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Abstract. Objective This review paper provides a comprehensive overview of ear-

EEG technology, which involves recording electroencephalogram (EEG) signals from

electrodes placed in or around the ear, and its applications in the field of neural

engineering.

Approach We conducted a thorough literature search using multiple databases to

identify relevant studies related to ear-EEG technology and its various applications.

We selected 123 publications and synthesized the information to highlight the main

findings and trends in this field.

Main Results Our review highlights the potential of ear-EEG technology as the

future of wearable EEG technology. We discuss the advantages and limitations of

ear-EEG compared to traditional scalp-based EEG and methods to overcome those

limitations. Through our review, we found that ear-EEG is a promising method

that produces comparable results to conventional scalp-based methods. We review

the development of ear-EEG sensing devices, including the design, types of sensors,

and materials. We also review the current state of research on ear-EEG in different

application areas such as brain-computer interfaces, and clinical monitoring.

Significance This review paper is the first to focus solely on reviewing ear-EEG

research articles. As such, it serves as a valuable resource for researchers, clinicians,

and engineers working in the field of neural engineering. Our review sheds light on the

exciting future prospects of ear-EEG, and its potential to advance neural engineering

research and become the future of wearable EEG technology.

Keywords: ear-EEG, in-ear EEG, around-ear EEG, brain-computer interface, wearable

system
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The Future of Wearable EEG: A Review of Ear-EEG Technology and its Applications2

1. Introduction

Electroencephalography (EEG) is a widely used, non-invasive method for measuring and

recording the electrical activity of the brain. Traditional EEG involves the placement

of electrodes on the scalp, which are secured in place using a combination of electrolyte

gel and a tight-fitting elastic cap to ensure proper contact between the electrodes

and the skin [1]. While this approach provides high-quality EEG signals, it may

not be suitable for long-term monitoring or use outside of a laboratory or hospital

setting. To overcome this challenge, researchers have proposed various approaches. For

instance, one approach involves the utilization of different electrode types, such as dry

electrodes, which do not require electrolyte gels. Another approach involves redesigning

the EEG system to enhance wearability and accessibility, making it suitable for a broader

range of applications, especially for long-term monitoring in daily-life usage [2]. These

modifications aim to make EEG portable and wearable, allowing for greater flexibility

and convenience in its use.

Ear-EEG is a novel EEG acquisition technique that aims to improve the practicality

of EEG measurement. This technique involves the placement of electrodes in or around

the ear to capture EEG signals [3], [4]. The use of ears as recording sites offers several

advantages over traditional scalp-based EEG. Firstly, the absence of hair in these areas

facilitates improved skin-to-electrode contact, resulting in enhanced signal quality and

increased user comfort. Secondly, the discreet placement of the electrodes around the ear

makes them less noticeable to others, which can help alleviate the social awkwardness

that is often associated with conventional EEG systems. Additionally, the ears can serve

as an anchoring point for the device to attach to the user’s body and are also easily

reachable by the user’s hands. This provides an added advantage for ease of wearability

and self-management. It also opens up the possibility for touch-based interactions with

the device. This increased practicality and comfort make ear-EEG a promising tool

for long-term monitoring and for use in daily-life applications. A significant drawback

of ear-EEG in comparison to the conventional scalp-based method lies in its limited

coverage area. Studies such as [5] and [6] have demonstrated that ear-EEG primarily

captures neural signals originating from the temporal lobe. Consequently, this limitation

may lead to a reduced range of detectable EEG signals or lower signal quality compared

to the more comprehensive coverage provided by scalp-based EEG. The primary focus

of early ear-EEG research was to assess the range of EEG signals that could be detected

using this technique and its potential applications, as well as to compare its performance

with conventional EEG methods.

Ear-EEG technology can be differentiated into two categories based on its electrode

placement and device design: in-ear EEG[3] and around-ear EEG [4]. In-ear EEG

involves electrodes positioned inside the ear canal or on the ear, while around-ear EEG,

also known as the ”behind-ear” method, places electrodes around the ear area, usually

beneath the hairline. Both methods have their own advantages and trade-offs. While

in-ear EEG offers greater discretion, with the sensing device hidden inside the ear, it
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The Future of Wearable EEG: A Review of Ear-EEG Technology and its Applications3

may also block external sound depending on the device design. On the other hand,

around-ear EEG may be less discreet than in-ear EEG, but it covers a wider area,

making it more practical for detecting a broader range of brain signals. Studies have

demonstrated that ear-EEG can detect meaningful neural activity and has a multitude

of applications, including but not limited to monitoring mental state and neurological

conditions, and brain-computer interfaces (BCI). It is important to emphasize that in

an ear-EEG system, all electrode placements, including reference and ground, should

remain within the ear region. However, this review also covers some wearable EEG

systems that incorporate electrodes placed in areas such as the scalp or forehead, in

addition to those on the ear region. For the sake of simplicity, we will refer to these

systems as hybrid EEG systems throughout the remainder of this review. While a

comprehensive discussion of hybrid EEG systems falls beyond the scope of this review,

they will be briefly discussed alongside certain ear-EEG systems with similar device

designs (refer to Section 3). This approach aims to help readers understand that

wearable EEG devices can extend their recording sites beyond a specific area. We

believe this inclusion will contribute to advancing the field of wearable EEG systems.

Previous research reviews have explored the topic of ear-EEG. Ne et al. conducted

a review of 92 articles focusing on the acquisition of bio-signals using in-ear sensing

devices, with only 48 studies specifically involving EEG [7]. Roddiger et al. reviewed 271

publications relating to ear-worn sensing devices and their applications in physiological

monitoring, movement and activity tracking, interaction, and authentication. However,

this review still only covered 54 articles on ear-EEG [8]. Our work, on the other hand,

specifically focuses on both in-ear and around-ear ear-EEG technology, highlighting its

exceptional wearability and potential for real-life applications compared to traditional

EEG acquisition methods. Our contribution provides a comprehensive understanding

of the history and current state of the art in ear-EEG technology and its potential as

the future of wearable brain monitoring systems.

We conducted a thorough literature review of 123 research articles to enhance our

understanding of ear-EEG and examine its efficacy as an EEG acquisition method and

its potential applications. The primary focus of our literature review was to answer

three main research questions:

1) What are the crucial factors influencing the development and setup of ear-EEG

systems, and how do these choices impact the range of applications, strengths, and

limitations of ear-EEG technology?

2) What are the diverse applications and potential uses of ear-EEG as an EEG

acquisition method, and how does it contribute to various fields?

3) What are the limitations and drawbacks associated with the ear-EEG method,

and what potential strategies or approaches can be employed to address and mitigate

these challenges?

This paper is organized into three main sections, each addressing one of the above

key questions. The first section covers EEG sensing methods, including the device

design (e.g., shape and material), sensors used (e.g., electrode types and placement),
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The Future of Wearable EEG: A Review of Ear-EEG Technology and its Applications4

and signal processing modules (e.g., the EEG amplifier and necessary electronic parts).

Many of the studies we reviewed used manual electrode placement on the ear area

and traditional stationary EEG sensing devices, and conducted experiments only in

a laboratory setting to validate ear-EEG performance. However, many studies also

propose innovative and functional wearable ear-EEG systems for both in-ear and around-

ear approaches. In the second section of our review, we delve into the capabilities of

ear-EEG methods. We explore the undertaken research, assessing the range of EEG

signals attainable through ear-EEG, and evaluating the performance of the ear-EEG

method within various experimental setups for diverse applications. In the final section,

we discuss the challenges associated with EEG acquisition using ear-EEG methods,

mainly the limited coverage area by the ear-EEG sensing device. We examine signal

processing techniques aimed at enhancing the EEG signal’s SNR and machine learning

methods to improve ear-EEG performance, enabling it to match the performance of

conventional scalp-based EEG methods.
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Figure 1: Skin coverage comparison of different EEG types: scalp EEG (grey), around-

ear EEG (orange), and in-ear EEG (blue). Detailed depiction of in-ear structure

highlighting common in-ear electrode placement sites: ear canal (pink) and concha

(green).

2. Review methodology

This review aims to provide a comprehensive overview of ear-EEG technology, including

the current state-of-the-art devices and methods used for acquiring ear-EEG, the

different techniques used for processing and analyzing ear-EEG signals, and the

diverse range of applications in which ear-EEG has been examined. We conducted

a comprehensive search of electronic databases, including Google Scholar, IEEE Xplore,

and PubMed, using a combination of the following keywords as our search terms:
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The Future of Wearable EEG: A Review of Ear-EEG Technology and its Applications5

”ear-EEG”, ”in-ear EEG”, ”around-ear EEG”, ”behind-the-ear EEG”, and ”ear-based

EEG”. Additional studies were identified through manual searches of reference lists

from relevant articles that met our inclusion criteria.

In this review, we included studies that used ear-EEG technology to record brain

activity in humans in the ear area. It is important to mention the variability in

nomenclature pertaining to the different types of ear-EEG. For instance, some literature

employs the terms ”in-ear EEG” and ”in-the-ear EEG” interchangeably, while others

utilize terms like ”around-ear EEG,” ”around-the-ear EEG,” ”behind-ear EEG,” and

”behind-the-ear EEG” interchangeably as well. To ensure clarity, this review article

uniformly adopts the term ”in-ear EEG” to denote EEG acquired from internal ear

structures, encompassing the ear canal and concha. Similarly, the term ”around-ear

EEG” is employed to refer to EEG acquired from the circular perimeter encompassing

the ears. Figure 1 illustrates the skin areas covered by each type of EEG examined

in this review article, including scalp EEG (grey), around-ear EEG (orange), and in-

ear EEG (blue). The figure also depicts the in-ear structure, with the ear canal and

concha highlighted as the common sites for in-ear EEG recording. While ear-EEG

technologies are typically designed for wearable purposes, we also considered studies

that recorded EEG signals around the ear area using conventional, stationary EEG

acquisition setups. Studies that used ear-worn devices to acquire other biological signals

such as electrooculogram (EOG), electromyogram (EMG), electrocardiogram (ECG),

and photoplethysmography (PPG) were excluded unless the device also recorded EEG

signals in addition to one of the other mentioned signals. We extracted relevant data

from each included study, including the study design, sample size, ear-EEG device used,

electrode placement, data processing and analysis methods, and its applications.

