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1 Introduction

Motion estimation of human limbs can be applied to support 
the intuitive control of prostheses and to enhance physical 
strength. Fast motion intention recognition and robust motion 
information acquisition in various environmental conditions 
and estimation accuracy are required for natural limb motions 
during physical human–robot interactions (pHRIs) [1, 2]. As 
a biological actuator, skeletal muscle has a significant func-
tion in the control of force and motion in humans [3]. When 
humans intend any type of limb motion, the motor cortex in 
the brain activates and transmits the neural signals to the mus-
cle fibers. Fibers that are stimulated by electrical impulses 
with an action potential contract and twitch. When the mus-
cle fibers are activated, the components of muscle fiber (i.e., 
myosin and actin) pull each other so that the muscle shortens 
in the longitudinal direction and the components stack in the 
lateral direction, resulting in muscle thickening and enlarge-
ment of the muscle cross section. Concurrently, the physical 
properties of the bundle become dense and stiff. The combi-
nation of small fiber twitches also causes lateral oscillations. 
Bioelectric signals that measure physiological and physical 
changes in skeletal muscles provide motion intention rec-
ognition more rapidly than actual motion generation. Sur-
face electromyography (EMG) measures the superimposed 
action potentials on the skin overlaying the muscles and is 
affected by the number of activated fibers and frequency of 
activation following the action potentials [4]; these action 
potentials are the inputs for the skeletal muscle, whereas 
the actual limb motions are the output signals of the muscle. 
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Mechanomyography (MMG) measures the lateral oscilla-
tions, which are related to the length, cross-sectional changes, 
and stimulation frequencies of the muscle fibers on the skin 
[5]. Therefore, skin properties such as skinfold thickness 
affect the vibrations [6]. Muscle stiffness is measured using 
an active muscle stiffness sensor (aMSS) [21] based on piezo-
electric resonance [22–24]. This physical sensor can measure 
changes in stiffness through clothes, an important aspect of 
pHRIs. aMSS are also less sensitive than other sensors to 
skin conditions such as skin impedance (dry/wet) and skin-
fold thickness [21]. Studies of EMG, MMG, and aMSS have 
revealed that the features of the signals are highly correlated 
with the muscle contraction forces under general conditions. 
Therefore, it is possible to estimate the contraction force and, 
consequently, the joint torque, from the amplitudes acquired 
via EMG [7], MMG [8, 9], and aMSS.

However, the estimates gathered using EMG and MMG 
are distorted and exhibit time-varying behavior under mus-
cle fatigue conditions. In physiology, muscle fatigue is usu-
ally defined as the loss of voluntary force-producing capacity 
during exercise [10, 11] and, more specifically, as a process 
that develops over time and progressively changes the char-
acteristics of the material or the mechanism without an evi-
dent change in performance until the point of deformation or 
rupture [3]. The features of bioelectric signals over time have 
been analyzed in long-lasting sustained contraction tests 
under isometric conditions [12], and the signal features dur-
ing repeated cycles of intermittent isometric contraction have 
been analyzed while subjects maintained a target amount of 
force [13]. During the generation of a constant force over 
a long period of time, the amplitude of the EMG signal 
increases, and its mean frequency decreases over time [14, 
15]. The MMG signal amplitude decreases under fatigue [13, 
16]. These studies demonstrate that muscle fatigue hinders 
the estimation of the contraction force. Some studies [17, 
18] have investigated the inclusion of a compensating fac-
tor for this time-varying limitation in the estimation, but the 
problem remains challenging. From an engineering perspec-
tive, these limitations imply that biosignals cannot be fully 
employed as robust control inputs in pHRI devices.

The generated joint force can be intentionally and con-
sistently maintained even under fatigue. Thus, the physical 
change in the muscle is more robust than the bioelectric sig-
nal, which is considered an control input for limb motion. 
Therefore, direct measurements of the physical changes in 
the muscle properties are expected to be resilient to muscle 
fatigue. This paper proposes the measurement of muscle 
stiffness [19, 20], which is a representative physical change 
in muscle during contractions. Stiffness is both a quantity 
that expresses a physical change in muscle activity and an 
intrinsic mechanical characteristic of a muscle.

