
Abstract— Although pattern recognition studies have classi-
fied for upper limb movements, there is remaining issues for 
multi-finger movements. Depending on the user’s characteris-
tic, usable movements for pattern recognition might be differ-
ent. In addition, different finger movements might show simi-
lar surface electromyography (sEMG) from forearm and wrist. 
Therefore, we present a personalized protocol to select usable 
movements for each subject. Firstly, all movements were sort-
ed into k classes using a k-means clustering method. Secondly, 
the movement, which showed different sEMG features for 
trials, was removed. 20 healthy subjects performed the 64 
finger movements and 4 wrist movements. We found that the 
maximum number of classes (>95%) is different depending on 
the individual and location of electrodes; 18.5±3.0 on forearm 
and wrist, 11.7±1.9 on forearm, and 8.9±1.7 on wrist. The large 
standard deviation supports the personalized protocol for each 
subject in both locations.  

Keywords— Surface electromyography, movement selection, 
pattern recognition. 

I. INTRODUCTION  

Surface electromyography (sEMG) based pattern recog-
nition has been widely studied because of the merits it of-
fers as an control input for many applications such as  pros-
thetics, exoskeletons, robotics, etc [1]. For the control of 
upper limb movement, the features extracted from sEMG 
have been used to classify several classes of the forearm, 
wrist, and hand movement. However, systems with sEMG-
based control were not popularly used in the commercial 
market because there remains several issues to overcome, 
such as electrode shift, force change, variation of limb posi-
tion, and time-varying signal characteristics [2]. 

In addition, the personal characteristics of muscle struc-
ture and degree of freedom for target movements are also 
important for myoelectric pattern recognition. In particular 
cases for finger movements, the classification of finger 

movements is more challenging than other forearm move-
ments because sEMG signals related to finger movements 
are smaller in amplitude, and the muscles responsible for 
finger movements are, in general, located in the intermedi-
ate and deep layers of the forearm [3].  

Many groups tried to classify predefined finger move-
ments using different features and classification methods 
[4]–[9]. For example, Al-Timemy et al. [8] classified 15 
classes of different finger movements using sEMG elec-
trodes placed on the forearm. They achieved an accuracy 
over 98% when tested on healthy subjects. However, previ-
ous studies only investigated predefined movements and did 
not take into account the different characteristics existing 
among individuals.  

sEMG characteristics can vary among individuals and 
some finger movements are distinct amid individuals de-
pending on their muscle structure. Depending on the user’s 
muscle structure, some finger movements can be challeng-
ing to perform. Generally, the movements of the thumb and 
index finger are more independent compared to the other 
three fingers [10]. Consequently, producing several hand 
gestures that involve the coupled fingers can cause discom-
fort depending on the user. Therefore, a personalized ap-
proach is necessary to identify the finger movements avail-
able as input commands.  

We propose a personalized protocol to select usable 
movements among 64 finger movements and 4 wrist 
movements by processing sEMG signals for each individual. 
The proposed method aims to identify usable movements as 
input commands and to then evaluate the classification 
accuracy. A k-means clustering method was used to sort all 
movements into k classes based on the characteristic of 
sEMG features and a number of k was changed from 2 to 68. 
Experiments were performed by 20 healthy volunteers with 
a total of 18 sEMG electrodes: 11 electrodes on the forearm 
and 7 electrodes on the wrist.  
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II. MATERIALS AND METHODS 

A. Experimental setup 

The sEMG signals were acquired using 18 bipolar elec-
trode sensors (DE-2.1 sensor; Delsys Inc., USA) and were 
amplified by a factor of 1,000 using BagnoliTM systems 
(Delsys Inc., USA). The sEMG signals were sampled at 1 
kHz and were band pass filtered using an FIR filter with a 
frequency range between 20 and 450 Hz. The electrodes 
were attached on the right forearm and wrist of the subjects. 
The electrodes were placed into two rows around the cir-
cumference of the wrist region proximally near the head of 
the ulna (7 electrodes) and the thickest region of the upper 
forearm (11 electrodes), as shown in Fig. 1. 

B. Experimental Procedures 

20 healthy volunteers (12 males and 8 females, 25.2±2.5 
years old, right-handed persons), who had no previous expe-
rience with the following pattern recognition experiment, 
were recruited. The protocol (KH2010-25) was approved by 
the Institutional Review Board at KAIST. Written informed 
consent and assent were obtained from all subjects.  

