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Abstract

This chapter presents a learning algorithm inspired by the neural computation in the basal
ganglia and cerebellum. The learning algorithm can be described as a switching-based
reinforce algorithm. The performance of the learning algorithm is evaluated by an application
to an underactuated system, the Cart-Pole system. Two separate controls, swing-up and
balancing controls, are required to successfully achieve the task goal. Adaptive tuning of the
control gain is performed by the learning algorithm. The control signal processing and reward-
based learning rule can be interpreted in terms of basal ganglionic neural computations: The
parallel operation of the two separate controls mimics the parallel signal processing of the
direct and indirect pathways in the basal ganglia. The reward-based update rule may
correspond to the long-term potentiation and long-term depression of synaptic plasticity in the
striatum inducted by dopamine release. Switching between the two controls can be explained
with a plausible neural operation in the cerebellum: Cerebellar neural circuit with inhibition
can be interpreted as competitive signal processing, which attains a switching mechanism.

1. Introduction

This chapter studies a learning algorithm based on the stochastic reinforcement learning. Prior
to the proposal of stochastic reinforcement learning, Hebbian learning had been a worldwide
famous rule of learning that reveals an adaptation mechanism of the presynaptic and
postsynaptic neurons. However, this synaptic update rule cannot guarantee the computational
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performance of the whole network of neurons [Bartlett and Baxter 2000]. In contrast, the
learning rule of backpropagation has gained popularity for computational efficiency in real
applications of artificial neural networks, but this rule is not biologically plausible. Recently,
a new synaptic-update rule, the stochastic reinforcement learning, has been investigated
[Seung 2003; Bartlett and Baxter 2000; Bern and Sejnowski 1994; Florentin and Porr 2005].
The scheme of stochastic reinforcement learning seeks maximizing the long-term average of a
reward signal by a collection of spiking neurons as parallel multi-agents. This update rule is
computationally effective, and at the same time it is biologically plausible because it mimics
some aspect of reinforcement learning in the basal ganglia.

This chapter tries to interpret the learning algorithm from the perspective of neural
computation. The algorithm will be applied to the Cart-Pole problem, a problem of
controlling the inverted pendulum on a cart. This problem is an old and challenging problem
to demonstrate the effectiveness of control systems in analogy with the control of many real
systems. Therefore, the Cart-Pole problem is popularly invited to evaluate a computational
learning scheme.

Before the introduction of the main algorithm in the next section, some background
material is reviewed  in the following subsections.

1.1. Basal Ganglia

Figure 1. Direct and indirect pathways of the basal ganglia (This figure simplifies the connections).

The basal ganglia (BG) consist of four major nuclei: the striatum, the globus pallidus
(GP), the substantia nigra(SN), and the subthalamic nucleus(STN). The striatum is the major
recipient of inputs to the basal ganglia. Almost all areas of the cerebral cortex send excitatory
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projection to the striatum. The major type of projection neuron is the medium size spiny
neuron. The spiny neurons project inhibitorily to the GP and SN. The GP is divided into
internal and external segments, i.e., globus pallidus pars interna (GPi) and globus pallidus
pars externa (GPe). The GPi is the inhibitory output nuclei of the basal ganglia. The important
neuroanatomy is that two parallel pathways modulate the output of basal ganglia: direct and
indirect pathway as shown in Figure 1. It is widely accepted that the two pathways have
opposing effects on the basal ganglia output nucleus. Activation of the direct pathway
suppresses the neurons in the GPi, thus disinhibits the thalamus and increases thalamocortical
activities. In contrast, the indirect pathway increases inhibition of the thalamus, thereby
decreasing thalamocortical activities.

The SN consists of the pars reticulate (SNr) and pars compacta (SNc). The SNr is another
BG output nucleus. The SNr is composed of large neurons that receive similar patterns of
inputs as those of the GPi. The primary difference between the SNr and GPi outputs is that
the lateral portion of SNr is connected with the areas of the cortex and of the brain stem that
are involved in eye movement control [Mink 1996] (SNr is not shown in Figure 1). The SNc
is a densely celluarly region contraining dopamine cells, which receives GABAergic and
inhibitory input from the striatum. The SNc dopamine neurons also project back to the
striatum. The dopamine pathway as well as the reciprocal connection between the striatum
and SNc are thought to play a crucial role in learning carried by the BG. The STN receives an
inhibitory, GABAergic input from the GPe, and an excitatory, glutaminergic input from
motor cortex. The output from the STN is excitatory and glutaminergic and projects to GPi,
GPe, and SNr.