This paper assesses muscle stiffness signals under mus-
cle fatigue conditions. The time delays between the EMG 

and force signal [27] are known as electromechanical 
delays [25, 26], and the physical skeletal muscle intermedi-
ates between the neural signal and the actual motions. The 
aMSS measures the physical changes in the skeletal mus-
cle, and the aMSS lies temporally between the EMG and 
force signal. Therefore, the aMSS signal should be resilient 
to muscle fatigue as a physical change in the muscle. The 
EMG and MMG signals were compared with aMSS; the 
features of each signal were extracted using temporal and 
spectral approaches. Long-lasting contractions and various 
contraction levels after fatigue were also examined. The 
signal features over time were analyzed statistically, and 
these results are discussed with respect to the physiological 
changes in the muscle.

2  Methods and materials

2.1  Muscle stiffness sensor

Generally, a mechanical body has a characteristic phe-
nomenon called resonance: an object oscillates at a greater 
magnitude at a certain frequency. The properties of the 
resonance oscillations reportedly change when the oscillat-
ing body comes into contact with other mechanical bodies 
[28], and the resonance frequency of a material depends on 
its stiffness and its material density. As a material becomes 
stiffer, the resonance frequency increases, and the magni-
tude of the vibrations changes. Thus, it can be inferred that 
stiffness changes with changes in frequency. The stiffness 
can be measured by acquiring the magnitude of vibration 
which is a mechanical expression of the sensor’s frequency 
response. Muscle stiffness is measured using an aMSS 
based on the correlation between stiffness and resonance.

The aMSS consists of a pair of resonating piezoelectric 
transducer (PZT) probes and a resonance signal processing 
circuit [21], as shown in Fig. 1a. In the PZT probe, the driv-
ing PZT generates a mechanical vibration, and the pickup PZT 
measures the vibration. To generate a continuous resonance in 
the resonance frequency of the probe (fr = 125 kHz), the circuit 
creates the output signal, which is transmitted to the driving 
PZT, and the input signal, which is measured using the pickup 
PZT, identically at the resonance frequency using a band-pass 
filter (fcutoff = 100–150 kHz), amplifier, and phase shifter. To 
measure the change in stiffness, two features are extracted 
from the resonance signal; Fig. 1a shows the conceptual rela-
tionship between the signals: Sf for resonance frequency and 
Sa for vibration amplitude detection. Sf can be extracted from 
a modified binary signal using a bias shifter and amplifier, and 
Sa can be acquired from a modified quasi-DC signal using an 
amplifier, rectifier, and low-pass filter to measure each feature 
without cross talk between the features. Figure 1b shows the 
correlation between each feature and contraction force under 
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isometric conditions. Each aMSS signal is exponentially cor-
related (R > 0.9) with the contraction force as depicted in 
Eq. (1), where F indicates the maximum voluntary contractions 
(MVCs) based on the muscle contraction level, Sx is each sen-
sor signal (Sf and Sa), and A and B are constants.

(1)F = A × exp(B × SX).

2.2  Subjects and experimental procedure

Twelve healthy subjects with no overt signs of neu-
romuscular disease volunteered to participate in the 
study and signed an informed consent form. The sub-
jects comprised ten males and two females (average age 
27.25 ± 3.86 years, average height 170.83 ± 9.78 cm, 

Fig. 1  a Composition of the 
aMSS: PZT probe, signal 
processing, and signal detection 
(top) correlation between sig-
nals; resonance signals Sf from 
frequency and Sa from ampli-
tude (bottom). b Correlation 
between the muscle contraction 
level and aMSS signal [21]
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average weight 68.25 ± 12.74 kg). This study was con-
ducted according to the protocols approved by the Insti-
tutional Review Board of the Korea Advanced Institute of 
Science and Technology (KAIST).

