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Abstract— This paper presents a 3D scene reconstruction
method for autonomous vehicle driving in a wide range of
outdoor environments. Autonomous vehicles, most of which
currently employ laser and image sensors, are required to have
systems for object detection, obstacle avoidance, navigation etc.
The one of the most important pieces of information for these
systems is an accurate dense 3D depth map. However, range
data is much sparser than image data, thus the challenging
problem is to reconstruct a dense depth map using sparse range
and image data.

Here we propose a novel approach to fuse these different
types of sensor data to reconstruct 3D scenes which maintains
the shape of local objects. Our method features two main
phases: the local range modeling phase and 3D depth map
reconstruction phase. In the local range modeling phase we
interpolate 3D points from the laser scanner using Gaussian
Process regression. It estimates 3D measurements across the
outdoor environment and accommodates for defective sensor
information. In the reconstruction phase, we fuse an image
and interpolated points to build a 3D depth map and optimize
based on a Markov Random Field. It provides a depth map cor-
responding to all image pixels. Qualitative and time complexity
results show that our approach is robust and fast enough to
demonstrate in real-time for an autonomous vehicle in complex
urban scenes.

I. INTRODUCTION
3D range data is one of the most important pieces of

information for an autonomous vehicle driving in outdoor
environments [1] [2]. In the past few years, laser range find-
ers such as Light Detection and Ranging (LiDAR) systems
are used for acquiring a highly accurate 3D representation
of the world [3] [4]. It can be used for many applications
in autonomous vehicle systems. However, although LiDAR
systems give us high quality 3D measurements such as 3D
point clouds, it is not dense enough to represent outdoor
environments in detail. In order to overcome this problem, it
can be useful to accumulate 3D point cloud data over time
but it is still a problem to process to data in real-time. In this
paper we present a real-time approach for reconstructing a
3D depth map using sparse 3D points which are acquired by
a Velodyne HDL-64E and RGB data. Many notable attempts
have been made to enhance sparse depth data into a more
accurate 3D depth map. Diebel and Thrun integrated a low-
resolution depth map and high-resolution image for depth
map up-sampling using a Markov Random Field (MRF) [5].
They first presented 3D depth map enhancement based
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Fig. 1. Dense 3D depth map reconstruction from sparse 3D points and
an image using our approach. The raw range data is not dense enough
to directly combine the image with the depth map. However, with GP
regression, we can generate a dense 3D point clouds. Using these points,
we reconstruct a dense depth map as shown in the fourth and last pane.
Although the half of scene does not have a depth information, we estimate
it using color information based on MRF method.

on MRF. The MRF is solved with a conjugate gradient
algorithm. Zhu et al. [6] extend MRF to the temporal domain
which is composed by minimizing the energy function with
respect to temporal coherence in dynamic scenes. Lu et
al. [7] presented a MRF-based depth enhancement method
which is solved with loopy belief propagation [8]. Park et
al. [9] proposed a MRF optimization scheme with a nonlocal
means method that preserved local structure. Yang et al. [10]
proposed a new method for dense range image with an
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iterative joint bilateral up-sampling (JBU). This approach
modified a bilateral filter to up-sample a low resolution depth
image.

These approaches focus on enhancing low quality depth
maps into high resolution depth maps in indoor environments
and use a time-of-flight (ToF) depth camera for acquiring
depth information [11] [12]. Thus, these methods are not
directly adaptable to outdoor environments. Because depth
camera based systems are sensitive to ambient light, this
leads to a big restriction for outdoor applications [13]. In
contrast to work using a depth camera, there are a few
existing methods for providing dense depth maps in outdoor
environments using LiDAR. Harrison and Newman [14]
presented dense scene reconstruction using a laser scanner.
They used a second order smoothness term for planar and
curved surfaces based on MRF formulation. Jonathan et
al [15] present building a dense 3D range map in an urban
environment. This work used [5] for up-sampling range
maps. While this studies are more applicable in outdoor
environments for autonomous vehicles, the reconstructed
depth map’s quality is still lower than indoor application
methods.

The goal of this paper is to provide 3D reconstruction in
real-time for autonomous vehicle driving using sparse 3D
data and a single image. To accomplish our goal we split
space into discrete voxels which contain local range points
and find outlier points with a point histogram feature. We
then eliminate the outlier points. Assuming the remaining
points in the voxel are from the same object, we make
a surface which is mathematically identical to a Gaussian
distribution using Gaussian Process (GP) regression. Finally
we build a 3D depth map with the interpolated 3D points
and RGB image using a Markov Random Field.