The BG circuit can be considered as a big loop starting with inputs from multiple cortical
areas to the BG and then returning, via thalamus, to the cortical areas [Nolte 1999]. This big
loop can be further divided into multiple parallel loops. All these loops are similar in
principle, but each uses different cortical areas and a distinctive portion of the striatum and
globus pallidus. The cortico-BG-thalamocortical loop that corresponds to the putamen, is
termed motor loop which basically participates in the control of movements. More recently,
the motor loop has been considered to be further partitioned into oculomotor and several
skeletomotor circuits. Each of these circuit divisions appears to derive input preferentially
from the same areas of cerebral cortex to which they project. Thus, the BG loops appear to
operate largely as parallel loops with little intercommunications [Kelly and Strick 2004]. The
sub-architecture of each loop is very similar. It is widely felt that the BG provides the same or
similar computational processing for different regions of the cerebral cortex.

1.2. Reinforce Algorithm

The REINFORCE algorithm is the online learning of an input-output mapping through a
sequence of trial and error so as to maximize a statistical performance criterion. The
algorithm is principally based on stochastic gradient ascent in a policy space, and does not
require an explicit model of interacting environment or an explicit value function. As
Williams indicated [Williams 1992], the REINFORCE algorithm is a class of reinforcement
learning connectionist networks. Connectionist networks indicate parallel distributed signal
processing. Each process unit receives external inputs from environment, and propagates
outputs to environment after the work of activation function.
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The unit is comparable with a neuron, and is called an agent in the world of
reinforcement learning. The activation function describing the activity of the cell is an object
to be designed. In the reinforcement learning, a policy to choose an action is equivalent to the
activation function, where its output is the action and its input is the observed state
information. An individual neuron communicates with many neurons in neighborhood. The
effect of the connectionist networks can be represented by a weight vector. The weight vector
corresponds to synaptic connections between neurons. Adjusting the weight vector represents
synaptic plasticity, which is comparable with a learning algorithm. To assign a policy over
actions to observed information, many possible policy strategies could be applicable. A
stochastic policy is among the potential policy schemes. The stochastic policy is a probability
of selecting an action based on observation. When the action value is continuous, the
stochastic policy denotes a probability density function. The stochastic policy makes it
possible advantageously to design a learning algorithm with no explicit information about
environment and no approximation of a value function, and is applicable even with partially
observable information (e.g., Partially Observable Markov Decision Processes).

Let tX  and ta denote the observed information and action at time t  respectively, and

),,( WXa ttπ  represent the probability of taking an action ta based on observed

information tX . The vector W  consists of the weights representing the strength of
connections in the neural networks. Because the policy π  is comparable with activation
function, each element of W is comparable with synaptic connection intensities between
neurons. W is the component to be learned to specify the relation between observations and
actions. The REINFORCE algorithm is a learning rule of a particular form:

)()( tebrW iti −=Δ α  (1)

where α is a positive learning rate coefficient, b is a reinforce baseline, tr is an immediate

reward, and ie is called the eligibility of iW  where iW is each element in W .
The reward evaluates the agent’s performance by taking an action. In general, a positive

reward indicates that the action is preferred. In the REINFORCE learning rule, the update of
weights is proportional to the expected reward increases.

The eligibility ie  specifies a correlation between weight and executed action and is
presented as

 ( )),,(ln)( WXa
W

te tt
i

i π
∂
∂

= .  (2)

Rather than only considering the immediate reward at time t, the algorithm can record the
history of the agent’s performance. In this case, the algorithm is modified in such a way:

)()( tDbrW iti −=Δ  (3)
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where )1()()( −+= tDtetD iii γ  and )(tDi is a discounting running average of eligibility,
and γ  is a discount coefficient between zero and one.

It is interpreted that the update rule seeks the synaptic connection strengths to optimize
the long-term average reward.

At each time t, the policy can be improved by updating W as

WWW Δ−+= )1( γα (4)

where [ ]iWWWW ΔΔΔ=Δ 21

W is updated to increase the probability of actions according to the history when the
averaged reward is positive. The update of weights is repeated until a performance criterion is
achieved.