The target motion was an isometric elbow flexion, and 
each signal was measured on the biceps brachii, which is 
the dominant agonist muscle for this motion. The upper 
arm and forearm were maintained vertically in a guide 
frame, as shown in Fig. 2a. The forearm was fixed using a 
cast frame that covered the area from the hand to the elbow, 
and the upper arm was guided separately using a vertical 
frame that only covered the back of the upper arm to avoid 
changes in the geometry of the muscle resulting from side 
covers. The force sensor was located at the end of the joint 

near the wrist and measured the elbow flexion force. Before 
the test, the individual MVC was measured using a force 
sensor. The subjects reached the maximal force by gradu-
ally increasing the force in 1-s increments and maintaining 
the force for 2 s for the MVC measurement. Then, the sub-
jects rested for 100 s for muscle recovery before the main 
test. A program on the monitor in front of the subjects dis-
played the target and measured forces. The EMG, MMG, 
and aMSS signals were tested independently to acquire 
high-quality data at the optimal measurement site and to 
avoid cross talk between the sensors. The experiments were 
conducted in random order to reduce the order effect. Each 
sensor was attached near the belly center of the biceps bra-
chii, which is the best sensor position for data acquisition, 

Fig. 2  Experimental setup and test protocols: a measurement sites 
for the force sensor and muscle contraction sensor (aMSS); b meas-
urement sites for the sensors on the biceps brachii muscle; c test 1 

under conditions of long-lasting contraction; d test 2 under conditions 
of varying contraction levels
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as shown in Fig. 2b. To permit muscle recovery, the sub-
jects rested for at least 6 h between tests.

Each sensor signal was assessed in two experiments: a 
long-lasting contraction at the unit level to compare sen-
sors and continuously varying levels of change contrac-
tions to analyze individual sensors. In the first test, illus-
trated in Fig. 2c, the subjects were asked to maintain their 
elbow flexion at 50 % of their individual MVC following 
the guide program for as long as possible; the subjects tired 
when generating 50 % of their MVC [29]. For this experi-
ment, the subjects were required to generate force until 
they could no longer sustain that level of force. Individual 
times differed, but all subjects generated force for longer 
than 60 s. The second test measured the signals for con-
tinuously varying levels of force contractions and is illus-
trated in Fig. 2d. One set consisted of four target forces (10, 
30, 50, and 30 % MVC) in 7.5-s intervals (i.e., total dura-
tion = 30 s/set) until failure. Most subjects repeated the 
contraction set more than 10 times.

2.3  Measurement

The EMG, MMG, and aMSS signals were compared 
with the reference joint force signal. The EMG signals 
were measured using a commercial EMG system (Bag-
noli-16; Delsys Inc, USA). The measured signals were 
conditioned by rejecting the power line noise (60 Hz) 
through a notch filter and band-pass filtering between 5 
and 500 Hz through a fourth-order Butterworth filter. The 
MMG signals were measured using MEMS accelerome-
ters (ADXL202JE; Analog Devices, Inc, USA), which are 
lightweight and small. The MMG signals were also pro-
cessed to remove 60-Hz noise, and the desired information 
between the 5- and 150-Hz signals was extracted using the 
same filtering methods used for the EMG. The EMG and 
MMG signals, including the aMSS, were acquired using 
a 1-kHz sampling frequency with a 16-bit A/D converting 
board.

All sensor signals were analyzed based on both their 
temporal and spectral features. For aMSS, Sa and Sf were 
used directly as the temporal and spectral features. For 
EMG and MMG, the temporal feature was extracted using 
a mean absolute value (MAV) computation that indicates 
the smoothed amplitude waveform of the rectified raw sig-
nal as follows:

where N is the window length and xk is the kth sample value 
of the raw signal. In this study, 200-ms windows (N = 200) 
were overlapped for smoothing. The time domain signals 
were transformed to the frequency domain using the fast 

(2)MAV =
1

N

N
∑

k=1

|Xk|.

