, these parameters should also be included
inW . Then denote kM an associative memory state of the RNN, given
the input vector U and parameter vector W .
Consider the capacities of the original RNN and the extended RNN

in storing the associate memory states. In the original RNN, for any
input vector U and parameter vector W , if the stationary distribution
exists, the associative memory state kM equals (0; . . . ; 0)0. This fol-
lows the fact that the stationary distribution p(k) determined by (2) is
monotone decreasing for any ki, i = 1; . . . ; n, and p(k) takes the max-
imum value when k = (0; . . . ; 0)0. In comparison, it can be tested that
in the extended RNN with state-dependent firing neurons, given any
k = (k1; . . . ; kn)

0, if fi(�) and qi satisfy fi(m) < qi for anym � ki
and fi(m) > qi for any m > ki, i = 1; . . . ; n, then the associate
memory state kM equals k.
The previous argument implies that the original RNN does not have

the ability to adjust associative memory state (the only associative
memory state that can be stored in the network is (0; . . . ; 0)), while
the extended RNN has the ability to store any associative memory
state, with appropriate setting of network parameters. For example,
let fi(�) be monotone increasing and amplitude modulatable (e.g.,
fi(m) = di=(1+e

�m), where di is an adjustable parameter), then any
state k can be made an associative memory state of the RNN if the am-
plitude of fi(�) can be modulated to satisfy fi(ki) < qi < fi(ki+ 1),
i = 1; . . . ; n.
Moreover, we may prove that in the extended RNNwith state-depen-

dent firing neurons, if fi(�) is allowed to take arbitrary positive values
at points ki = 1; 2; . . ., then the stationary distribution of neuron i
can be modulated to approximate any probability distribution of non-
negative integers. The stationary distribution of neuron i is p(ki) =
ci

k

m=1
(qi=fi(m)),where ci is a normalizing constant. For any given

probability distribution of nonnegative integers p̂(ki) > 0, let fi(ki) =
(qip̂(ki � 1))=p̂(ki), ki > 0, then we have p(ki) = p̂(ki).
Compared with the original RNN,which has a stationary distribution

of geometric decreasing structure, the extended RNN has enhanced ca-
pability to present a variety of probability structures in the stationary
distribution of neuron states. However, an increase of the number of
network parameters tends to increase the complexity of the network
structure and consequently raise difficulty in training of parameters.
This may lead to limitations in the application and generalization of
the RNN. Therefore, appropriate choice of fi(�) and its adjustable pa-
rameters is a critical component of the RNN modeling.
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An Efficient Parameterization of Dynamic Neural
Networks for Nonlinear System Identification

Victor M. Becerra, Freddy R. Garces, Slawomir J. Nasuto, and
William Holderbaum

Abstract—Dynamic neural networks (DNNs), which are also known as
recurrent neural networks, are often used for nonlinear system identifica-
tion. The main contribution of this letter is the introduction of an efficient
parameterization of a class of DNNs. Having to adjust less parameters sim-
plifies the training problem and leads to more parsimonious models. The
parameterization is based on approximation theory dealing with the ability
of a class of DNNs to approximate finite trajectories of nonautonomous sys-
tems. The use of the proposed parameterization is illustrated through a
numerical example, using data from a nonlinear model of a magnetic levi-
tation system.

Index Terms—Approximation theory, architectures and algorithms,
dynamic systems, neural networks.
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I. INTRODUCTION

Due to the nonlinear nature of many systems, physical and other-
wise, there has been extensive research covering the field of nonlinear
system identification [1]–[3]. It is here that the use of neural networks
emerges as a feasible solution. The universal approximation properties
of static neural networks [4] make them a useful tool for modeling
nonlinear systems. The problem of nonlinear modeling using static
neural networks has been extensively researched [5] and many ap-
proaches have used multilayer perceptrons and radial basis functions
[2], [6], [7]. The inputs to these static networks are usually delayed
values of the inputs and outputs of the plant. This approach, how-
ever, has some disadvantages. First, the input structure is not easy to
choose. Moreover, discrete time nonlinear models require retraining
when the sampling time is changed. Furthermore, if the models are to
be employed as part of a nonlinear control scheme, methods for dis-
crete time nonlinear control are not as well developed as continuous
time nonlinear control methods [8].
Continuous time Hopfield-type dynamic neural networks (DNNs)

[9] and their variations [10]–[13], do not present the previous disadvan-
tages. Several techniques have been proposed that have characterized
the nonlinear modeling properties of DNNs [5], [14], [15]. A number
of control applications of this family of neural networks have also been
proposed [16], [17]. Research work has demonstrated that DNNs can
approximate finite trajectories of n-dimensional autonomous dynamic
systems of the form _x(t) = f(x(t)) [18], [19]. This letter presents im-
plications of approximation theory presented in [16] on the ability of
a class of DNNs to approximate finite trajectories of nonautonomous
systems of the form _x(t) = f(x(t); u(t)). The letter introduces an effi-
cient parameterization of a class of DNNs and illustrates its use through
a numerical example.
The letter is organized as follows. Section II introduces the class

of DNNs of interest in this letter. Section III discusses theoretical re-
sults on the approximation ability of DNNs. Section IV discusses of-
fline training methods for DNNs. Section V introduces an efficient pa-
rameterization of a class of DNNs. Section VI presents an numerical
example. Finally, Section VII gives concluding remarks.

II. DNNs

DNNs are made of interconnected dynamic neurons. The class of
neuron of interest in this letter is described by the following differential
equation:

_xi = ��ixi +

N

j=1

!ij�(xj) +

m

j=1


ijuj (1)

where �i; !ij , and 
ij are adjustable weights, with 1=�i a positive time
constant and xi the activation state of the ith unit, � : ! a sig-
moid function and u1; . . . ; um the input signals. Fig. 1 shows the block
diagram of a dynamic neuron.
A DNN is formed by a single layer ofN units. The states of the first

n units are taken as the outputs of the network, leaving N � n units
as hidden neurons. The network is defined by the following vectorized
expression:

_x = ��x+ !�(x) + 
u

yn = Cx (2)

where x are coordinates on N ; � 2 N�N is a diagonal matrix
with diagonal elements f�1; . . . ; �Ng; ! 2 N�N ; 
 2 N�m are
weight matrices, �(x) = [�(x1); . . . ; �(xN)]T is a vector sigmoid
function, u 2 m is the input vector, yn 2 n is the output vector,
C = [In�n; 0n�(N�n)].
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