The contribution of this paper is 1) locally model and
represent outdoor environments using sparse 3D range data
and 2) reconstruct a dense 3D scene by fusing interpolated
3D points and image data. Our approach is illustrated in
Fig. 1. The rest of the paper is organized as follows.
Section II describes the approach in detail, Gaussian Process
formulation for learning and MRF for fusing two different
types of sensor data. Experimental results are presented in
Section III. The last section, section IV provides conclusions.

II. APPROACH
A. Voxelization and Outliers Detection

The outdoor information from a 3D laser scanner repre-
sents various objects such as roads, cars, trees, walls etc. We
convert 3D point space into voxel space. Every voxel has an
arbitrary number of points which belong to various objects.
Thus we need to select points which represent a particular
object within a voxel.

In our previous work we proposed a point histogram [16]
for point by point similarity. We use a point histogram feature
to remove points which do not have a high similarity to
neighboring points. A point histogram describes every point’s
geometric distribution with its neighbor points using angle
and distance variance along each axis. A point histogram

(a) (b)

(c) (d)

Fig. 2. Voxelization and Outliers Detection (a) 3D points in a local range
(b) A fixed size voxel is represented in green and the points inside the voxel
are blue (c) Selected points after outlier detection using a point histogram
feature in red (d) Interpolated points (red dot) by GP regression in the voxel.

has four different features which represent the geometrical
shape of the region around a selected point and distance from
the sensor. Let the selected point be pm = {x,y,z} and its
neighbor points are the set P = {p1, ...pM} then each feature
is defined as,

f k
m = 1− 1

π
arccos

em · (p j−µP)

‖em‖‖p j−µP‖
, k = {1,2,3} (1)

f k
m =

(
λ1λ2λ3×‖µP‖

V ×D

)2

,k = {4} (2)

where µP is the center of the point set, and ek is the eigen-
vector, where λ1, λ2, λ3 are the eigenvalues corresponding to
the eigenvectors e1, e2, e3, D is the maximum distance in the
scene and V is the volume of the voxel. These four features
have been normalized to the range [0, 1]. The geometry
histogram using these features is then defined as,

hb =
1

4M

M

∑
j=1

4

∑
k=1

I( f k
j ∈ bin(b)) (3)

where h is the b index of the histogram and I is the indicator
function. Using this point histogram we can calculate each
point’s similarity by χ2 distance function. Fig. 2 shows the
result of voxelization and elimination of points which do not
have a similar geometric distribution in the voxel.

B. Local range modeling with GP regression

Since each voxel has an arbitrary number of points
which have a similar geometric distribution, we apply GP
regression [17] to the local range model. GP is a powerful
and efficient nonparametric learning model. GP provides a
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Fig. 3. GP regression result in local range around 1.5m × 3m × 1.5m
size. (a) Raw image data (b) Raw range data (c) Interpolated 3D points by
local range modeling.

probabilistic estimate of a 3D depth map and incorporates
more precise predictions in the empty space between sparse
data points. Let x= {x1, ...xn} as input data and z= {z1, ...zn}
is target data in voxel k = {1, ..K}. In our case, input data x
is a specific location coordinates at y−z plane and target data
is a perpendicular distance from the y− z plane. The plane
coordinate system is obtained by KITTI sensor setup [18].
Then we can model the relationship between x and z using
the underlying function f (x) as a Gaussian noise model. It
is written as,

zi = f (xi)+N (0,σ2
k ) (4)

where f(x) is a GP with a mean and covariance function
written as f (x) ∼ GP(m(x),k(x,x′)) and σ2

k is Gaussian
variance representing the precision of the noise. Often un-
necessary, it is assumed that the mean of the GP is zero.
The covariance function k(x,x′) provides the corresponding
relationship between the given data. The most popular choice
is the squared exponential,

k(x,x′) = σ
2
1 exp

[
−(x− x′)2

2l2

]
+σ

2
2 δ (x,x′) (5)

where the first term in (5) is the original ’squared expo-
nential’ kernel and the second term is the Kronecker delta
function for assuming that observed data has noise with
Gaussian zero-mean. The parameter set θ = {l,σ1,σ2} are
the hyperparameters of the kernel. In order to use the GP

model, we need to calculate the covariance function among
all possible combinations of points. This is performed by
maximum marginal likelihood estimation and optimization.
By definition of the log marginal likelihood, it is given by
using the parameter set,

logp(z|x,θ) =−1
2

zTC−1z− 1
2

log|C|− n
2

log2π (6)

where C is the covariance matrix for all target output z.
To estimate the parameters we use a conjugate gradients
algorithm [17].