A total of 123 relevant articles were identified in our comprehensive search for

research on ear-EEG technology. Figure 2 displays the number of ear-EEG articles

published each year, from 2011 to March 2023 (the time of writing this review

article). Despite a steady increase in the number of studies conducted each year, the

overall amount of research on ear-EEG is still relatively small, which could limit the

generalizability of our findings. Moreover, the majority of the studies we reviewed had

small sample sizes, which could impact the reliability and validity of the results. ear-

EEG technology is still in its early stages, and the range of its applications is not yet

fully understood. While this review article summarizes the development history of ear-

EEG technology and highlights its potential as the future of wearable EEG technology,

further research is necessary to evaluate its potential in real-world settings fully.

3. Development of Ear-EEG Sensing Methods

In this section, we trace the development of ear-EEG sensing devices and examine the

latest advancements in design. For each study, we examine the sensor components,

including the material and type of electrodes, as well as the placement and number of

electrodes. We evaluate the design of the device in terms of practicality and appearance
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The Future of Wearable EEG: A Review of Ear-EEG Technology and its Applications6

Figure 2: The number of publications relevant to ear-EEG over time from 2011 to 2023

(*March).

and assess its wearability and potential for real-world use. Some studies present a

comprehensive system, comprising sensors, a battery, and a printed circuit board (PCB)

for signal processing, computing, and data transmission. After reviewing 123 research

articles, it was found that 79 of them utilized in-ear EEG acquisition techniques, while 47

of them utilized around-ear EEG acquisition techniques. Three of the articles utilized

both in-ear and around-ear EEG methods. Eleven of the around-ear EEG research

studies did not employ any wearable sensors specifically designed for around-ear EEG

acquisition. Instead, they either manually attached the electrodes to the ear area or

obtained EEG data from conventional scalp-EEG caps with channels positioned nearest

to the ears. Figure 3 presents a schematic map that provides an overview of the ear-

EEG articles, classified according to the design of the ear-EEG sensing device. The

figure includes the number of articles (N) in each category. However, it should be noted

that the size of each box is not proportional to the number of articles.

3.1. In-ear methods

The concept of recording EEG from within the ear was first introduced by Looney and

their team in 2011 before the term ”ear-EEG” had even been published. The first in-

ear EEG sensing device, referred to as the ”in-the-ear” (ITE) recording platform, was

created by embedding three AgCl electrodes on a custom-made earpiece manufactured
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The Future of Wearable EEG: A Review of Ear-EEG Technology and its Applications7

Figure 3: Overview map of the reviewed articles on ear-EEG, categorized according to

the design of the ear-EEG sensing device. *Hybrid EEG systems containing electrodes

beyond the ear area

in the same process as a hearing-aid device [9], [10]. In these initial works, the ITE

electrodes were used as an extension of the conventional EEG setup, with the recorded

EEG being referenced and grounded at the ear-lobe and chin, respectively. Following

the successful confirmation of alpha activity in EEG recordings obtained from ITE

electrodes, with correlations and coherence shown to be excellent when compared to

on-scalp electrodes, the researchers continued to improve their ear-EEG sensing device.

They added an additional electrode to each side of the earpiece, making the system truly

an in-the-ear measurement setup with all electrodes, including reference and ground

electrodes, situated within the ear [3], [11]. For each in-ear EEG sensing earpiece, the

reference electrode was positioned on the inferior side of the ear canal, and the ground

electrode was placed at the top of the concha. This fully integrated in-ear sensing

device was successfully evaluated for its ability to record various types of EEG signals

commonly used in BCI technology. This has led to increased interest in ear-EEG from

the EEG and BCI research community ever since.

3.1.1. In-ear EEG sensing device design

Personalized earpiece

Following the original ear-EEG research, the majority of in-ear EEG devices were de-

signed as electrodes embedded in personalized earpieces [12]–[22], with only minor ad-
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The Future of Wearable EEG: A Review of Ear-EEG Technology and its Applications8

justments from the original works such as changing the material for the earpieces and

electrodes[23]–[26] or making the electrodes an active type[27]. The process of creat-

ing these personalized earpieces involved taking a wax impression of the individual’s

ear, 3D scanning the impressed ear shape, creating a CAD model of the earpiece, and

using additive manufacturing technology. To simplify the earpiece fabrication process,

some researchers eliminated the 3D modeling step and instead used moldable materials

that were personalized to the research subject’s ear shape as the base for their in-ear

EEG sensing device. They also changed the electrode material to make it easier to

fabricate and more suitable for alternative earpiece materials. For example, in [28] and

[29], moldable plastic beads (InstaMorph) were chosen as the material for making the

personalized earpieces.

Generic earpiece

Although the personalized earpiece design approach offered a perfect fit for each individ-

ual’s ear shape and resulted in high-quality EEG signals, the device fabrication process

was expensive, complicated, and time-consuming. To address this issue, researchers

began developing in-ear EEG device designs that were generic and could accommo-

date the biological structure of any ear shape. In 2013, the team that pioneered in-ear

EEG technology presented one of the first generic designs of an in-ear EEG device [30].

Their design featured a conical-shaped earplug made of biocompatible silicone rubber.

In recent years, some innovative and effective designs for generic in-ear EEG sensing

devices have been proposed[31]–[34]. For instance, Kaveh et al. [32] used a 3D scan

of the in-ear structure to create a unique, generic design that can fit all users. Their

earpieces feature four outward cantilevers, each of which acts as an individual electrode

and applies pressure to the ear canal, along with two larger electrodes positioned on the

concha for reference and ground. For their final design [33], the earpiece body was 3D

printed with flexible resin for greater comfort. In 2022, Paul et al. [34] introduced the

weDAQ system, a complete wireless electrophysiology data acquisition system that can

simultaneously acquire multiple biological data streams, including in-ear EEG. Their

weDAQ system features a unique generic design for in-ear EEG sensing, composed of

two planar ”crocodile” PCBs that fit together and form a 3D in-ear apparatus with

multiple electrodes on its surface.

Viscoelastic earpiece

A large number of studies use commercially available memory foam or other viscoelas-

tic materials as the base for their in-ear EEG device designs. Like the generic silicone

earplug presented in [30], these designs are often conical in shape, resembling an earplug,

with or without a hole in the middle for the auditory pathway. Viscoelastic materials

such as memory foam are often used as a substitute for silicone or plastic because the

earpieces made from these materials can still have some of the drawbacks of hard mate-
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The Future of Wearable EEG: A Review of Ear-EEG Technology and its Applications9

rials, which do not guarantee a perfect fit to the shape of the ear canal. This imperfect

fit can lead to motion artifacts and may require an electrically conductive gel to over-

come the issue. Additionally, it has been reported that conductive silicone may not be

a suitable material for long-term use in EEG electrodes due to its degradation over sev-

eral months, which can significantly increase the impedance level [35]. The idea of using

viscoelastic material for in-ear EEG earpieces was first proposed by Goverdovsky et al.

in 2015 [35]. The first viscoelastic in-ear EEG earpiece consisted of a memory foam

base material with electrodes attached to its surface. The viscoelasticity of the material

allowed the earpiece to be easily and comfortably worn and perfectly fit into the user’s

ear canal. This property also ensured that energy from abrupt motion was absorbed,

leading to lower motion artifacts. The viscoelastic approach to in-ear EEG has been

utilized in numerous studies, demonstrating its capabilities in acquiring in-ear EEG for

various applications, however, the device design has undergone only minor adjustments

since its origination [36]–[46]. Some studies directly use commercially available flexi-

ble electrode as in-ear EEG sensing device. For example, Ahn et al. [47] used a Gold

Tip Trode electrode (8500370, Sanibel Supply) for their in-ear EEG sensing apparatus.

This disposable electrode is made of foam wrapped in gold foil and is typically used for

recording electrocochleography. Likewise, Guermandi et al. [48] presented an in-ear-

EEG system that uses a conductive elastomer spike electrode covered with Ag/AgCl

paint as an in-ear electrode.

While viscoelastic material is a great option for the base of the in-ear EEG elec-

trode, providing comfort and a perfect fit to the ear canal, simply designing the whole

earpiece in an earplug shape presents some drawbacks when compared to other designs,

such as personalized earpieces or generic earphones. Firstly, the viscoelastic earplug

lacks an exterior hanger to fixate the earpiece to the concha, which can cause it to

easily slip out of the user’s ears, especially when the earplug electrodes are wired to

the external processing module. Secondly, viscoelastic earplugs completely occlude the

ear canal, blocking sound transmission, which could potentially disrupt the user’s daily

activities. Additionally, the small covering area of the earplug limits the number of

electrodes that can be included, particularly when the reference and ground channels

are necessary to create a truly in-the-ear measurement setup.

Earpieces in the shape of earphones or earbuds

An alternative strategy for creating generic in-ear EEG sensing devices involves tak-

ing inspiration from conventional in-ear earphones or earbuds. Among the reviewed

articles, two distinct approaches emerged. The first approach involves directly affixing

conductive materials and wiring to the earbud tips, utilizing them as electrodes [49]–

[52]. The second approach revolves around creating the earbud tips themselves from a

flexible conductive material, utilizing the entire earbud tip as an electrode. [53], [54].

In-ear EEG sensing devices designed as earphones or earbuds offer a versatile and stylish

EEG system suitable for long-term use in daily life. By incorporating flexible or vis-
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The Future of Wearable EEG: A Review of Ear-EEG Technology and its Applications10

coelastic materials at the tip of the device, it can be easily fitted into the ear canal,

providing a comfortable and secure fit. Unlike the viscoelastic earplug design discussed

earlier, the earphone design includes an exterior structure that can fixate the earpiece,

thus overcoming the challenges associated with the earplug design. Moreover, the ear-

phone design provides a broader coverage of the ear, enabling the positioning of the

reference and ground electrodes at the concha area, thereby creating a comprehensive

in-ear measurement setup.