Fourier transform (FFT) method with 250-ms windows. 
The mean frequency (MNF) was computed using Eq. (3) 
based on the FFT data, where k is the total number of fre-
quency bins, Ik is the intensity of the spectrum at bin k, and 
fk is the frequency of the spectrum at k:

The EMG MNF and MMG MNF were determined only 
for comparison because the most commonly used signal for 
force estimation is the temporal domain signal.

Each feature trend was analyzed over time. The time-
scales of each signal were normalized with respect to 
the maximum time, which is the total contraction time, 
required to synchronize each different test time. Changes 
in the normalized features were analyzed statistically at 
every 20 % interval. The signals were normalized using a 
stable value within 5 s after initiation of the contractions. 
The change rates were analyzed based on these normalized 
values.

The subjects attempted to maintain constant contrac-
tion forces, but force fluctuations at values near the tar-
get force occurred due to the significant activation of the 
antagonist muscles and substantial changes in the direc-
tion of the net force of the activated muscles. Therefore, 
aspects of the signals should be compensated to analyze 
their features under constant force conditions. All sensor 
signals were divided by the force signal to compensate for 
fluctuations in the generated force, under the assumption 
that the sensor signals were proportional to the force in 
a small range. The force signals were then maintained at 
a constant value, and the other signals could be expected 
to be responses to the target force. The synchronization 
between the sensors was manually matched based on the 
activation onset time [30] of the reference force sensor, 
which was used in all tests.

2.4  Analysis methods

The test time of each subject differed significantly due to 
individual ability; thus, the signals were analyzed using the 
normalized test time. The total contraction time [31] was 
normalized by considering the activation start time as 0 
and failure as 100 %. In the second test, the test set was 
analyzed using the same normalized test time. The sig-
nals were analyzed for every 20 % of normalized test time 
including the start time (i.e., 0, 20, 40, 60, 80, and 100 %).

The signal features were analyzed in two ways. First, the 
individual features were analyzed over time using a Bland–
Altman plot [32], which is a graphical analysis method 
used to compare the performance of two sensor signals. 
The x axis is the average of each feature and the generated 

(3)MNF =

∑N
k=0 Ik · fk

∑N
k=0 Ik

.
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force, and the y axis is the difference (as a percentage) 
between them. Therefore, the data were concentrated in the 
(1, 0) space under constant force conditions when a signal 
feature was highly correlated with the force.

Second, the features recorded during the last 5 s of the 
test were statistically analyzed using a Mann–Whitney U 
test, which is a nonparametric statistical hypothesis test 
used to assess whether each sample has independent trends. 
The Mann–Whitney U test compares the medians of inde-
pendent samples under the null hypothesis that the medi-
ans of the two samples are identical. Consider two samples, 
sample A and sample B; this method counts the number of 
observations in sample B and sums the rank of the observed 
sample for each observation in sample A. The value of U 
reported in this analysis that is based on sample A (each 
signal features) is calculated as.

where NA is the number of features in A, NB is the number 
of feature in B, and RA is the observed ranks for feature A. 
This test also results in the approximated p value; therefore, 
we can indicate the difference between each feature based 
on p value.

3  Results

3.1  Feature changes in long-lasting isometric elbow 
flexion

For the fatigue conditions, subjects were required to gener-
ate 50 % MVC force until failure. Figure 3a illustrates one 
case of signal features. During the fatigue condition, the 
EMG MAV increased, and the EMG MNF and MMG MAV 
decreased gradually, in agreement with previous research. 
However, there were small changes in the aMSS Sa and 
aMSS Sf caused by the stiffness.