The subjects were asked to sit comfortably on a chair and 
to place their right elbow on the chair armrest. The subjects 
placed their hand so that the thumb pointed upwards and the 
little finger pointed downwards as if handshaking.  

Each finger has three possible states: flexion, extension, 
and rest, allowing a total of 64 combinations of finger 
movements. We asked the subjects to perform 64 finger 
movements and 4 wrist movements. There were several 
movements that were uncomfortable or challenging to per-
form depending on the subjects because of the muscle anat-
omy of the human hand. We asked the subjects to perform 
the movements as naturally as possible. In addition to the 64 
finger movements, 4 wrist movements, flexion, extension, 
radial deviation, and ulnar deviation were performed. There-
fore, a total of 68 movements were performed for single 
trial.  

A binary number system is implemented for simplicity. 
The binary number 1” indicates flexion or extension and 0” 
indicates rest. The first digit of the binary number represents 
the little finger, the fifth digit represents the thumb and the 
intermediate digits represent the ring, middle, and index 
fingers. The order of flexion or extension movement is 
incremented by one. For example, 00011” (4th movement) 
represents the flexion of the ring and little fingers and the 
rest of the thumb, index, and middle fingers. And then 
00100” (5th movement) represents the flexion of the middle 
finger and the rest of the others. All 32 possible flexion 

movements are performed and then the 32 extension move-
ments are carried out in the same manner. 

The subjects maintained a rest posture (no movement), 
which is defined as the state when the amplitudes of the 
sEMG signals from all channels are not activated. Subjects 
were then asked to produce each movement for 4.5 s which 
was followed by a 1.5 s resting period, namely, each 
movement took 6.0 s for all 68 movements during a single 
trial. Subjects performed a total of 680 movements during 
10 trials. They produced movements with a moderate and 
constant force. To avoid fatigue, two minutes of rest was 
provided after each trial. 

C. Personalized protocol to select usable movements  

1) Feature extraction 
In Fig. 2, the time-domain features were extracted every 

50 ms, during the time interval between 1.8 s to 4.3 s of 
each movement with a time window of 200 ms in duration. 
Features were normalized with the maximum values from 
each channel of each trial. 3 time-domain features: the mean 
absolute value (MAV), waveform length (WL), and Willi-
son amplitude (WAMP) were calculated [1]. 

2) Selection of personalized movements 
The purpose of selecting usable movements for each sub-

ject is to find applicable movements among all possible 
movements and to arrange them into classes. There are 

 
Fig. 1. 18 sEMG channel locations for forearm (11 electrodes) and for
wrist (7 electrodes). 
 

Fig. 2. Proposed protocol to select usable movements for classes. 
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some movements that are challenging to perform, making 
them difficult to be repeated, and some movements that 
share similar sEMG characteristics, making them difficult to 
differentiate from one another during pattern recognition.  

Step 1) Partition of all movements into classes 
All movements in the odd number trials were sorted into 

distinct classes using the k-means clustering method. The k-
means clustering method was used to partition movements 
into Nk-means (number of k-means) classes in which each 
movement belongs to the class with the nearest mean. In 
this paper, a class is a collection of movements sharing 

similar sEMG features, namely, the movements in the same 
class indicate that they share similar sEMG features and can 
be used as the same input command. However, in some 
cases, the same movements may not be in the same class 
because the sEMG characteristics could vary over trials.  

Step 2) Selection of usable movements for classes 
It is necessary to remove the outlying movements, which 

were not able to be sorted into a certain class repeatedly. If 
the number of movements in each class was larger than a 
threshold1 ( 1), the corresponding movement was saved or 
otherwise eliminated. The selected classes will then be used 
to build a classifier and assess the classification perfor-
mance in the next section. 

Step 1) and step 2) were repeated under several conditions 
of Nk-means and 1. To investigate the effect of Nk-means, step 1 
was tested for all possible values of Nk-means ranging from 2 
to 68 (number of all movements). In order to determine the 
appropriate values of 1, step2 was carried out for 3 differ-
ent values. The values chosen for 1 were 3, 4, and 5 be-
cause the number of trials for the selection processes was 5, 
a half of all trials. To guarantee that a single movement was 
always included in one class, the minimum number 1 was 3 
and was increased to 5. The entire process consisting of two 
steps above was carried out under 67×3=201 conditions 
iteratively.  