3.1.2. In-ear EEG electrodes

Electrode types

As evident from the reviewed articles, dry passive electrodes are the prevailing choice for

making in-ear EEG sensing devices. This preference can be attributed to the challenges

associated with applying conductive gel or paste within the confines of the narrow ear

canal. Ensuring precise application of the conductive paste solely onto the intended

electrode, while preventing inadvertent bridging between electrodes, appears to be a

formidable task. Moreover, this application process might be uncomfortable for users,

as the ear canal poses difficulties for cleaning residual conductive substances after using

the in-ear EEG device. Nonetheless, it’s crucial to acknowledge that certain studies do

incorporate a small amount of saline solution or conductive gel to ensure optimal contact

between the skin and the electrode and maintain a low impedance level. However, it’s

important to note that as of now, no subject survey or reported feedback has addressed

the comfort levels associated with the wet in-ear electrode approach in any study.

In personalized earpieces, pure silver or Ag/AgCl is commonly favored material

for making electrodes, while studies like [33] have investigated electrodes created via

electroless plating using metals like palladium, copper, and gold. In studies employing

simplified fabrication methods, like those by [28] and [29], electrodes were created by

manually applying conductive silver paste (ELCOAT, CANS) directly onto the surface

of the molded earpieces.

Conductive fabric is a practical material choice for in-ear EEG electrodes,

particularly in viscoelastic earpieces [35], [51], [52]. Its remarkable flexibility and ability

to adapt to the earpiece’s shape, even as the earpiece compresses during insertion into

the ear canal, make it a suitable option.

As outlined in the preceding section, certain studies have crafted electrodes

utilizing conductive flexible polymers as their material of choice. For example, Lee et

al. [53] fabricated earbud-shaped electrodes using a composite of carbon nanotubes

and polydimethylsiloxane (CNT/PDMS). The CNT material provided outstanding

electrical, mechanical, and thermal properties, while the biocompatible PDMS allowed

for high gas and water permeability and adaptability to various fabrication methods.

Similarly, Dong et al. [54] utilized a conductive rubber material called silvered glass

silicone (SGS), which consists of silver, glass silver, and silver conductive grains mixed

Page 10 of 45AUTHOR SUBMITTED MANUSCRIPT - JNE-106462.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



The Future of Wearable EEG: A Review of Ear-EEG Technology and its Applications11

with silicone rubber, for their earbud-shaped electrodes. This electrode type offers

elevated comfort due to its softness and flexibility, and boasts remarkable versatility

as it can be molded into diverse shapes and designs. Nonetheless, its manufacturing

process is intricate, demanding specialized tools and expertise. Moreover, certain

commercially available options may be pre-configured into shapes that may not align

with a researcher’s or developer’s intended design, as seen with the conductive elastomer

spike electrode utilized in [48].

Furthermore, within the scope of the reviewed in-ear EEG studies, merely two in-

vestigations introduce in-ear EEG devices featuring active electrodes [27], [47]. This

could be attributed to the inherent challenge posed by the compact size of in-ear EEG

devices when compared to other EEG sensing methods. The smaller form factor com-

plicates the inclusion of electronic circuits required to render the electrodes active.

Electrode number and location

In addition to the design and material of the device, the number of EEG channels

is an important factor to consider when designing a wearable EEG acquisition system.

While a small number of EEG channels can reduce the cost and time required for fabri-

cating the sensing device, as well as potentially lowering the computational cost during

signal processing and analysis, a high number of EEG channels provides a better spatial

resolution of the EEG and can possibly yield better results.

The majority of in-ear EEG studies examined in this review employ a limited

number of channels, often comprising fewer than eight within each earpiece. This

tendency might arise from the compact dimensions of the in-ear structure. Consequently,

the electrodes must also be small to fit snugly within the ear, thereby rendering the

fabrication process more intricate. The complexity of this situation becomes particularly

noticeable when dealing with handcrafted electrodes.

Some studies have designed in-ear EEG sensing devices with a high number of in-

ear-EEG channels. The first high-density ear-EEG device was presented by Kappel et

al. in 2017 [55]. Each personalized earpiece had 15 uniformly embedded electrodes on

each side, made from circular titanium pins coated with IrO2. The high-density ear-

EEG recording enables researchers to compare neural activity with scalp-based EEG

methods, which helps to investigate how different cortical sources are mapped to the

ear. Additionally, this method provides a way to identify optimal electrode placements

for the target application. Another variation of a high-density in-ear EEG device was

presented in the works of A Paul et al. in 2019 [56], [57]. This device featured 17 small

Ag/AgCl electrodes fitted into each personalized earpiece, instead of the IrO2 electrodes

used in earlier works.

While there isn’t a universally accepted international standard for the nomenclature

and arrangement of in-ear EEG electrodes, the methodology proposed by the original

in-ear EEG research group [3] stands out for its ingenuity and meticulous electrode

positioning. This particular approach designates each electrode as EXY, wherein X
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The Future of Wearable EEG: A Review of Ear-EEG Technology and its Applications12

signifies either L or R, denoting the left or right side of the ear respectively, and Y

indicates the electrode’s position from the letters A to L (e.g., ERA, ERB, . . . ERL).

Among these designations, A, B, and C correspond to the upper, middle, and lower

regions of the concha, while D represents the earlobe. The remaining eight electrodes

are positioned within the ear canal, evenly spaced at distinct angles. Starting with E at

the posterior point of the ear canal, the order proceeds clockwise toward the posterior

direction. We strongly advocate for the adoption of this methodology in future in-ear

EEG studies, as it promotes consistency and coherence within the research field.

Reference and ground electrodes are typically placed at the concha (EXA, EXB,

EXC), a location comparatively more distant from the brain than the ear canal.

Nonetheless, in numerous studies, additional electrodes are employed with separate

cables attached to the earlobe, around-ear area, or mastoid, functioning as reference

and ground points. This practice results in their system not aligning with a true in-ear

EEG setup. In the pursuit of optimal wearability, we advocate for the development

of a truly in-ear measurement device with integrated reference and ground electrodes,

devoid of externally visible electrodes, thus maximizing discreetness. We recommend

that future developers of in-ear EEG systems take this into account during equipment

design or devise innovative solutions to maintain both discretion and wearability, even

if external out-of-ear electrodes are integrated.

3.2. Around-ear methods

In 2012, Wang et al. [58] investigated the feasibility of measuring steady-state

visual evoked potentials (SSVEPs) from non-scalp regions, including the forehead/face,

behind-the-ear, and neck areas, introducing the novel concept of measuring and utilizing

EEG from non-scalp regions, specifically the area around the ear. This concept has

important implications for the development of new EEG-based technologies that could

lead to more accessible and wearable EEG measurements. In 2015, the advent of around-

ear EEG technology gained significant recognition within the research community,

primarily due to the introduction of cEEGrid [4]. This innovative device marked a

turning point in around-ear EEG research, prompting numerous studies exploring its

efficiency, applications [59], and inspiring the development of other around-ear EEG

sensing devices. In contrast to the extensive development of in-ear EEG sensing devices,

the progress in around-ear EEG sensing technology, however, has been limited. The

majority of research in this area has relied on either cEEGrids or alternatively, manually

attached conventional EEG electrodes to the around-ear area. This section explores the

sensor and hardware design presented in the around-ear EEG studies.

3.2.1. Around-ear EEG sensor design

Adhesive c-shaped electrode array
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The most widely used around-ear EEG sensor in research is cEEGrid [4]. The cEE-

Grid is a flexible printed c-shaped electrode array specifically designed to be placed

around the user’s ears. Its flexprint material consists of several layers of biocompatible

polyamide, where the electrodes are laid on the upmost surface. This type of around-

ear EEG sensor cannot be attached to the user’s skin directly and requires the use of

double-sided adhesive tape or other adhesive material to attach them to the skin around

the user’s ears.

Although the signal processing hardware has to be considered to judge the

wearability of the whole system, this type of around-ear EEG sensor is very comfortable

to the users, and its adhesive property to the user’s skin also ensures the fixation in

electrode placements even in the long-term use. Its drawbacks are that the adhesive

parts of the sensor have to be replaced regularly, and the user’s skin has to be

cleaned and prepared every time before use to ensure the attachment between the

sensors and skin. From the researcher and developer’s point of view, the process of

fabricating the electrode array is complicated and cannot be easily self-made without

the specific tools and experts, but the cEEGrids are commercially available (e.g.,

https://exgtools.expeeeriments.io/).

Some studies have utilized designs similar to cEEGrids for fabricating around-ear

EEG sensors. For instance, Guermandi et al. [60] created an around-ear EEG system

that incorporates their own C-shaped electrode arrays made from flexible polyimide

PCB resembling cEEGrids but their reference and ground electrodes are in a rectangle

shape and located parallel to each other. Souto et al. [61] made direct modifications to

the cEEGrid array. Based on their work conducting a sleep analysis using ear-EEG ac-

quired from the cEEGrid [62], they developed a novel electrode array called trEEGrid,

which is specifically designed for sleep analysis. This new sensor array is similar to

cEEGrid, with the main difference being its expanded coverage area. It not only covers

the around-ear area but also includes the regions around the eyes and chin to facilitate

EOG and EMG measurements which are crucial for comprehensive sleep analysis.

Around-ear earpiece

In both [63] and [64], designs for around-ear EEG sensors were presented in the form

of earpieces. Although they use different materials for their earpieces and electrodes,

both designs feature a V-shaped folded structure with a hook that supports the device

against the back of the pinna. Unlike the first type of around-ear sensor that uses ad-

hesive tape to attach the sensor to the around-ear skin area, the electrodes are pressed

against the skin using the spring effect created by the earpiece’s design. Additionally,

the electrically conductive paste can be applied to ensure skin-to-electrode contact. The

device is then connected to a processing module using wires.

Headphone
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In addition to C-shaped electrode arrays and earpieces, previous research has intro-

duced several intriguing wearable EEG systems. Among these designs are headphones

that utilize embedded electrodes within the ear cushions to record around-ear EEG sig-

nals. While headphone-based EEG systems may be less discreet and bulkier compared

to other designs, they offer the advantage of using the headband as an additional elec-

trode site in conjunction with the around-ear area, enabling a hybrid EEG approach.