A general selection of stochastic policy distribution is the normal distribution when the
action is in continuous space, because the normal distribution is a simple second-order
sufficient statistics. This distribution requires the mean and the variance only. The two
statistics can be regarded as the weights to be learned ( [ ]σμ,=W ).

Therefore, the stochastic policy has a form of
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The eligibilities of weights become 2σ
μ
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accordingly. By setting learning rate coefficients appropriately,  μμ −= tae  and

( )
σ

σμ
σ

22 −−
= ta

e can be obtained. This protects the eligibilities from divergence

[Williams 1992; Kimura and Kobayashi 1998].
As pointed in Williams (1992), such a Gaussian unit is practically useful because the

mean and variance of its output is individually adaptively controllable by using separate
weights. Using multiparameter distributions enable to control their degrees of exploratory
behavior.

From the perspective of the neural spiking activity, the action in discrete space was
originally investigated in [Seung 2003; Bartlett and Baxter 2000]. Neural spikes can be
interpreted as binary signals. Therefore, a more biologically plausible stochastic policy
distribution is the Bernoulli distribution. It can be assumed that a neural spike evokes with the
probability of tp  at each time t .

In summary, the online adaptive learning algorithm based on the REINFORCE with the
policy history can be implemented to be a sequential procedure as follows.

1. Take observation inputs tX  from the environment at time t .



Sungho Jo and Zhi-Hong Mao186

2. Take action ta  with probability ),,( WXa ttπ .

3. The immediate reward tr is evaluated.

4. Accumulating eligibility is calculated as )1()()( −+= tDtetD iii γ  where

( )),,(ln)( WXa
W

te tt
i

i π
∂
∂

=

5. Update the weights WWW Δ−+= )1( γα  where

[ ]iWWWW ΔΔΔ=Δ 21  with )()( tDbrW iti −=Δ .

6. Repeat the procedure at time 1+t .

1.3. Underactuated Systems

A mechanical system with configuration vector Qq∈  and Lagrangian ),( qqL satisfying
the Euler-Lagrange equation

uqF
q
L

q
L

dt
d )(=

∂
∂

−
∂
∂

 (6)

is called an Underactuated Mechanical System if )dim()(rank QnqFm =<=
where )(qF maps control inputs into generalized forces . In other words, underactuated
systems have fewer actuators than configuration variables. This restriction of the control
authority does not allow exact feedback linearization of underactuated systems. In a special

case satisfying [ ]TmIqF 0)( = , the first )( nm − equations in (6) represents the
unactuated subsystem which is expressed as a second-order dynamic equation in the form of

0),,( =qqqη , and the remaining m equations the actuated subsystem. The actuated
subsystem can be linearized using an invertible change of control while the unactuated
subsystem remains as a nonlinear system. The procedure is called partial feedback
linearization. The unactuated system dynamics is still coupled with the linearized actuated
subsystem, which makes it difficult to design a controller for underactuated systems.

Interestingly, the control in many cases of human or animal movements can be regarded
as the control of underactuated mechanical systems. In addition, a variety of biologically-
inspired robotic designs such as passive biped walker, Acrobot or Pendubot etc are
underactuated [Spong 1996; Spong 1999]. Therefore, the class of underactuated mechanical
systems is rich. For example, suppose that a legged locomotion is analyzed with N internal
joints and N actuators, the position and orientation of the body in space requires six degrees
of freedom in addition. Therefore, N control inputs are fewer than the N + 6 degrees of
freedom. Because most of the interesting problems of movements are underactuated, it is no
surprise to try to investigate the underactuated mechanical system in order to understand
control strategies of human or animal movements. Furthermore, the underactuated control
systems may shed a light on producing more dynamic and more agile movement because
classical fully-actuated control systems generally tend to augment control authority and
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override the dynamics of the plant in such a way to strictly follow a desired trajectory while
neglecting the natural dynamics. Recent control strategies tend to pursue exploiting the
dynamics rather than canceling it. However, the nonlinear underactuated systems often
include feedforward nonlinearities, unstable zero dynamics, and other structural properties
that cause difficulties to apply some recent design techniques. A typical control design
strategy of the underactuated mechanical system is to combine Lyapunov theory with
passivity properties and energy shaping. However, a unique control design is hard to achieve
the overall nonlinear performance at all; instead, switching control strategy is combined in
general [Spong and Praly 1996;Spong 1996].