Figure 3b presents the statistical expressions for the fea-
ture changes in the sensor over the normalized times. The 
duration of the change depends on individual muscle per-
formance. The amplitudes were also normalized using the 
initial amplitude to compare the change rates. The EMG 
MAV increased gradually during the middle of the trial and 
changed dramatically at the end of the trial. These results 
indicate that the subject could sustain the target force dur-
ing the middle of the trial with little fatigue, after which 
point the subject felt strong fatigue. The EMG MNF 
decreased gradually. The MMG MAV decreased gradually 
at approximately the same rate from the beginning to the 
end of the trial, and the MMG MNF remained constant. A 
small increase in aMSS Sa was observed; the aMSS Sa sig-
nal increased initially and subsequently remained constant 

(4)UA = NANB +
NA(NA + 1)

2
−

∑

RA

or exhibited a slight decrease, whereas the aMSS Sf sig-
nal behaved similar to aMSS Sa. The initial increase in the 
stiffness signal may be attributable to the damping property 
of the muscle and the contact problems stemming from the 
generated force. After stabilization, the stiffness signal, 
aMSS Sa and Sf, remained constant.

The features in Fig. 4a were analyzed using the graphi-
cal analysis method (Bland–Altman plot) described in 
Fig. 3. EMG(MAV)–force data are widely spread in the 
upper right quadrant. Both the average and difference of 
EMG(MAV)–force increased linearly during constant force 
exertion. This result indicates EMG(MAV) increases dur-
ing the test. MMG(MAV)–force data were spread in the 
lower left quadrant. Both the average and difference of the 
MMG(MAV)–force data decreased linearly during the con-
stant force exertion. This result indicates that MMG(MAV) 
decreased during the test. Both of the sensors indicate that 
there were communication errors between the sensors. 
However, the aMSS Sf–force data were concentrated in the 
center, and the ratio between the two signals was near zero 
(1, 0). The aMSS Sa–force data were similar to the aMSS 
Sf–force data but slightly lower. This finding indicates that 
there were few communication errors between the sensors 
and that the aMSS Sf and aMSS Sa reliably measured the 
muscle contraction during the long-term contraction test. 
The bias errors within the data may be attributable to the 
signal feature normalization process.

Each feature of the signals obtained from the subjects 
was statistically analyzed and is shown in Fig. 4b. The 
solid bars represent the averages of the features during 
the last 5-s signal of the test, and the error bars indicate 
individual standard deviations. The EMG MAV increased 
by 46.42 ± 29.13 % over its starting value, and the EMG 
MNF decreased by more than 6.79 ± 7.81 %. The MMG 
MAV decreased by 32 ± 25.27 %, whereas the MMG MNF 
increased by only 3.23 ± 14.11 %. The Sf increased by 
11.50 ± 12.70 %, and the Sa increased by 23.83 ± 28.48 %. 
The trends of the EMG MAV and MMG MAV signals dif-
fered significantly at the 5 % significance level (p < 0.05) 
from the Mann–Whitney U test marked with asterisk. Thus, 
the MMG MNF, Sf, and Sa trends are similar to those of the 
force signal.

3.2  Feature changes in the varying contraction level test

Each signal feature was acquired under continuous activa-
tion-level change conditions, and each feature change was 
analyzed with respect to time. The signals from each subject 
were normalized over the maximum contraction time and 
amplitude to obtain the change trend for each signal feature. 
The individual standard deviations are represented as error 
bars on the graphs in the corresponding timescales. Figure 5a 
illustrates one case of feature changes in two sets according 
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to the time flow. Each level of activation according to the 
iteration sets is displayed in Fig. 5b. As the time increased, 
EMG MAV, EMG MNF, MMG MAV, and MMG MNF 
increased, even though the activation level was the same.