Moreover, the headphone cups can serve as hosts for processing modules, rendering them

complete wearable around-ear EEG systems in their own right. For instance, Kaongoen

et al. [65] presented an affordable custom-made around-ear EEG headphone produced

using 3D printing technology. In this design, all electrodes are integrated into the ear

cushions, while the processing module and battery are situated within the headphone

cups. In addition, Smartfones (mBrainTrain, https://mbraintrain.com/smartfones) rep-

resents an integrated hybrid EEG system capable of recording both scalp-EEG and

around-ear EEG signals. This system features electrodes located on its headband and

ear cushion, respectively. Notably, it also facilitates simultaneous auditory input and

EEG recording, expanding its range of potential applications [66].

Glasses

Glasses represent another wearable design option for an around-ear EEG device. By

utilizing the contact points on the skin around the user’s ears, the temples of the glasses

can serve as the location for around-ear EEG sensing electrodes. Similar to the design

of headphones, the coverage area of glasses extends to the user’s eyes and nose, enabling

the creation of a hybrid EEG system that incorporates around-ear EEG functionality.

In 2018, Sopic et al. [67] introduced the e-Glass, a wearable EEG system in the form

of glasses. While e-Glass’s electrodes are placed on F7, F8, T3, and T4 based on the

10-20 international system which are not exactly the around-ear area, they are in close

proximity to the around-ear EEG positions and therefore are relevant to this review

article. In 2019, Kosmyna et al. introduced another glasses-shaped wearable EEG de-

vice called AttentivU [68]. AttentivU is a hybrid EEG system that integrates EEG and

EOG sensing through electrode placements extending beyond the ear area. The EEG

electrodes are positioned at the temples of the glasses around the ears, while the EOG

electrodes are placed at the nose pads. Ground and reference electrodes are situated at

the nose bridge. To provide auditory and vibrotactile feedback, piezoelectric elements

were integrated into the tips of the glasses temples. Both the frames of e-Glass and

AttentivU are constructed from nylon plastic, which encloses the processing modules

and battery.

Headband

Some around-ear EEG sensing devices feature a headband design, with the rear sec-
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tions forming a c-shaped structure encircling the ears. For instance, Kaongoen et al.

[69] introduced a headband-based around-ear EEG device design in which the c-shaped

sections around the ears are connected by a headband that wraps around the back of the

user’s head. Similar to headphones and eyeglasses, the headband design also presents

opportunities to expand electrode placement beyond the around-ear area. For instance,

Ahn et al. [70] proposed a headband-shaped hybrid EEG system that incorporates

an electrode in the middle part of the headband, positioned on the user’s forehead, in

addition to electrodes located behind the ear area.

3.2.2. Around-ear EEG electrode

Electrode types

The majority of reviewed around-ear EEG studies in this article have employed passive

wet electrodes for measuring around-ear EEG signals. The prevailing choice of sensing

device in around-ear EEG research, such as cEEGrid, constructs its electrodes using

circular gold-plated tips, pure copper traces, and a conductive Ag/AgCl-based poly-

mer thick film ink. Electrolyte gel is applied to acquire around-ear EEG signals. The

earpiece introduced in the work by Pham et al. [64] also utilizes gold-based electrodes

with conductive paste. The earpiece in Valentin et al.’s study [63] employs conductive

silicone along with conductive paste to leverage its flexible characteristics. Smartfones,

on the other hand, uses saline-soaked sponge electrodes for data acquisition. This choice

might be attributed to the electrodes’ coverage in the scalp area, where the application

of conductive paste or gel could be less desirable.

Certain devices, such as trEEGrid, have incorporated pre-gelled electrodes to en-

hance user convenience during self-application. In the case of around-ear EEG head-

phones mentioned in [65], as well as headbands described in [70] and [69], single-use

foam-type solid-gel snap electrodes have been adopted. These electrodes feature em-

bedded snap sockets within the device, offering a streamlined equipment preparation

process. However, it’s important to note that frequently changing electrodes for every

use could potentially become cost-prohibitive for practical real-life applications. Of the

around-ear EEG studies examined in this article, only two examples use dry electrodes:

the c-shaped electrode array detailed in [60], which employs gold electrodes, and the

AttentivU system, which utilizes silver electrodes. Furthermore, it’s worth mentioning

that only the electrode array discussed in [60] and the headband described in [70] have

introduced the allocation of active electrode electronics to enhance electrode impedance

levels. It’s important to note, however, that no study has directly compared the ef-

fectiveness of various electrode types for around-ear EEG acquisition. Nevertheless,

considering the relatively hairless nature of the around-ear region, one might speculate

that dry electrodes could potentially perform better compared to their usage in conven-

tional scalp EEG setups when contrasted with wet EEG electrodes.
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Electrode number and location

Similar to in-ear EEG studies, there currently isn’t a standardized approach for measur-

ing around-ear EEG. This lack of standardization extends to electrode naming, quan-

tities, and placements. The cEEGrid and the electrode array discussed in [60] are

composed of a total of 10 electrodes resulting in a total of 20 electrodes when both

ears are equipped with these devices. Other around-ear EEG device has less number

of electrodes. Electrode number varies between two to five per one side of the ear in

the other device designs. For example, the hybrid electrode array, trEEGrid, consists

of nine electrodes, four of which are positioned around the ear, three around the eye to

serve as EOG sensors, and the last two positioned around the chin to measure EMG of

the muscles around the user’s mouth. Earpiece and headphone designs usually contain

four to five electrodes while glasses and hairband design which has a narrower coverage

area contains one to two electrodes on each side of the ear.

Reference and ground electrodes are commonly selected from the electrodes at

the most inferior positions, often situated near the mastoids. However, some studies

utilizing the two aforementioned c-shaped electrode arrays use the electrodes at the

center of the array, positioned approximately above the auricularis posterior muscles,

as reference and ground electrodes. Additionally, certain hybrid EEG systems that

combine electrodes from the around-ear region with electrodes from other locations

make use of electrodes positioned outside the ear, such as on the forehead and nose

bridge, as reference and ground sites [68], [70]. Device designs such as headphones,

glasses, and headbands, encompass larger areas extending beyond the ear region. This

broader coverage area allows for the practical and aesthetic incorporation of electrodes

from out-of-ear positions into the wearable design, a solution not observed in the context

of in-ear EEG configurations.

Furthermore, although a universally accepted nomenclature for these electrodes

is lacking, a number of studies have adopted the approach pioneered by the cEEGrid

investigation. This methodology employs the letters ”L” or ”R” to indicate the left or

right ear side, respectively, followed by a numerical sequence from ’1’ to encompass the

total count of electrodes on each side (e.g., R1, R2, . . . , R8). This sequence originates

from the most anterior or superior part of the design and progresses incrementally. While

we find this approach commendable, there are opportunities for refinement to establish

it as a standardized method. First, to enhance comprehensiveness and accommodate

future advancements, the nomenclature should extend to encompass the anterior ear

region, defining the elliptical shape that surrounds the entire ear area. Second, akin

to the standardized 10-20 system employed in conventional scalp EEG setups, the

standardization of around-ear EEG systems could benefit from maintaining a fixed

percentage-based distance between each electrode position relative to the vertices or

co-vertices of the elliptical region surrounding the ear. This approach would ensure

consistent relative electrode positions during the fabrication of the sensor array, even

when adapting the sensor size for various head sizes.
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3.3. Signal processing hardware used in ear-EEG studies

The hardware of an EEG system can be segmented into three main parts: sensors,

the signal processing module, and the computing module. In our discussions thus far,

we’ve focused on ear-EEG, which primarily falls within the sensor component of the

EEG system. The ear-EEG acquisition system finds its full form when complemented

by the signal processing module. This integral module encompasses hardware for signal

processing, amplification, and data transmission to the computing module. While this

article won’t delve into intricate electronic specifics of the hardware itself, such as circuit

schematics and detailed electrical components, we will delve into the EEG amplifier type

and its design. This exploration is geared towards assessing the system’s wearability, a

pivotal aspect that underscores the very application of ear-EEG technology.

Despite the strong wearability aspect of ear-EEG as an EEG sensing technique,

the majority of ear-EEG studies conducted so far, especially those involving in-ear

EEG, have employed professional-grade stationary EEG amplifiers for their experiments.

While this approach suits applications of ear-EEG where subjects remain stationary,

such as sleep monitoring, it does limit the broader potential of the ear-EEG method.

Introducing a fusion of the ear-EEG approach with a wearable EEG processing

module could significantly enhance the system’s wearability and mobility, potentially

making it viable for everyday use. Many studies leverage commercial-grade wearable

EEG equipment such as SMARTING mobile amplifier (www.mbraintrain.com) that is

used in most around-ear EEG studies involving cEEGrid, OpenBCI biosensing board

(www.openbci.com) [22], [26], [29], [46], [52], [65], [69], WANDmini [33], or NeuroSky

Mindwave headset (www.neurosky.com) [71], [72] for their signal processing. However,

these studies merely attach the equipment to the subject’s attire or place it on a table

during experiments, without incorporating any substantial design efforts to create a

seamlessly wearable and stylish system. Some studies, nevertheless, has presented a

good design incorporating ear-EEG sensors and wearable EEG equipment. For example,

Bleichner and Emkes developed a wearable ear-EEG system named nEEGlace, which

integrates cEEGrids and the SMARTING into a commercial neck speaker [73]. This

innovative design approach not only allows the neck speaker to function as a mount

for the EEG amplifier, bringing the entire system closer to the sensors and reducing

wire length but also enables the use of auditory stimuli or feedback for interface-based

applications. Additionally, the integrated microphone of the neck speaker offers the

user voice command options and allows for the recording of environmental sounds.

Furthermore, it’s worth noting that while cEEGrid was initially designed with ports

compatible with the SMARTING, it is possible to create connecting adapters to

enable compatibility with other commercially available wearable EEG devices. This

adaptability is demonstrated, for instance, in [74].

Numerous studies forego reliance on commercial EEG devices, opting instead to

construct their ear-EEG system with custom-made processing modules [7], [34], [49],

[63], [67], [68], [70]. Specifically for in-ear EEG, certain designs are compact enough to be
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integrated within the earpiece itself, rendering them remarkably wearable and practical

for real-world use [47], [48]. As for around-ear EEG, some custom-made processing

modules are embedded and encased within wearable devices like headphones, glasses,

and headbands as discussed in the previous section.