This chapter plans to explore a typical example of such underactuated system, the Cart-
Pole system mentioned in previous section. Using the specific system, a biologically
motivated learning control algorithm will be investigated.

2. Computational Model

2.1. Plant Model

Figure 2. The cart-pole system.

The Cart-Pole system describes a structure where an inverted pendulum is hinged to a
cart via a pivot and only the cart is actuated. Figure 2 illustrates the Cart-Pole system, where
x  is the horizontal position of the cart and θ  is the clockwise angle between the pendulum
and the vertical line. The goal of this task is to stabilize the pendulum in a vertical position
and maintain the cart at original position ( 0=θ , 0=θ , 0=x , 0=x ). The pole is
modeled to be a point mass attached to the top of a massless bar whose other end is pivoted to
the cart.  The mass of cart and pole is respectively selected to be 1 and 0.1 kg for simulation.
The length of the bar is 1m. The cart-pole system moves horizontally on the flat ground under
the effect of gravitational field.
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The cart position is described by  T
c x ]0[x =  and the pendulum position is given by

T
p llx ]cossin[x θθ+=  with linear velocities T

c x ]0[x = , and
T

p llx ]sincos[x θθθθ −+= .

The kinetic and potential energies of the system are, respectively,

222

2
1cos)(

2
1 θθθ mllxmxMmT +++=

and
θcosmglU = .

Therefore, the Lagrangian of the Cart-Pole system can be expressed as
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The Euler-Lagrange equations of motion for the Cart-Pole system is in the form

f
x
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x
L

dt
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which concludes the following equation of the motion:

fmlmlxMm =−++ θθθθ sincos)( 2 (8)

0sincos 2 =−+ θθθ mglmlxml  (9)

A simple rearrangement yields in the standard form of:
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Equation above represents clearly the Cart-Pole system belongs to the class of
underactuated mechanical systems.

Though the system is not feedback linearizable completely, but a portion of the system
can be linearized. The partial feedback linearization enables to be implemented on the
dynamics of the actuated configuration variables. The procedure is called collocated partial
feedback linearization [Spong 1996]. On the other hand, the partial feedback linearization
procedure that linearizes the dynamics of the unactuated configuration variables is called
noncollocated partial feedback linearization.
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2.2. Control Algorithm

2.2.1. Swing-up Control

To design a controller of the cart-pole system, collocated partial feedback linearization is
used. From equation (9),  θ  can be described with other terms

( )θθθ sincos1 gx
l

−−=  (11)

Plugging it into equation (8),

fmlmgxmMm =−+−+ θθθθθ sinsincos)cos( 22  (12)

To design a controller, the computed torque control method [Murray et al 1994; Craig
1986] is implemented. The computed torque control method is a popular approach in robotic
control. When the system dynamics is described as fGNM =++ )(),()( θθθθθθ , the
method sets a controller in a form of βα +′= ff . Then, α  and β  are respectively chosen

to be )(θα M= , and )(),( θθθθβ GN += . In this way, the system equation can be

simplified to be f ′=θ .

For the cart-pole system, let θθθθθ sinsincos)cos( 22 mlmgumMmf −+−+= ,
then,

ux =   (13)
ux =   

From equation (11), ( )θθθ sincos1 gu
l

−−= . (14)

Now u should be designed. In the classical control scheme,

)()( θθθθθ −+−+= dpdvd kku , which forces joint motion to follow desired trajectory.

Another potential scheme is passivity-based control strategy. The energy of the pendulum
is

θθ cos
2
1 22 mglmlE p += .  (15)

The target energy when the pendulum stays upward vertically is

mglEd = .  (16)