As with the GP model for regression, we have a joint dis-
tribution with z and estimated output z∗ which is represented
by, [

z
z∗

]
∼N

(
0,
[

C CT
∗

C∗ C∗∗

])
(7)

where C is a n by n covariance matrix which is fomulated as
C(i, j) = k(xi,x j)+σ2

k δi j, C∗ is a n by n∗ matrix of evaluated
at all pairs of training and new points x∗ and C∗∗ is a n∗ by
n∗ matrix. Then using these covariance matrices, we estimate
z∗ corresponding to the new point x∗ and the function of
estimation z∗ has mean and covariance functions given by,

m(z∗) = C∗C−1z (8)

cov(z∗) = C∗∗−C∗C−1CT
∗ (9)

Therfore our last equation for data z∗ is represented by

p(z∗|x∗) = N (m(z∗),cov(z∗)) (10)

From (7), (8) and (9) we can estimate empty space points
elevation with selected points in a voxel. Fig. 3 shows the
results local range modeling with GP regression. The results
of interpolated points are dense enough and maintains the
shape of its objects. In some case, it can be possible to
multiply an weighted function with N (m(z∗),cov(z∗) such
as variogram [19] but in this work we use a constant weight.

C. 3D Reconstruction with interpolated points and image

This section describes how to combine multi-sensor in-
formation from a single camera image and 3D interpolated
range data for reconstructing a 3D depth map. Although
we interpolate 3D points, there are still image pixels miss-
ing a corresponding 3D point. Thus we employ the MRF
method [5] to obtain a depth value for each pixel in the
image. This method enhances each depth value by applying
a smoothness term which is weighted according to image
intensity derivatives.

We suppose that discontinuities in target range value z′∗
and image intensity I tend to co-align. Let Ψ and Φ be
the depth measurement and depth smoothness potentials
respectively. Moreover, since we have two types depth value
one is observed and other one is interpolated, we modified
depth measurement function. The modified MRF formulation
is defined as,

p(z′∗|I,z,z∗) =
1
Z

exp(
1
2
(Ψ+Φ)) (11)
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(a) Ours

(b) MRF [5]

(c) JBU [10]

(d) ATGV [20]

Fig. 4. Qualitative visual comparison on one frame of KITTI dataset for the different methods. Each figure on the left shows a volumetric surface
reconstruction result in grayscale, and each figure on the right shows the surface reconstruction with the image data map on top.

Ψ = ∑
i∈L

kL(Ii− zi)
2 + ∑

i∈L∗

kL∗(Ii− z∗i)2 (12)

Φ = ∑
i

∑
j∈N(i)

wi j(Ii− I j)
2 (13)

where z is the observed depth value, z∗ is the interpolated
depth from the local range modeling, kL and kL∗ are the
constant weights for depth value accuracy. L and L∗ are a
set of indices, Z is a normalizer, and N(i) is the neighboring
set of the ith pixel. The weight wi j of the smoothness term
be defined as

wi j = exp(−cui j) (14)

ui j =‖ Ii− I j ‖2
2 (15)

where c is a constant weight of image intensity derivatives.
The target depth value z′∗ can be obtained by determining
the maximum a posteriori estimate of p(z′∗|I,z,z∗).

III. EXPERIMENTAL RESULTS

In this section, the experimental results are presented to
evaluate our approach quantitatively and qualitatively. The

results show a wide range real world depth map using our ap-
proach. Additionally we present computational performance
results that show our approach is running in real-time.

A. Dataset and Parameters

We tested our approach using publicly available KITTI
datasets [18] which are composed of color images and raw
3D point clouds for each frame from a moving platform
while driving around various outdoor scenes. From the
dataset, we use calibrated raw data for evaluation. The
images of the datasets are extracted from a forward-facing
camera (1392 × 512 pixels), and the raw 3D range data were
scanned from a Velodyne HDL-64E sensor (around 60 000
3D points for the forward scene).

A ground truth frame was given for the KITTI datasets
but it is sparse information in the scene described above,
thus we constructed a ground truth frame by accumulating
20 consecutive frames. We extracted 20 ground truth frames.

In our experiments, we generated long distance 3D depth
maps up to 100m. For voxelization, we set the voxel size
to 0.4m, a point histogram have 16 bins. We set the MRF
parameter kL and kL∗ to 1 and 0.8 respectively and other
comparison algorithm parameters follow on their papers.
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(a) Raw Data (b) Ours (c) MRF [5] (d) JBU [10] (e) ATGV [20]

Fig. 5. Qualitative visual comparison on local range. Each image shows that the reconstructed surface of local range objects such as car, wagon, and
bush. The result of a car reconstruction, only our approach maintain side shape of the car.

The system configuration for experiments is a 3.5GHz CPU
with 16GB RAM. We implemented our algorithm via Matlab
using its built-in standard linear solver.