It’s crucial to emphasize that a well-designed wearable EEG system should ensure

the proximity of the sensor and processing module components, minimizing potential

noise and artifacts stemming from lengthy cable connections between the two hardware

sections. It’s also worth noting that although numerous studies have presented ear-

EEG systems encompassing fully wearable setups, there has yet to be a study that

ventures into real-world, out-of-laboratory environments. Gaining a comprehensive

understanding of the practical applicability of ear-EEG necessitates a departure from

the controlled confines of the laboratory, undertaking experiments in authentic everyday

settings. This endeavor stands to provide insights into the effectiveness of ear-EEG

beyond theoretical constructs, shedding light on its functionality and reliability in real-

life contexts.

4. Applications of Ear-EEG

Ear-EEG devices are an attractive alternative to more conventional scalp-EEG

electrodes due to their compactness and wearability in various applications. Studies

have been carried out using ear-EEG devices in various domains to analyze the feasibility

of using ear-EEG devices, ranging from measuring neuronal response to stimulus to

monitoring a subject’s state of mind. In the following section, we split the reviewed

studies into different categories based on their intended functions, where the first two

sections examine how neurological signals commonly studied in scalp-EEG appear in

ear-EEG, and the later sections on various monitoring tasks to which ear-EEGs may be

applied.

4.1. Reactive Responses

Reactive responses refer to neuro-signals evoked in response to external stimuli in various

forms [75]. While systems that use reactive responses require more preparation and

equipment, they normally display a clear, differentiable characteristic in signals that

can be matched with the stimuli, making them useful not only for decoding users’

intentions but also for evaluating the quality of the measuring device.

4.1.1. Steady-state response One of the most commonly used reactive responses is the

steady-state response (SSR). SSR refers to an electrophysiological response of the brain

to stimuli presented at a specific frequency or range of frequencies, characterized by a

periodic waveform that corresponds to the frequency of the stimulus and its harmonics

[76]. The fixed waveforms induced by the stimuli make it possible to validate the

feasibility of an EEG acquisition method by calculating the SNR of the signals at the
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Figure 4: Distribution of different applications of ear-EEG studies.

frequency of the stimuli or by examining the power spectral density (PSD) plot. The

stimuli can be given in a diverse manner, including visual, auditory, or haptic changes.

Several studies have used auditory stimuli to measure the auditory steady-state

response (ASSR) signals [11], [35], [51], [55] to demonstrate the feasibility of using

in-ear EEG instead of scalp-EEG devices. Kidmose et al. [11] were among the first

to examine reactive signals measured using in-ear silver electrodes and collected four

different evoked responses, including ASSR, SSVEP, transient auditory evoked potential,

and transient visual evoked potential. They compared the SNR of the collected signals

to that collected from wet EEG electrodes placed in the temporal region. Two different

frequencies were used for ASSR (40, 80Hz) and three for SSVEP (10, 15, 20Hz). While

in-ear EEG showed signals with lower amplitude compared to scalp EEG, the SNR was

maintained at similar levels. Similarly, Goverdovsky et al. [35] showed the feasibility

of using a custom-made in-ear device with memory foam and conductive fabric for

measuring ASSR and VEP signals. Here, auditory stimuli at 40Hz were provided via

an over-the-ear headphone, with visual stimuli given with a red LED. Bertelsen et al.

[77] measured ASSR using both a generic in-ear device and cEEGrid and examined

various electrode configurations to determine the setups that led to a higher SNR. They

found that the ear-Fpz configuration, as well as both within-ear and cross-ear electrode

configurations, resulted in statistically significant ASSRs with the generic earpiece.

However, the dry-contact cEEGrid demonstrated a significantly higher average SNR
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of the ASSR signal compared to the generic earpiece.

Around-ear EEG was also examined by Guermandi et al. [60] for its potential use in

measuring reactive responses. Using a wearable device similar to cEEGrid, they created

a system that included the computing unit, which carried out feature extraction and

classification on board before transmitting the results via Bluetooth. They validated

their system on various ERP signals, SSVEP, and ASSR, where SSVEP stimuli were

given via checkerboards flickering at 10, 12, and 15Hz, and ASSR stimuli were given in

the form of white noise modulated at 40Hz.

Kaveh et al. [32] proposed an in-ear EEG recording platform consisting of six

electrodes, with electrodes made of silver spray. The device broadcasted the signals

wirelessly, and the authors validated their system for use in detecting eye blinks, alpha

modulation, and ASSR. They found that while existing systems performed better, the

platform displayed sufficient SNR for use.

Christensen et al. [20] used in-ear EEG with six channels to measure ASSR

to acquire hearing threshold levels, using different electrode configurations. They

conducted experiments to validate their approach for both normal and hearing loss

subjects. Chiu et al. [78] also used an in-ear EEG made with conductive fabric and

viscoelastic memory foam to acquire haptic and auditory steady-state responses, which

were used to perform 20 different tasks involving the manipulation of a smartphone.

Kappel et al. [79] compared the signal qualities of in-ear EEG acquired using

different types of electrodes. They created two types of in-ear dry contact electrodes

using Ag/AgCl and IrO2 respectively and carried out measurement sessions with one

type of electrode in each ear, the position of which was swapped between sessions. The

experiment consisted of measuring the SNR of ASSR evoked by white Gaussian noise,

and both types of electrodes demonstrated no significant differences in performance.

The effects of different auditory stimuli were studied by Christensen et al. [80],

[81]. Using both in-ear and around-ear electrodes, they measured ASSR in response

to chirp stimuli with 2- different repetition rates. While direct comparisons were not

made in the study, high repetition rate chirp stimuli showed an improved performance

to using click, white noise, or pure tone stimuli when used with ear-EEG for acquiring

40Hz ASSR. For SSVEP, Mouli et al. [82] used a wireless system using a circular ring

LED for SSVEP stimulus, which contained an onboard computing unit to provide four

different frequencies (7, 9, 11, and 13 Hz). A single-channel conductive rubber electrode

was used together with an OpenBCI wireless EEG acquisition hardware to collect signals

from inside the ear, resulting in SSVEP signals with positive SNR values.

4.1.2. Event-related potentials Apart from SSRs, event-related potentials (ERPs) are

also useful types of responses. ERPs refer to changes in the EEG in response to specific

stimuli or events in various forms, such as P300 or N100 signals, which refer to a positive

evoked potential at 300ms after an event and a negatively evoked potential at 100ms

after an event respectively [83]. Similarly to other reactive signals, the clearly defined

features make them useful for analyzing the effectiveness of ear-EEG measuring systems
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[63], [84]–[86]. ERPs can also offer insights into various cognitive processes such as

attention, memory, and language. In 2015, Debener et al. [4] recorded around-ear EEG

data from an auditory oddball experiment using two cEEGrid systems and confirmed the

occurrence of P300 signals for target stimulus, with classification results up to 70.92%.

In the same year, Bleichner et al. [87] used a combination of the scalp, around, and

in-ear EEG electrodes to create a visual P300 speller. Subjects were instructed to copy

one sentence containing 19 symbols per task, achieving a classification accuracy of 88%

and an ITR of 8.33 bits/minute.

ERPs can also be used to identify auditory attention [88]–[94]. Recently, Ala et

al. [95] used an in-ear EEG device to measure alpha-related synchronizations and

desynchronizations when continuously attending to speech, with results suggesting that

ear-EEG devices can be used to judge a subject’s perception of speech. Similarly, Holtze

et al. [94] measured EEG from around the ear using cEEGrid during a selective auditory

attention task, where two auditory streams were played simultaneously to the subject,

who was instructed to attend to a specific audio. Using speech envelope tracking, they

were able to reach average decoding accuracy of 71.3%.

4.2. Active Imagery

Recently, there have also been investigative studies into the use of ear-EEG for measuring

active imageries. Active imageries refer to neuronal responses to a subject’s imagery

without an external stimulus. Active imageries rely solely on the user’s imagination

about a fixed task[75]. Merrill et al. [71] defined five mental tasks, where subjects were

told to relax, imagine a song, listen to a fixed frequency, imagine a face, or imagine

a rotating cube, as a mixture of ASSR, visual imagery, and auditory imagery. They

recruited twelve students to carry out these tasks and monitored the EEG signals using

a Neurosky Mindwave Mobile wireless EEG headset modified to collect signals from

inside the ear, achieving a classification accuracy of 85.4% on average, with six subjects

performing at accuracies over 90%. In 2019, Merrill et al. built on their work further

to explore the possibility of using their mental tasks for authentication, where subjects

were given a custom in-ear device and nine mental tasks. A task was chosen as a

‘passthought’, with an overall accuracy of 99.82% when detecting this task using three

electrodes from the left ear. The custom-made earpiece made the system more robust

against an imposter since the mismatched shape lowered the classification performance.

4.2.1. Motor imagery A more commonly used active imagery paradigm is motor

imagery, where users focus on imagining moving a part of their body without actually

moving the corresponding part. The potential of utilizing around-ear EEG was studied

by Kim et al. in an investigative study where they selected channels near the ear

from a standard 10-20 international placement. [96] In this work, they found that

EEG signals from Broca’s and Wernicke’s area could be used to classify four-class

motor imagery with comparable performance to existing setups, suggesting that ear-
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EEG devices could be used for measuring motor imagery paradigms. An actual in-ear

EEG device was manufactured and tested for motor imagery by Wu et al. [13]. They

hand-crafted custom-fit ear pieces with Ag/AgCl ink used to print electrodes for four

different positions per ear. Six subjects were recruited for two class MI classification

using EEGNet, with scalp EEG acquired simultaneously to ear-EEG. The acquired

ear-EEG signals were re-referenced in various methods before being compared to scalp-

EEG in intra-subject and inter-subject classification. While both inter and intra-subject

classification showed lower results for ear-EEG, fine-tuning the model with individual

data after inter-subject classification led to classification performance higher than the

chance level.