Sungho Jo and Zhi-Hong Mao190

Using the energy difference of dp EEE −=~
, it is easily driven that

θθθθθθθθθθθ cossinsincossin 22 mlumgl
l

gumlmglmlE −=−⎟
⎠
⎞

⎜
⎝
⎛ −

−=−=

To assure the dissipation of the energy, u can be chosen to be E
ml
k

u s ~cosθθ=

because this yields ( ) 0~cos~ 2
=+ EkE s θθ therefore 0~ →E exponentially as time goes. In

addition, for the regulation of x  feedback component is designed. While the pendulum
swings up to pass through the upright position, the cart position is also controlled to stay at
origin. Only considering the cart’s horizontal motion, a time-varying surface in motion space

is described by a scalar equation 0~~~);( 2121 =++=++= xpxpxxpxpxtxS  where

dxxx −=~ and 0=== ddd xxx . The cart behavior is expected to reach the surface

within a finite time and stay there. To attain the goal, a controller of xpxpu 21 −−=  is
selected with equation (13). Neglecting the pendulum motion, a smooth cart motion could be
described by a second order system with a natural frequency and a damping ratio. Setting the

damping ratio to 1, 
2

1
2 2

⎟
⎠
⎞

⎜
⎝
⎛=

p
p is applicable. 2p  is approximately a half of the natural

frequency. To attain a stable and smooth cart motion, it is good that 2p  is less than 1.
As a result, the following controller form is designed to be:

xkx
k

E
ml
k

u c
cs −−=
4

~cos
2

θθ . (17)

The controller is guaranteed to converge on the orbit where 0~ =E . This energy-based
control design of the Cart-Pole system has been investigated by many researchers [Spong
1999; Chung and Hauser 1995]. The status assures the pendulum passes through the upright
position. But, the guaranteed stability is not asymptotic to a point but to an orbit. For this
reason, the control strategy, in general, has to be switched to achieve an upright balance. In
fact, in a neighborhood of the upright position, more precisely speaking, within the basin of
attraction of the balancing controller, a linear feedback balancing controller is sufficient to
achieve a fixed equilibrium point, which is a vertical posture, so that such switching control
design is very simple and widely applicable. However, the difficulty of the switching control
is to determine conditions on when to switch controllers. In addition, proper selection of the
control gains such as sk  and ck  is important to achieve desired performance regardless of
initial conditions. In most cases, lots of trial and error experiments are required to decide the
switching conditions and control gain values. This chapter tests the effectiveness of the
stochastic reinforce algorithm as an online control strategy that automatically satisfies the two
requirements, switching condition and gain setup.
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2.2.2. Balancing Control

Because the energy based swing-up control cannot maintain a upright balance of the
pendulum, the controller is switched when the pendulum reaches within a certain range of
space.In the basin of attraction of the balancing controller, the balancing controller is
designed simply to be a linear feedback controller as follows.

From equation (14), the dynamics of pitch angle within a basin of attraction of a
balancing controller, which is being designed, is described as

 θθθ cos1sin u
ll

g
−=

Furthermore, it behaves quite linearly near the vertical balancing position such as

u
ll

g 1
−= θθ   (18)

because θθ ≅tan , 1cos ≅θ  for θ  is small.
Therefore, a switching condition is determined by the feasibility of the linear

approximation above. For the current test, Cθθ <  is set as the switching criterion where Cθ
is a constant. A control law in equation (18) is pursued to maintain the pendulum vertically.
To achieve a critical damping behavior with no oscillations only with respect to the pendulum
dynamics, let

θθ gklglku bb 2)1( −+−= .  (19)

With the above choice of the control law, the system becomes 02 =++ θθθ pp kk .

Therefore, 0→θ  as time goes on.
In addition, regulation of the cart position is also added.
Therefore,

 xkxkgklglku vpbb 222)1( −−−+−= θθ  (20)

2.3. Switching Condition

As mentioned previously, balancing control operates while Cθθ < , and swing-up control

operates while Cθθ ≥ . To confirm the switching condition, Cθ  should be determined. The

threshold value indicates a feasible angle range where balancing control is applied.
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Figure 3. Two control strategies and switching condition.

It is proposed that Cθ  is computed at the end of each trial as

⎩
⎨
⎧

>
<

=
4.1)min( 6.0

4.1)min( )min(
θ
θθ

θ
if

if
C  (21)

When the swing-up control does not reach the right track yet for initial trials, the
threshold is fixed to 0.6. Once the swing-up control functions effectively, the threshold value
is updated according to equation (21). Principally when the angular position reaches at
highest point, the balancing control operates. If the switching position is not appropriate or
the balancing control is not well tuned, the trial will fail, but control parameters will be
updated by a learning algorithm as explained in next section. In next trial, updated control
parameters will be used. If the switching position is within the range such that the balancing
control can effectively grasp the pendulum straight up, the test will succeed, and control
parameters and switching condition are confirmed.