Each feature of the signal in the dynamic condi-
tion test described in Fig. 5 was analyzed statistically 

(Mann–Whitney U test). The graphs in Fig. 6 were grouped 
according to the activation level of each set (X axis), and 
data from the same level were plotted in time. Table 1 
describes the correlation between time and activation-
level changes in the groups in the same level during the 
dynamic condition test. This table presents the linear fitting 

Fig. 3  a Feature changes in 
the EMG, MMG, and aMSS 
signals under fatigue conditions. 
The dot-dash lines indicate 
constant values, and the dotted 
lines indicate the fitting line for 
each signal. b Feature changes 
in the EMG, MMG, and aMSS 
normalized over time
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coefficient in Eq. (5), in which Y, X, and R2 are the sen-
sor signal, normalized time, and correlation coefficient, 
respectively.  

In Fig. 7a, c, the EMG MAV and MMG MAV tend to 
increase significantly as time increases. There are few 
changes in the data and a low data change rate under 10 % 
MVC, but from 30 % MVC, there are significant changes 
(p < 0.05) in the data, and the data change rate increases 
with MVC level. Similar to the EMG MAV, the MMG 
MAV also increased. The data between each set in the 
50 % MVC changed significantly, and the data change rates 
were the largest among the sensors. However, this result 
differs significantly from the results of the first test, indi-
cating that the difference in the contraction type is due to 
static and dynamic contraction. The overall signal ampli-
tude increased as the test set was repeated, which increased 
the fatigue, but the signal amplitude decreased at the sub-
sequent same levels of target force. In Fig. 3a, the signal 
amplitude of the second set was larger than that of the first 
set, but the signal amplitude decreased significantly at the 

(5)Y = αX + β

same level in the set, consistent with the observations of 
Yoshitake et al. [12] and Madeleine et al. [27]. The MMG 
MAV decreased in the long-lasting contraction tests [12] 
and increased in the dynamic contraction tests [27]. How-
ever, the MMG MNF did not change. Meanwhile, the 
aMSS Sa did not change significantly as time increased, as 
shown in Fig. 6e. Table 1 shows the activation-level change 
rate, which is α in Eq. (4), in the three cases. In agreement 
with the statistical analysis, aMSS Sa exhibited the lowest 
rate across the three conditioned force levels (MVC 10, 
30, 50 %). For EMG MNF and MMG MNF, no significant 
change in aMSS Sf was observed over time, as shown in 
Fig. 6b, d, f. However, as shown in Table 1, aMSS Sf exhib-
ited the lowest rate of change among all three measure-
ments at all conditioned force levels.

4  Discussion

These results indicate that the force activation levels were 
estimated robustly under fatigue conditions using the stiff-
ness signals and can be explained based on the physiological 
muscle contraction process. Figure 7 describes the contrac-
tion process in the right direction of the order. EMG signals 
are extracted before the muscle contraction from the neural 
signal, and the force is measured at the end of the sequence 
of interactions between the tendon and bone affecting the 
limb motion [4]. The mechanical property-based aMSS sig-
nal can be measured simultaneously with muscle contrac-
tions. The aMSS is sufficiently rapid to estimate motions, 
and its mechanical sensing is highly correlated with the gen-
erated joint force, even during long-term contractions. The 
MMG signal extracts the physical property-based informa-
tion through the skin; thus, the MMG signal is affected by 
the properties of both the skin and muscle.

EMG signals are typically not directly proportional to the 
muscle contraction force due to the other component effects 
stated previously; however, under isometric conditions, this 
relationship can be considered linear [7]. This study examined 
isometric contraction conditions to evaluate only muscle prop-
erty changes in the absence of other effects, such as the tendon 
force–length–velocity relationship. However, this linear rela-
tionship is disrupted under fatigue conditions. While the gen-
erated contraction force remains constant, the central nervous 
system attempts to compensate the power due to the tempo-
rarily reduced force production [10, 11]. Under fatigue con-
ditions, the number of activated muscle fibers increases while 
the firing rate decreases. This indicates that the amplitude of 
the EMG signal increases while its MNF decreases and the 
amplitude of the MMG signal decreases [13]; however, the 
output, i.e., the joint force, remains constant. This could be 
interpreted as a change in the muscle fiber activation signal 
while the physical muscle bundle properties remain the same.