4.2.2. Speech imagery Another active imagery that has been gathering attention is

speech imagery, in which subjects are instructed to imagine articulating a word or

phoneme, without actually moving or producing sound. Given that the auditory cortex

and the language centers are positioned close to the regions covered by around-ear EEG,

ear-EEG may provide discreet and effective means of acquiring related signals. In 2021,

Kaongoen et al. [69] were the first to propose an around-ear EEG device to measure

speech imagery. Using a custom-made device with gel electrodes, they acquired EEG

signals regarding four different words from both around-ear and scalp EEG from ten

subjects. Using a multi-layer extreme learning machine, their around-ear EEG device

showed comparable performance to scalp-EEG setups for a five-class classification task

consisting of four words and rest. Later, Kaongoen et al. [65] further expanded their

work to suggest a home appliance control system using speech imagery measured with

an around-ear EEG headphone. In this work, they proposed a hybrid control setup,

where user inputs were combined with speech imagery classification results to control a

virtual television for three different tasks: controlling the volume, changing the channel,

and turning the power off.

4.2.3. Visual imagery Visual imagery, as its name suggests, refers to responses

measured when subjects imagine a certain image or action happening in front of their

eyes. Subjects are shown an action or an object, and then later instructed to imagine

the said object on their own. Kuatsjah et al. [44] performed a visuomotor tracking task,

where users were instructed to keep track of a moving blue box and mimic its movement

by controlling a different yellow box with a joystick. Two different user states, resting

and tracking, were monitored using a two-channel wireless in-ear EEG system. Ten

subjects were recruited for the study and showed average accuracy above chance level,

demonstrating that visuomotor tasks can be distinguished using in-ear EEG. Similarly

for visual imagery, Kosmyna et al. [97] used AttentivU, a hybrid EEG device in the

form of glasses to test its effectiveness in visual imagery tasks. The experiment consisted

of four different images related to either coffee or art, repeated 20 times for fourteen

subjects. In this work, the authors demonstrated that their glasses-shaped hybrid EEG

collection device shows comparative visual imagery classification performance to when
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using a scalp-EEG device.

4.3. Brain State Monitoring

While neuronal responses can be useful for validating device performance and decoding

user intentions, monitoring the current state of a subject is another important domain

where EEG signals can be effectively used. In such monitoring tasks, the brain signals

of the subject are often measured over a long period of time during a specific activity,

making the wearability and comfort of the EEG collection device especially important.

4.3.1. Sleep Monitoring For sleep monitoring, ear-EEG has been frequently considered

as an alternative to conventional scalp-EEG due to its compact and discreet form,

allowing continuous monitoring of the user’s sleeping state without much discomfort.

Zibrandtsen et al. [15] compared the signals from in-ear-EEG and scalp-EEG during

different sleep stages. Two experienced sleep scorers were recruited to analyze 21 hours

of one night’s sleep. The reported results showed 90.9% similar scores between the

two methods, with similar features shown. A memory-foam in-ear EEG electrodes was

used by Looney et al. [36] to measure signals from four healthy male subjects during

nap and showed that their device could distinguish between N2/N3 sleep stage, as well

as non-REM/wake stage using only ear-EEG signals. Several subsequent studies have

provided evidence supporting the utility of in-ear EEG for sleep staging [17], [21], [42],

[43], [98]–[100].

Around-ear EEG has also been studied as an alternative to polysomnography. Sterr

et al. [101] used cEEGrid to measure around-ear EEG during sleep from 20 subjects

simultaneously to standard polysomnography. Different sleep parameters regarding

sleep maintenance and architecture were examined from both signals for the evaluation

of quality. Both systems showed similar results to each other, suggesting that cEEGrid

can provide a viable alternative to existing methods for recording sleep signals.

Recently, Mikkelsen et al. [102] performed a study on the performance of

self-applied in-ear EEG for sleep monitoring. Ten subjects were recruited from a

previous study performed by an expert, with 12 sleep recording sessions carried out

by each participant at home. Three different metrics were used to score the quality

of sleep in this study: total sleep, sleep latency, and sleep efficiency, for which

participants performed similarly to expert-applied experiments even when carrying out

the experiment themselves. [103] Another work by Kjaer et al. [104] analyzed the

effectiveness of automatic sleep scoring with an in-ear EEG device. In this paper, they

reported that repeated automatic sleep scoring with an in-ear EEG device outperforms

manually labeled polysomnography consisting of EEG, EMG, and EOG signals. While

both methods perform similarly after the first night, ear-EEG has been shown to perform

better for six out of eight sleep metrics after two nights.

Furthermore, Henao et al. [38] carried out investigations on implementing a closed-

loop stimulation system during sleep to induce slow oscillations. Using an in-ear EEG
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device, they proposed a system that detects sleep slow oscillation and then employs

auditory stimulation to enhance the detected oscillation. In their system, two scalp

electrodes and one bipolar in-ear electrode in both ears were used to measure the EEG

activities, and a wired headband speaker was used to deliver the auditory stimuli. They

evaluated their system on 24 healthy subjects and showed positive results for inducing

slow oscillations for eleven subjects.

4.3.2. Mental load Several works have also explored the possibility of monitoring the

subjects’ state via ear-EEG. Eye state is one of the most clearly observable responses

in EEG signals; when eyes are open, EEG signals show an alpha attenuation response

(AAR), referring to alpha band power decreasing. Such characteristic allows eye states

and the corresponding AAR to be used to check the signal quality of both in-ear [32],

[34], [49], [105] and around-ear [4], [59], [106] devices.

Some studies have used ear-EEG for measuring stress, usually involving mental

tasks. Ha et al. [107] combined three different biosignals: EEG, hemoencephalography

(HEG), and heart rate variability (HRV) to monitor stress during an n-back task. EEG

signals were measured using two channels in an in-ear device and six channels in a

forehead headband, with 16 channels and two channels for HEG and HRV measurements

respectively. The heart rate sensors were also placed on the in-ear device. A hybrid EEG

system in the form of a headband was suggested by Ahn et al. [70] for stress assessment,

measuring EEG and ECG from behind the ear. Stress was induced with two different

mental tasks, the Stroop color-word test and mental arithmetic (MA) tasks, and PSD

extracted from EEG as a feature for classification, achieving an accuracy of 87.5% for

binary classification of stress/non-stress state.

4.3.3. Vigilance Vigilance is another mental state that has been researched with ear-

EEG [33], [108]. Hwang et al. [109] was the first work to perform alertness-drowsiness

classification using in-ear EEG in a driving scenario. Various biosignals, scalp EEG,

ECG, PPG, and GSR were measured simultaneously for comparison in the study,

with a single metallic EEG electrode placed in the right ear canal with gel applied

for in-ear EEG acquisition. Thirteen subjects were recruited to drive a simulation

of a car on a highway at a given fixed speed, with the driver’s reaction time and

facial characteristics recorded to acquire alertness and drowsiness epochs. Hong et

al. [110] carried out a similar study, with drowsiness measured using a multi-modal

device consisting of in-ear EEG, PPG, and ECG. The performance of the device was

compared to results from a standard 16-channel scalp-EEG for sixteen subjects in a

virtual driving task. The proposed system was shown to perform at a similar level but

with a shorter data acquisition length. Kosmyna et al. [68] used their proposed glass

device to not only detect drowsiness but also provide feedback to redirect vigilance.

Their device consisted of two EOG sensors at the nose pad and two EEG channels

at around TP9 and TP10, with a piezoelectric element at the tip of the glasses for

auditory and vibrotactile feedback. Twenty participants were recruited to perform a
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driving simulation task, with drowsiness level rated using the Karolinska sleepiness

scale. Drowsiness was judged based on an unsupervised threshold-based method on

the number of blink and fatigue index acquired from EEG signals, and two different

biofeedbacks, auditory and vibrotactile, given to redirect vigilance.

4.3.4. Emotion Recognition Emotion recognition has emerged as a notable research

domain, although there exists a limited number of studies that have explored the

utilization of ear-EEG for this purpose. Li et al. [72] was the first to propose a low-cost

in-ear EEG device, made by refitting a Neurosky Mindset EEG headset, to distinguish

three emotion states: negative, relaxed, and excited. Twelve subjects were recruited for

the study, who were instructed to watch a video and listen to music to induce emotional

changes. The outcomes of the study suggested that single-channel in-ear EEG can be

suitable for emotional recognition, albeit with poor performance in terms of arousal

recognition. Another in-ear EEG device was suggested by Athavipach et al. [52] for the

classification of four discrete emotional states. Twelve participants were recruited, with

images from the international affective picture system (IAPS) and the Geneva affective

picture database (GAPED) used as visual emotional stimuli and classical music pieces

selected from another auditory emotional research used as auditory stimuli. Compared

to electrode channels from T7 and T8, the in-ear EEG showed no significant difference

in performance.

4.3.5. Epileptic seizure detection Traditional scalp EEG recordings are the gold

standard for detecting epileptic seizures, but they have limitations, such as being

affected by muscle artifacts and being unable to detect deep-seated epileptic foci. In

contrast, ear-EEG recordings can be less affected by artifacts and can be worn more

comfortably for a longer period of time. Recent studies have demonstrated the feasibility

and effectiveness of using ear-EEG for seizure detection in patients with epilepsy.

Zibrandtsen et al. [15], [111] used an in-ear device with four electrodes per ear to record

signals from fifteen subjects suspected to suffer from seizure, showing no significant

differences in performance in seizure detection when compared to conventional scalp-

EEG systems.

Around-ear EEG has also been frequently used for seizure detection. You et al.

[112], [113] suggested a cross-head electrode layout, with two electrodes in form of

a gold cup placed behind each ear. 54 patients were recruited for the study, with

evaluations carried out through visual inspection by a neurologist, subject-independent

classification, and subject-dependent classification. The results showed that around-ear

EEG detected seizures better compared to patients’ self-reports. Vadecasteele et al.