2.4. Learning Algorithm

Using the online stochastic learning algorithm explained earlier, the control gains sk , 1pk ,

1vk , 2pk , 2vk  and bk  are found once a set of physical parameters of the system is given.

Now, the mean and standard deviation of the stochastic policy are defined respectively as

tttt xWxWgWlglW 3211 2)1( −−−+−= θθμ , and 
)exp(1

11.0
7W−+

+=σ  (22)

when the switching condition is satisfied, i.e., Ct θθ < , and
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tttt xWx
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when switching condition is not satisfied, i.e., Ct θθ ≥ .
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6 tae  when Ct θθ ≥ .

Considering the above eligibilities with the weight update rule in equation (3), it is
worthwhile to recognize that the overall learning rule contains a Hebbian component when
the observed information is regarded as inputs and reward as outputs.

The control gain is updated by equation (4) and the process is repeated until a target
performance of the system is satisfied. The next step is to define a reward. The reward
baseline is set to zero ( 0=b ) in this test.

If the cart is way out of the desired position in 30 seconds after the simulation begins, the
simulation is terminated and an immediate reward is assigned.

5−=tr  if 3>tx  or 6/πθ >t  in 30 seconds (24)

Or the simulation is implemented until a trial ends. A trial takes 60 seconds. After a trial,
the following reward is assigned (Figure 4).

10+=tr  if 1.0<tx  and 9/πθ <t ,  (25)

5−=tr   otherwise.

When a task is successful, the learning process stops, and control gain values and
switching conditional parameter are confirmed. The success of a task is computationally

accepted if conditions are satisfied such that ( ) 05.0<fTθ , ( ) 05.0<fTx ,

( ) 005.0<fTθ , and ( ) 005.0<fTx , where fT  indicates a final time. The conditions

guarantee a convergence to upright posture of the pendulum.
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Figure 4. Immediate reward function.

3. Results

The simulation task was implemented to test the proposed algorithm. The initial position of
the cart was at the origin ( 0)0( =x ) and the initial position of the pendulum was almost
vertical, pointing downwards with no velocity ( 12.3)0( =θ ). Control gains were randomly
initialized. In the simulation, physical parameters were set to be 1.0=m , 1=M , 1=l  and

8.9=g .
Figure 5 demonstrates a task simulation after obtaining control gains from learning tasks.

For this task, initial control gain values were randomly chosen to be

[ ]TW 4289.07095.05028.08318.03795.06813.0)0( −−= .
After 553 trials, the algorithm achieved a successful task. In Figure 5, each motion

snapshot was recorded in every 0.2 second. At the beginning, the pendulum sway became
greater and greater until the pendulum reached a certain height in about 25 seconds. Then, the
cart moved quickly to evoke a reactive response of the pendulum, standing up and returns
smoothly near the origin. Finally, balancing control leaded the positions of both the cart and
pendulum to the desired ones. Control gains and switching threshold obtained from learning
were:

[ ]TW 1945.12949.03563.08027.03092.01736.1 −−=  and 9035.0=Cθ

Depending on the initial control gain sets, convergence to a successful task required
different numbers of trials during learning.
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Figure 5. A task simulation (top): motion snapshots as a function of time, (middle): motion drawn in x-
y coordination, (bottom): plots of cart and pendulum position trajectories.
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4. Neurobiological Interpretation

Figure 6. An illustration of neural signal processing between cerebrum, cerebellum, basal ganglia, and
environment.

Figure 6 illustrates plausible neural connections to explain the cart-pole learning and
control process in terms of neural signal processing.

From the outcome, the control signals are expressed in the form of

tttt xx 8.031.084.65.211 ++−−= θθμ

tttt xxE 29.002.0cos~36.02 −−= θθμ

According to parallel signal processing in the BG, it can be regarded that two control
signals operate separately.

Based on previous statement in section 1.1, each control signal is interpreted as an
effective sum of activities from direct and indirect pathways. In each control signal, positive
coefficients can be interpreted as excitatory signal processing as the direct pathway, and
negative coefficients as inhibitory signal processing along the indirect pathway.