Fig. 4  a Bland–Altman plot of the signals under fatigue conditions. 
b Statistical analysis of each feature of the EMG, MMG, and aMSS 
signals compared with the muscle contraction force
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However, individual variables must be considered. The 
muscle stiffness measurements using an aMSS signal were 
analyzed using a previously developed mathematical model. 
The frequency shifts in the aMSS signal were expressed in 
accordance with Eq. (6) [21], and the amplitude changes in 
the sensor were expressed in accordance with Eq. (7).

(6)
sf ≈

1

2π2
·

(

kx

Zpzt

)

.

In the mathematical model, kx represents the effective mus-
cle stiffness, ZPZT represents the impedance of the PZT, and 
Cx represents constant variables. The effective stiffness (kx) 

(7)Sa ≈ |C1 − C2kx|.

(8)kx = 2

(

S

π

)
1
/2 Y

(

1 − υ2
) .

Fig. 5  a Feature changes in 
the EMG, MMG, and aMSS 
signals under dynamic fatigue 
conditions. b Feature changes 
in EMG MAV, EMG MNF, 
MMG MAV, MMG MNF, Sa 
(amplitude), and Sf (frequency) 
according to the iteration set. 
The three data points indicate 
activation levels of 10, 30, and 
50 % from the front line
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is a function of the contact area (S), the material’s Young’s 
modulus (Y), and the Poisson ratio (v), as described in Eq. (8). 
Therefore, changes in the signals are anticipated due to 

changes in the contact area resulting from muscle expansion 
and band elasticity. Increasing the contact area increases kx, 
Sf, and Sa. Another aspect to consider is the thermal drift of 

Fig. 6  Feature changes in the EMG, MMG, and aMSS between non-fatigue and fatigue conditions

Table 1  Data change rates 
according to activation level 
during fatigue. α and β are 
fitting coefficients in Eq. (5)

MVC (%) EMG MMG aMSS

α β R2 α β R2 α β R2

MAV

 10 0.63 12.09 0.58 2.68 9.58 0.36 Sa (amplitude) 0.01 10.59 0.25

 30 1.72 25.75 0.88 4.61 15.03 0.80 1.23 33.95 0.89

 50 2.14 50.00 0.84 8.92 38.21 0.94 0.23 46.59 0.35

MNF

 10 4.67 12.84 0.94 1.75 7.42 0.50 Sf (frequency) 0.01 15.26 0.70

 30 4.56 25.32 0.97 1.43 32.24 0.82 0.73 32.69 0.74

 50 2.47 42.21 0.84 0.94 45.00 0.41 0.38 46.62 0.85
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the sensor, which is a characteristic of the PZT. After contact, 
the temperature of the PZT may increase with body tempera-
ture, inducing a thermal drift. The signal should compensate 
for this thermal effect. The maximum contraction forces, 
skinfold thickness, and skin tissue elasticity could also con-
tribute to individual variances. Despite these limitations, our 
results demonstrate that the trends in the recorded signal are 
similar to those of the reference force signal.

5  Conclusion

This paper compares the performance of aMSS with that of 
EMG and MMG under muscle fatigue conditions. After the 
onset of fatigue, the measured EMG and MMG signals differ 
significantly from the previous patterns, although the same 
force from the force sensor is constantly applied. However, 
the aMSS, which measures a physical stiffness change in the 
muscle, is sufficiently resilient to muscle fatigue, which is 
one of the biggest challenges facing physical human–robot 
applications such as exoskeletons. A combination of biosig-
nal sensors could improve the estimation of joint motion 
by reducing the limitations of each individual sensor. The 
development of a physiological and physical model for stiff-
ness changes and corresponding limb motions that consid-
ers other mechanical properties and effects of tendons is also 
required. This study was conducted under isometric contrac-
tion conditions to analyze muscle properties accurately. In 
future research, the sensor will be tested under dynamic con-
ditions for more practical pHRI applications.
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