[114] similarly employed cross-head channels around the ear to detect seizures using an

unsupervised generative adversarial network (GAN). Spectrograms from the acquired

signals were used as the input to train a deep convolutional GAN (DCGAN) to learn

the normal state. The trained GAN was then used to detect an abnormality, with an

accuracy of 96.6% [115].
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Due to the uncertain nature of seizures and when they may occur, studies involving

the long-term use of ear-EEG for monitoring are essential. Several works investigated

the robustness of devices with ear-EEG when measured over a continuously long pe-

riod of time. [116] Nielson et al. [117] carried out continuous recording of wearable

EEG, ECG, and accelerometry in 30 patients, who were given the freedom to move

around. Electrodes were placed bilaterally behind the ear on the upper mastoid, with

reference placed on Cz. Classification using a support vector machine (SVM) showed

an improved performance to using only EEG, with high sensitivity and low false alarm

rate. In addition, Musaeus et al. [14] introduced an in-ear EEG system designed for the

long-term monitoring of epileptiform activity in patients with Alzheimer’s disease. They

investigated the comfort of the patients wearing the in-ear EEG device by recruiting ten

patients suffering from mild to moderate cases of Alzheimer’s disease. Three sessions of

EEG recordings were carried out, each being up to 48 hours long with several months

between the sessions. All patients managed to wear the device for over 24 hours, and

four patients completed the study.

In summary, this section provides an overview of the capabilities of ear-EEG as a tool

for acquiring various types of EEG signals commonly utilized in neuro-engineering and

biomedical studies, along with its applications. While the potential of ear-EEG is evi-

dent from these studies, it’s important to acknowledge that the field is still in its nascent

stages. Given the multitude of variables that can influence research outcomes – includ-

ing subjects, device configurations, and environmental factors – it becomes invaluable

to observe results from diverse studies to validate consistent findings. Nonetheless, the

existing body of ear-EEG research, particularly within the active imagery and brain

state monitoring domains such as emotion recognition, remains limited. As a result,

drawing definitive conclusions from this emerging field should be done with careful con-

sideration. Moreover, when adopting the ear-EEG methodology within a new paradigm,

it is advisable to directly compare its performance against the conventional scalp-EEG

method using the same experiment configurations. This comparative analysis would

facilitate a better understanding of how effectively ear-EEG performs in relation to the

well-established conventional scalp-EEG method, which has a more extensive research

foundation.

5. Limitations of ear-EEG and methods to overcome them

While the previous section highlights the potential of ear-EEG in various applications,

it is important to acknowledge that ear-EEG techniques have certain drawbacks in

comparison to conventional EEG acquisition methods. These limitations may affect

their performance in specific applications, particularly those that require monitoring of

brain activity in regions further away from the ears. To overcome these limitations,

various methods and algorithms have been developed specifically to improve the quality

of the ear-EEG technique. In this section, we will discuss some of these techniques that
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have been reported in previous literature.

5.1. Re-referencing methods

EEG acquisition conventionally requires a reference electrode. The electrical potential

recorded at each scalp electrode is the result of the difference in electrical potential

between that electrode and the reference electrode, so the choice of reference electrode

can affect the interpretation of EEG data [1]. In ear-EEG techniques, the choice for

the reference electrode is limited due to the small coverage of the compact structure

of the ear-EEG devices. As discussed in Section 3, in the absence of any external out-

of-ear electrode, the reference and ground points of an ear-EEG system are typically

situated within the concha for in-ear EEG setups, and at the lowermost positions for

around-ear EEG configurations. Researchers may also re-reference EEG data post hoc

to another reference point to produce different interpretations of the data or improve

the quality of the signal. We will review the re-referencing techniques employed in

ear-EEG research, covering both traditional and innovative methods, and explore the

implications of different approaches.

The Common Average Referencing (CAR) technique is a commonly used EEG

re-referencing technique that involves creating an average of all EEG channels and

subtracting the resulting signal from each channel [17]. However, this technique assumes

a uniform spatial distribution of the electrodes, which is not applicable in non-traditional

electrode placements such as ear-EEG techniques. In these cases, the average reference

may be biased towards more densely populated electrode areas, leading to suboptimal

results. To address this issue, researchers have proposed alternative re-referencing

techniques. For instance, Kappel et al. [118] conducted a study on ASSR using in-

ear EEG and suggested a method called Optimized Reference Configuration (ORC)

that assigns different weights to each electrode in the re-referencing process. The

weights were trained by maximizing the SNR of the first harmonic of the steady-

state response from the training dataset. They also proposed a Location Weighted

Referencing (LWR) technique that assigns separate weights to the electrodes based on

the location and distribution of the electrodes. Specifically, electrodes in the concha and

canal areas of the ear are weighted differently. Results from the study indicate that the

ORC method produced the highest SNR of the steady-state response compared to the

CAR and LWR methods. In 2019, Choi and Hwang [106] conducted a comprehensive

comparison of various re-referencing techniques used in previous studies. They used

around-ear-EEG open datasets recorded while subjects performed an alpha modulation

task, and two active mental tasks: MA and mental singing (MS). Five re-referencing

techniques that were used in the previous ear-EEG research including (1) CAR[17],

(2) contralateral-mean (using the mean of contralateral electrodes as the reference

point)[12], (3) ipsilateral-mean (using the mean of ipsilateral electrodes as the reference

point)[18], (4) contralateral-bipolar (using bipolar configuration on contralateral ear

sides)[119], and (5) ipsilateral-bipolar (using bipolar configuration on ipsilateral ear
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sides)[119], were applied to the data. The results showed that the contralateral-mean

method provided statistically higher SNRs and classification results in all mental tasks,

suggesting that it might be an efficient choice of re-referencing method for the ear-EEG

data and thereby increase the quality of the ear-EEG data. However, it should be noted

that the contralateral-mean method does not apply to ear-EEG systems that consist

only of one side of the user’s ear or systems in which electrodes from both ears are not

physically connected.

Additionally, it is worth noting that active EEG electrodes do not require a common

reference electrode. This is because active electrodes have a built-in preamplifier that

amplifies the signal and sends it directly to the recording device, whereas passive

electrodes require a reference electrode to provide a baseline for the recording [120]. With

active electrodes, each electrode acts as its own reference, allowing for a more flexible and

scalable recording setup. An active wearable ear-EEG system presented in [70] showed

an innovative way to acquire both EEG and ECG data using only two active channels

each located behind each ear and one reference electrode located at the forehead. The

system utilized a reference configuration that involves subtracting the reference signal

from the signal obtained from the left and right active electrodes, respectively, to acquire

two EEG signals. The ECG signal is obtained by subtracting the signal from the right

active electrode from that of the left electrode. This reference setup ensures that the

EEG signals are spatially balanced, which is essential for obtaining asymmetry features

from the EEG data. Furthermore, the system enables the simultaneous acquisition

of HRV features from ECG data along with EEG data, without requiring additional

electrodes. These features made the proposed system suitable for stress assessment in

daily life.

5.2. Noise cancellation and artifact removal techniques on ear-EEG

Creating a wearable EEG system presents significant obstacles, primarily due to noise

and artifacts. In contrast to a controlled laboratory environment, real-world scenarios

are exposed to numerous sources of noise and artifacts, both internal and external.

Noise cancellation and artifact removal techniques play vital roles in the development of

a reliable wearable EEG system. These methods filter out unwanted noise and artifacts

from the EEG signal, leading to more accurate and dependable signals and allowing the

extraction of meaningful insights. As a result, integrating these techniques is essential

for the efficacy and success of wearable EEG systems.

While there are some variations in the noise and artifacts observed in ear-EEG

compared to conventional scalp-EEG, such as ear-EEG being less affected by eye

blinks and movements but more susceptible to artifacts associated with jaw muscle

contractions, the algorithms used in scalp-EEG can generally be applied to ear-EEG

with only minor modifications [121]. In fact, the study in [122] demonstrated that

independent component analysis (ICA) can be used to detect artifacts in around-

ear EEG obtained from cEEGrids and the artifact ICA components showed similar
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characteristics to those of scalp-EEG data. Despite the lack of noise cancellation or

artifact removal techniques tailored specifically to ear-EEG data, we will review some

innovative approaches that have been successfully applied to wearable ear-EEG systems.

In their 2020 paper, YE Lee and colleagues proposed a method for removing artifacts

from EEG signals called constrained ICA with online learning (cIOL) [123]. The cIOL

method uses constrained ICA to estimate artifacts from the EEG signals using reference

signals, and recursive least squares (RLS) to extract an artifact-free EEG signal. The

reference signals used in their experiment were obtained from isolated electrodes, which

were blocked with high-resistance material to prevent brain signals from passing through.

In their study, four electrodes, two from each side of the cEEGrids, were used as the

isolated electrodes. The authors evaluated the performance of the cIOL method in ERP

and SSVEP experiments where subjects were walking on a treadmill and compared it to

other state-of-the-art artifact removal methods, such as artifact subspace reconstruction

(ASR) [124], Riemannian ASR (rASR) [125], and FFT-based methods [126]. The

results showed that the cIOL method achieved the best classification accuracy across

all experimental settings. Moreover, the results showed that using isolated signals as

reference signals for estimating the artifacts produced slightly better outcomes than

using IMU data. Nonetheless, this method has only been tested with motion artifacts

and may not perform as effectively with other types of noise or artifacts that could be

present in real-life scenarios. The study in [37] added two microphone sensors (different

positions) and an accelerometer to the viscoelastic in-ear-EEG device to capture the

noises. They combined noise-assisted multivariate empirical mode decomposition (NA-

MEMD) with normalized least mean square adaptive noise cancellation (NLMS-ANC)

technique to produce an innovative artifact removal method for the ear-EEG data.

In summary, their method involved inputting signals from ear-EEG electrodes, two

microphones, and an accelerometer to the NA-MEMD to generate the intrinsic mode

functions (IMFs). Then, each pair of ear-EEG IMF and one of the noise-sensor IMFs

is fed independently to the NLMS-ANC to clean the ear-EEG IMFs, and finally, the

clean ear-EEG IMFs are then added up together again to reconstruct the denoised

ear-EEG data. Results showed that the denoised EEG signals demonstrated reduced

power in the frequency range where artifacts were present. Moreover, the performance

of different noise sensors varied for the tested artifacts. Specifically, microphones were

found to be more sensitive to artifacts caused by internal motion within the ear canal,

such as chewing, whereas accelerometers were more effective for artifacts resulting from

full-body movements, such as walking. Both methods described in the studies above

require sensors that are separate from the EEG electrodes to capture noise. It is possible

that combining multiple types of noise sensors could enhance the effectiveness of these

methods. However, the tradeoff between device performance, cost, and wearability must

be carefully considered.