The reinforce algorithm, a learning process of tuning control gains to take an appropriate
action, may correspond to long-term plasticity in the striatum. The reinforce algorithm is
online model-free learning process. It is recognized that phasic increase or decrease of
dopamine concentration with the corticostriatal synaptic activity causes either synaptic long-
term potentiation (LTP) or depression (LTD) [Wickens 2000;Schultz 1995; Mao 2005].
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Positive and negative reward values could be comparable with the increase or decrease of
dopamine concentration respectively. Increase and decrease of a control gain value are also
comparable with LTP and LTD respectively. Doya et al. proposed the reinforcement learning
model of the BG [Doya et al 2001; Doya 1999]. A model-free TD error learning model of
Doya’s is principally similar to the model in this article.

As the cerebellum receives rich input from many parts of the body, and Purkinje cell
activity in the cerebellar cortex has been related to joint kinematic activity [Johnson and
Ebner 2000], and it is highly conceivable that different corticonuclear microcomplexes
become active in different kinematic states. Therefore, the scheduling of control signal
according to sensed kinematic state is biologically plausible. This article focuses on control
and learning process in BG. However, the learning algorithm requires a switching
mechanism. A possible neural model of the switching (scheduling) mechanism can be
adapted from Jo and Massaquoi [2004] as in Figure 7.

The cerebellar microzone has uniform neural circuits. It receives two types of inputs, one
through mossy fibers, and the other through climbing fiber. Mossy fiber inputs excite
Purkinje cells, which haves fan-like dentrites, propagating along parallel fibers. Each Purkinje
cell inhibits deep cerebellar nuclear (DCN) cells. Parallel fibers inhibit Purkinje cells in
neighborhood via basket cells while they excite Purkinje cells located in parallel with the
parallel fiber beams. Based on the neuroanatomy, a simple proposal for the selection
mechanism in the cerebellar cortex in which a beam of activity on “suppress” parallel fibers
( supPF ) inhibits Purkinje cells within a certain range [Eccles et al 1967; Ito 1984] (Figure 7).

This diminishes the net inhibition in those modules, allowing them to process the signal that
arrives on “signal” parallel fibers ( sigPF ). Conversely, the beam activates local Purkinje cells,

thereby suppressing the activity of the modules. The principal characteristic required of supPF

fibers in this scheme is that unlike sigPF  fibers, they should contact Purkinje cells relatively

more strongly than the corresponding DCN cells – if they contact the same DCN cells at all.
This appears to be generally consistent with the experimental studies [Eccles et al 1974a;
Eccles et al 1974b; Ito 1984]. A prime candidate source for suppressor parallel fibers is the
dorsal spinocerebellar tract (DSCT) elements of which are known to convey mixtures of
proprioceptive and other information from multiple muscles within a limb [Oscarsson 1965;
Bloedel and Courville 1981; Osborn and Poppele 1992] while typically maintaining a steady
level of background firing in the absence of afferent input [Mann 1973]. The observations are
possibly formalized by proposing that the DSCT fibers transmit switching criterion: Cθθ <

or Cθθ ≥ . The sensed state θ  would correspond to the average signal of a large number of

primary afferents (Mann 1973) and Cθ  is assumed to be provided from the cerebral cortex.
Thus, certain suppressor fibers become relatively more active when the sensed kinematic state
is located in a region of the state space, i.e., the switching criterion is satisfied. The net
switching action can therefore be written:

[ ][ ][ ] [ ][ ][ ]
++++++

−−−+−−−= θθγμθθγμμ CC 1111 21
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where γ  represents the strength of lateral inhibition provided by basket cells. This parameter
regulates the steepness of the transition zone between different regions.

Figure 7. A proposal of selection mechanism in the cerebellar cortex, PC: Purkinje cell, DCN: deep
cerebellar nuclei, PF: parallel fibers, each filled circle represents inhibition.

5. Conclusion

This chapter provided a computational demonstration of a learning algorithm. This algorithm
was based on stochastic reinforcement  learning combined with a switching mechanism. The
algorithm performed a successful learning for the control problem of the Cart-Pole system.
The learning algorithm was model-free and real-time adaptive. In addition, neuro-
computational interpretation was given to explain each component in the learning algorithm.
Especially, the control signal processing and reward-based update rule can be interpreted in
terms of basal ganglionic neural computations, while the switching between swing-up and
balancing controls can be explained with a plausible neural operation in the cerebellum.
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