To investigate the effects of electrode location, 3 locations 
were used such as the first forearm + wrist (FW) location 
with 18 electrodes, the forearm (F) location with 11 
electrodes, and the wrist (W) location with 7 electrodes.  

3) Assessment of selected classes. 
An artificial neural network (ANN) with multilayer per-

Table 1 Selected movements for 15 classes in FW location (S03 and S15) 

Class S03 S15 
1st 1    33 1    33 
2nd 2     6    22    26    30 2 
3rd 3     4    11    12    19    20    27    28    45 15 
4th 5    17    21 16    24 
5th 9    25    34    48 23 
6th 16    24 32 
7th 35    43 34 
8th 36    37    40 35    39 
9th 38    46 41    42 
10th 41 43    44 
11th 49    57 49    57    58 
12th 51    54    59 65 
13th 52    56    63    64 66 
14th 66    67 67 
15th 68 68 

 
 

 

 
 

Fig. 3. Raw SEMGs of ch1 - ch11 on forearm for (a) 16th movement and (b) 24th movement for S03, (c) 16th movement and (d) 24th move-
ment for S15. 16th movement is index, middle, ring, and little finger flexion. 24th movement is thumb, middle, ring, and little finger flexion. 
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ceptrons, which is one of the most popular machine learn-
ing-based classification and regression algorithm, was used 
for classification [11]. The odd number trials were used as 
the training set to optimize the ANN model parameters and 
the even number trials were used as the test set [7], [8]. The 
classification was performed when Nc ranged between 2
29 because we achieved a meaningless accuracy when Nc 
was larger than 30. The lowest error was found for each Nc 
and was used for the result analysis.  

III. RESULTS AND DISCUSSION  

A. Selected movements for classes 

Among 68 movements, usable movements for 15 classes 
were different depending on sEMG features of each subject. 
For example, Table 1 shows the selected movements for 15 
classes of two subjects in FW location. The each class was 
composed of more than one movement. Two subjects (S03 
and S15) had a same class, which was composed of 16th 
movement and 24th movement. For each subject, both 
movements showed same features based on raw sEMG 
(ch1~ch11 on forearm) as shown in Fig. 3. When some 
movements had similar sEMG features, corresponding 
movements were used for same input commands. However, 
both movements showed different features between both 
subjects despite of same movements (16th and 24th move-
ments). In addition, the total number of movements in 15 
classes was less than the number of all movements (68) in 
both subjects. In order words, the movements, which 
showed different sEMG features in trials, were removed 
from classes.  

B. Classification performance in 3 locations 

Fig. 4 shows the average errors for each class (2-29) in 
FW, F, and W locations. As the number of classes increased, 
the errors increased in all locations. The maximum number 
of classes less than 5% error was 13 classes for forearm and 
wrist location, 10 for forearm location, and 8 for wrist loca-
tion. Based on the user’s requirements such as classification 
error and number of electrodes, user can select the location 
of electrodes. 

The maximum number of classes with less than 5% error 
on each subject was 18.5±3.0 for FW, 11.7±1.9 for F, and 
8.9±1.7 for W. FW outperformed F and W (p-value < 0.05). 
F also outperformed W (p-value < 0.05). The p-values were 
calculated from the one-way analysis of variance (ANOVA). 
The standard deviation of maximum number of classes in 
different electrode locations was attributed to the sEMG 
features from each movement and in same location was 
attributed to how well each subject moved their fingers 
repeatedly. 

IV. CONCLUSIONS  

We proposed the personalized protocol to use the appli-
cable movements for pattern recognition. The sEMG fea-
tures from the 11 electrodes on forearm and 7 electrodes on 
wrist were used to analyze whether movements are usable. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. Average errors of 20 subjects for (a) forearm and wrist location, 
(b) forearm location, and (c) wrist location. 
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The proposed protocol selected the movements for classes 
among all candidate movements, before a classification 
process. We used the k-means clustering method to sort all 
movements into classes and removed unrepeatable move-
ments based on threshold value. The selected movements 
for each number of classes were different on each subject. 
The maximum number of classes with less than 5% error on 
each subject was 18.5±3.0 for FW, 11.7±1.9 for F, and 
8.9±1.7 for W. The outcome of this study can be used to 
select usable movements for myoelectric pattern recognition.  
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