Apart from using noise cancellation and artifact removal methods, the hardware

design also plays a crucial part in the quality of the EEG signal as well. In Section

3, we discussed the design aspects of wearable devices, including electrode selection,
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and device shape and material, all of which contribute to improving the quality of the

ear-EEG signals and reducing noise and artifacts. Electrical circuit techniques, such as

impedance boosting, DC servo loop, and active shielding can also be used to improve

the signal quality as well [24], [27], [127], [128]. Corrected Double Sampling (CDS)

is typically implemented in analog circuits by allowing a capacitor in the amplifier

feedback loop to reset and store noise observed at the front end with the input electrode

disconnected. Upon reconnecting the electrode to sample the noise stored in the

capacitor, the noise from the first sample is canceled from the electrode sample [105].

CDS is commonly utilized to reduce the impact of 1/f and thermal noises. In 2022, A.

Paul [105] proposed utilizing a digital version of the CDS method for an in-ear EEG

system. They investigated various weighting schemes on the CDS reference samples

(distinct from the reference used in the EEG acquisition process) to subtract them from

real samples and generate denoised EEG samples. The study demonstrated that the

digital CDS method efficiently reduced 1/f noise and kT/C thermal noise from the ear-

EEG data. The Kaiser-22 window with a width of 20 exhibited the best performance,

resulting in a 71.1% noise reduction.

5.3. Enhancing ear-EEG performance with machine learning and signal processing

techniques

There exist several methods for advancing the development of wearable ear-EEG

systems. A notable research domain pertains to enhancing the device itself, where

efforts are dedicated to developing ear-EEG sensors and circuits or refining the system’s

design to make it more wearable and user-friendly. Another research area entails refining

signal processing techniques to eliminate noise and gain more meaningful insights from

ear-EEG data. In this section, we will review machine learning approaches tailored to

enhance the performance of the ear-EEG system.

One of the primary limitations of ear-EEG techniques is their limited coverage

area. Certain brain signals dominate in specific regions, such as the visual cortex in the

occipital area where SSVEP, commonly used in BCI systems, is prominent. However,

when EEG is obtained from locations farther away from its dominant region, such as the

ear area, its signal quality decreases [6], [129]. This can result in suboptimal performance

of the ear-EEG technique in specific applications compared to conventional methods.

To address this challenge, one potential solution is to establish a relationship between

ear-EEG and conventional scalp-EEG and use the acquired ear-EEG data to estimate

EEG data at the target brain area, thereby enhancing the performance of the ear-

EEG system. It is demonstrated in [5] using in-ear EEG data acquired from several

experimental schemes, including alpha-attenuation, auditory onset, and mismatch-

negativity responses, that there is high mutual information between the ear-EEG and

scalp-EEG data, especially in the temporal region. It is also shown that it is possible

to use a linear model to predict scalp-EEG data from the given ear-EEG data when

a shared common reference electrode is used between the two methods. Furthermore,
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employing a forward model, the study in [6] also demonstrates the sensitivity of around-

ear EEG to different cortical sources and draws the same conclusion that ear-EEG is

most sensitive to the sources in the temporal cortex.

Building on this concept, NS Kwak et al. [129] proposed an error correction

regression (ECR) framework that enhances the performance of ear-EEG in detecting

SSVEPs. The ECR framework utilizes estimated EEG signals on the occipital area by

establishing linear and nonlinear relations between the ear-EEG and scalp-EEG. The

framework comprises two regression processes. Firstly, the first regression process is

trained to predict the scalp-EEG samples from the ear-EEG samples. Secondly, using

the error calculated from the first regression process, the second regression process is

trained to estimate the errors from the given ear-EEG samples. Finally, the error-

corrected outputs are calculated by subtracting the predicted scalp-EEG samples from

the estimated error values. To select the regression model in the first process, the

authors evaluated three methods including multiple linear regression (MLR), ridge

regression (RR), and kernel RR (KRR). They selected the regression model that gave

the highest correlation value between the predicted and actual scalp-EEG samples.

In the second process, KRR was used as the regression model. The authors’ results

demonstrated that ECR significantly improves the classification accuracy of ear-EEG

in the SSVEP-based experiment and the improvements were the highest compared to

using a regression model solely. Israsena and Pan-Ngum [130] developed a different

approach by estimating scalp-EEG data from ear-EEG data in a different domain to

enhance SSVEP classification accuracy. Their approach involved a regression step that

was incorporated into the convolutional neural network (CNN) model after the output

layer to re-estimate the softmax values before generating the classification result. To

be precise, they fed the EEG data from T7, T8, and Oz channels into a CNN model

individually to obtain their respective softmax values. Next, they trained a regression

model to estimate the Oz data’s softmax values from those of the T7 and T8 data.

Finally, during testing, the regression model re-estimated the softmax values of the T7

and T8 data before generating the classification result using the typical approach. Their

technique demonstrated superior SSVEP classification accuracy compared to using data

from T7 and T8 channels alone without the regression step. In the future, it would be

fascinating to observe the further development and application of this method with

other types of brain signals to evaluate the ear-to-scalp prediction method’s concept

more comprehensively. Liang et al. [131] proposed another solution to the lower SSVEP

response in the ear area compared to the occipital area. They hypothesized that there

is a phase difference in the SSVEP response in the ear area between the left and right

visual field stimulation from the SSVEP biphasic stimulation paradigm. To enhance

the SSVEP response in the ear area, they adjusted the phase of the left and right visual

field stimulus by estimating the phase difference between the SSVEPs from the two

types of stimuli obtained from the ear area. By adding the estimated phase difference

to the initial phase of the right visual field stimulus, the new phase difference would

become zero, enhancing the sum response from the left and right visual stimuli in the ear
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area and improving the SSVEP recognition performance of the ear-EEG. Their method

was validated, and the results showed that the phase optimizing method in the SSVEP

biphasic stimulation paradigm significantly increased the SSVEP classification accuracy

of the ear-EEG.

Additionally, several research works have focused on developing classification

models to improve the performance of ear-EEG systems. While few classification

algorithms are specific to ear-EEG, some novel algorithms have been proposed to

enhance the performance of ear-EEG systems. This review discusses such algorithms,

which can also apply to other types of EEG systems. One such algorithm proposed by

YE Lee and MJ Lee [132] is a two-stream deep neural network that combines a CNN

stream for extracting frequency-domain features and a long-short term memory (LSTM)

stream for extracting time-domain features. The extracted features from both streams

are then combined to map the classification output. This method was successfully

validated in SSVEP-based BCI experiments conducted in an ambulatory environment.

Zhu et al. [133] re-implemented the well-known EEGNet [134], a compact CNN designed

for EEG-based BCI, by experimenting with different kernel numbers and utilizing an

ensemble learning strategy to enhance the performance of ear-EEG, which has weak

SSVEP compared to the conventional method. Ensemble EEGNet showed significantly

higher classification results compared to canonical correlation analysis (CCA) and

normal EEGNet with different kernel numbers. In 2021, Lee [135] proposed an ensemble-

based approach that utilizes CNNs to classify ERP responses from ear-EEG signals.

This method involves dividing non-target data samples into four groups and forwarding

one group of non-target data and target data to each ensemble model, which is a three-

layer CNN. The network then updates the weights by averaging the gradients of all four

groups and combines the predictions of all four ensemble models to produce the final

prediction output. This approach also addresses the imbalance problem of the ERP

data, and the results were satisfactory even though the experiments were conducted in

an ambulatory environment. Recently, Borup et al. [136] proposed a novel approach

to enhance the performance of sleep-state scoring using ear-EEG data by employing

ensemble learning and knowledge distillation. The method consisted of two phases.

In the first phase, they trained a set of individual baseline models (SeqSleepNet [137])

using classical supervised learning with different random initialization. Ensemble models

were then formed by taking the unweighted average of the predictions from multiple

individual models. In the second phase, the ensemble model was used as a teacher

model in the knowledge distillation process. Pseudo labels generated from the teacher

model, along with optionally labeled training data, were used to train a single student

model. The results demonstrated a notable improvement in accuracy from ensemble

models compared to the individual baseline models. Moreover, without any alteration

in the model architecture, their semi-supervised knowledge distillation approach enabled

a single student model to retain 50 to 100 percent of the improvements obtained by the

ensemble models, while also reducing the computational cost.
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6. Conclusion

In conclusion, the Ear-EEG technology has rapidly gained attention in recent years

due to its excellent wearability, making it a promising alternative to conventional

EEG methods. Ear-EEG offers a convenient and non-invasive way to capture brain

activity, which is essential for applications in the real world outside research and

clinical settings. Our comprehensive review of the literature on ear-EEG highlights the

significant advances made in this technology, including the development of novel ear-

EEG wearable device designs, its efficient performance comparable to the conventional

EEG setup in the various types of applications in BCI research fields, and signal

processing and analyzing techniques that could increase the performance of ear-EEG.

However, despite these advancements, ear-EEG still faces challenges and

limitations. The main disadvantage of ear-EEG is its small and specific coverage area,

which may limit the quality of signal types it can detect and the applications it can offer.

To overcome this challenge, future research should focus on signal processing or machine

learning techniques such as signal estimation techniques that estimate EEG at a specific

brain area using only data acquired from ear-EEG, which could enhance the quality of

ear-EEG signals. Furthermore, noise reduction and artifact removal techniques are

essential for wearable EEG systems, and their integration with ear-EEG technology will

be crucial to achieving the ultimate goal of making ear-EEG a viable brain-monitoring

system that can be used in daily life.

It is important to note that ear-EEG research is still in its early stages, and more

studies should be conducted to generalize the results. Future studies should also focus

on performing experiments in real-world settings, which is the main purpose of the

ear-EEG method. Such studies will provide insight into the practical applications of

ear-EEG in various real-world contexts. Despite these challenges, the potential of ear-

EEG technology cannot be underestimated. We believe that it will continue to generate

interest and open up new avenues of research in the coming years.

Overall, ear-EEG technology represents a promising and exciting direction for the

field of wearable EEG systems and neural engineering, and we look forward to seeing

further developments and applications in the future.
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