B. Evaluations and Quantitative Comparisons

To evaluate the performance of our proposed approach, we
compared our algorithm against state of the art approaches:
Joint Bilateral Upsampling (JBU) [10], Anisotropic Total
Generalized Variation (ATGV) [20], and the original MRF
model [5]. The JBU uses the joint bilateral filter which is an
edge-preserving and noise-reducing smoothing filter. When
JBU up-samples a low resolution depth map, it should be
initially rescaled to the high resolution image size by using
a common interpolation method (e.g., nearest or bilinear). In
this experiment, we linearly interpolated empty depth pixels
and used the joint bilateral filter. For the depth up-sampling,
the ATGV solves a global energy optimization problem
using Total Generalized Variation (TGV) regularization. We
obtained the results by using the ATGV software provided
by the author. The MRF is the same as our algorithm when
the interpolated depth value weight kL∗ = 0.

TABLE I
QUANTITATIVE COMPARISON ON KITTI DATASET

Algorithms 16 Layers 32 Layers 64 Layers Avg.Time [s]

JBU 3.39 2.79 2.44 23.11
(±0.31) (±0.44) (±0.28)

ATGV 4.24 3.16 2.47 342.37
(±0.53) (±0.35) (±0.32)

MRF 3.04 2.65 2.38 1.66
(±0.59) (±0.37) (±0.28)

Ours 2.87 2.45 2.29 1.92
(±0.53) (±0.31) (±0.31)

The numerical results for this experiment in terms of the
root mean squared error (RMSE) and computation time are

shown in Table. 1. Each result is the average of processing
20 scenes with different range data density. The results show
that our algorithm provides better performance than the other
algorithms. In particular, RMSE of our algorithm is lower
than any other previous research. Compare to original MRF
method, the RMSE indicates that local range modeling with
the GP regression task can improve the performance of MRF
by spending a little additional computation time. In our
experiments, we implement our algorithm via Matlab. Since
Matlab is a script language, we believe that implementation
in compiled language such as C++ for real-world application
can be performed in near real-time.

To determine the robustness of the proposed method, we
performed it using much sparse range data which remove
some layer data from 64 layers. Following the Table. 1, the
RMSE in 21 layers and 32 layers also is lower than any other
method.

Since range points of the datasets are very sparse, for
reasonable depth map results, we had to set the iteration pa-
rameter of ATGV to least 2000. Though ATGV shows good
performance, it is not suitable for real-time applications.

C. Qualitative Visual Comparisons

Fig. 4 and Fig. 5 shows a visual comparison for the
different methods. In Fig. 4, each image on the left shows
a volumetric surface reconstruction which was generated
from a depth map. As can be seen in these figures, the
results of MRF and our approach have smoother surfaces
and cleaner edges than the other algorithms. They also show
good reconstruction results in the upper image region where
every pixel does not contain range information. ATGV has a
relatively rough surface and many protrusive errors. On the
other hand, JBU reconstructed very flat and unsophisticated
surfaces.

Each image on the right is a color version of the left image,
and were rotated to look like a real world 3D scene. In the

633



upper region of Fig. 4(c) and Fig. 4(d), the reconstruction
results of JBU and ATGV are very distorted and inaccurate
because their method is unable to estimate depth value if
its neighbor depth value does not exists. Though the result
of MRF seems to be similar to our approach, the result of
reconstruction of the two objects in red and green boxes are
different. The top and side of reconstructed objects in Fig.
4(c) are crushed since point clouds in that region are very
sparse. However, our approach completely reconstructed that
region. The results clearly indicate that our approach can
obtain a good result even in regions of sparse range data.

Since the dataset is from urban environments, it includes
cars and small bushes. The results of car and small bushes
reconstruction is in Fig. 5. The reconstructed local range
objects from our approach are less than ideal, but still
maintains its surface and captures the characteristic of objects
such as flat and scatter.

IV. CONCLUSIONS
We have presented a 3D reconstruction approach using

sparse range data and a single image. Our method effectively
selects 3D points corresponding to an object and eliminates
non-similar points in a voxel using a point histogram feature.
Then, using local range modeling with GP regression, we
interpolate 3D points which are accurate compared to ground
truth and maintain an object’s shape. Local range modeling
does not require off-line training and provides incorporation
of range data with uncertainty. Moreover, 3D reconstruction
based on MRF show that our results are superior compared
to previous work in terms of both RMSE and running-time.

Through the study of 3D reconstruction we hope that
our proposed method could be more improved. Since we
interpolated 3D points in a fixed voxel region, sometime
surfaces are overlapped and it causes edge distortion. We are
interested in handling this problem. Moreover, LiDAR inten-
sity information [21] could help the reconstruction of non-
rigid objects such as bushes, tree canopies etc. In the future
work we would like to reconstruct more complex outdoor
environments that include foliage, bushes and vegetation.
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