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1 Introduction

Pattern recognition (PR) of surface electromyography 
(sEMG) has been studied for decoding the motion intent 
in human–machine interactions (e.g., powered prostheses, 
exoskeletons, and rehabilitation robots [26]). Dexterous 
movements have been decoded using different features and 
classification methods with high classification accuracy [4, 
6, 8, 13, 16, 21, 25, 31–35, 37, 39]. To enhance the reliabil-
ity of PR technique, several issues including electrode shift 
[38], variation in force [3, 17], variation in limb position 
[14], transient changes in EMG [5], and adherence to sub-
set of admissible movements [27] were still studied.

Previously, a predefined subset of movements has been 
typically used for all subjects in PR studies, because accu-
rate sEMG patterns could only be recorded under a strict 
experimental protocol [27]. However, the approach using 
normative movements is inadequate for hand movements 
which show subject-specific sEMG patterns and for ampu-
tees who need their own target movements [1, 23]. For hand 
movements, sEMG patterns show inter-task variability due 
to unique muscle structures of individuals [22]. The sEMG 
patterns of different movements could show similar pat-
terns because the muscles responsible for the finger move-
ments are located in the intermediate and deep layers of the 
forearm (cross talk) [29, 40]. In addition, independence of 
finger movements was varied according to individuals due 
to differences in anatomic factors including biomechanical 
connections between the digits and functional organization 
of multi-tendoned finger muscles [15].

Classification of finger movements has been performed 
for an optimal set of predefined finger movements with-
out considering individual characteristics [2, 11, 20, 28, 
36]. For example, Al-Timemy et al. [2] classified 15 fin-
ger movements, which are 12 individual finger movements 
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and three flexions of combined fingers for healthy subjects. 
They focused on increasing the classification accuracy and 
used the predefined finger movements for all subjects. The 
effects of subject-specific characteristics were not con-
sidered during the classification process. Analysis of the 
repeatability of a movement between trials and separabil-
ity between movements within a trial could help to identify 
which movements are more appropriate for each subject. 
Kuiken et al. [7] used repeatability and separability indices 
to identify how sEMG patterns differ between novice and 
experienced groups. The repeatability refers to how well 
a movement can be performed consistently between tri-
als: Performing some finger movements might be difficult 
to repeat for some individuals. The separability between 
movements refers to the distinctness of sEMG patterns 
compared with different movements. While the results 
showed that the repeatability between trials was compara-
ble in two groups, the separability between movements was 
better in experienced groups. Both indices can be used for a 
quantitative analysis of sEMG patterns.

In this paper, we propose a method to rank the set of 
hand movements using processing sEMG patterns and to 
sort movements in the order of the easiness of classification 
for each individual. Unlike previous PR studies, a subset of 
movements was selected with a rank order prior to a clas-
sification process and then evaluated using PR algorithms 
as the number of desired movements (Nm) changed. We 
instructed 20 healthy subjects to perform 66 hand move-
ments as naturally as possible as though they perform the 
movements in everyday life. The 66 movements were 31 
finger flexion movements, 31 finger extension movements, 
and 4 wrist movements. The 18 electrodes were used for 
the proximal forearm (11 electrodes) and the distal fore-
arm (7 electrodes). The ranked order of movements was 
extracted for each location, respectively. We evaluated the 
classification errors for the ranked order and analyzed the 
effect of individuals and the electrode locations.

2  Materials and methods

The proposed method is outlined in Fig. 1. The experiment 
setup and experiment procedures are described in detail in 
Sects. 2.1 and 2.2. Signal processing for feature extraction 
and rank order extraction is reported in Sects. 2.3, 2.4 and 
2.5. Classification is shown in Sect. 2.6.

2.1  Experimental setup

Eighteen bipolar electrodes sensors (DE-2.1 sensor; Del-
sys Inc., USA) were attached on the right proximal fore-
arm and distal forearm for all subjects [19, 24]. Sensor 
specifications are 41 × 20 × 5 mm for case dimension and 

10 × 1 mm for contact electrode dimension. The signals 
were sampled at 1 kHz and were band-pass filtered using 
an FIR filter with a frequency range between 20 and 450 Hz 
[12, 18]. The electrodes were placed in two rows around the 
circumference of the thickest region of the upper proximal 
forearm (11 electrodes) and the distal forearm region proxi-
mally near the head of the ulna (7 electrodes) as shown in 

Fig. 1  Schematic diagram for the proposed method a a ranking 
movement process and b a classification process using ranked order 
of movements. The protocol was repeated depending on the elec-
trode locations and the subsets of movements from subject-specific 
and general order. Nm indicates the number of movements which is 
included for classification

Fig. 2  Experimental setup a top view of the right forearm and b 11 
electrodes on the proximal forearm and 7 electrodes on the distal 
forearm
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Fig. 2. The number of electrodes on the proximal and distal 
forearm was determined based on the subject with the thin-
nest circumference so that an equal number of electrodes 
can be applied for all subjects.

The circumferences were measured with a tapeline in 
order to determine attachment locations and the intervals 
between electrodes. Attachment locations were the thick-
ness region on the forearm and the thinnest region proxi-
mally prior to the head of the ulnar. When electrodes were 
positioned, forearm was wrapped by a tapeline to attach 
electrodes with equidistant intervals. First electrodes for the 
proximal forearm and the distal forearm were determined 
next to the location of the ulnar bone (ch1 and ch12). Then 
each electrode was attached in the counter clockwise direc-
tion as shown in Fig. 2b. The ground reference electrodes 
were placed on the left wrist and on both elbow bones.

2.2  Experimental procedures

We recruited 20 healthy volunteers (14 males and 6 
females, 25.0 ± 2.1 years old, 21.8 ± 2.2 body mass index, 
right-handed persons) who have no previous experience or 

knowledge on pattern recognition experiments. The experi-
mental protocol (KH2010-25) was approved by the Institu-
tional Review Board at KAIST. Written informed consent 
and assent were obtained from the subjects. The subjects 
were asked to sit comfortably on a chair and to place their 
right elbow on the chair’s armrest. The subjects placed their 
hand so that the thumb pointed upwards and the little finger 
pointed downwards, as if handshaking (see Fig. 2a). The 
subjects maintained a rest posture (no movement), which 
is defined as the posture when the amplitudes of all sEMG 
signals were lower than a threshold.

We asked the subjects to perform 62 finger movements 
and 4 wrist movements as shown in Fig. 3. Each fin-
ger has three possible states: flexion, extension, and rest. 
Thirty-one allowable flexion movements were performed, 
and then, the 31 extension movements were carried out in 
the same manner. After performing all finger movements, 
the 4 wrist movements of wrist flexion, extension, radial 
deviation, and ulna deviation were performed. During 
whole processes, an experimenter checked whether or not 
a subject performed each movement according to a visual 
guide. If a subject made a mistake for some movements, 

Fig. 3  Sixty-six movements 
were used in this study. The 
order of flexion movements 
increased with one from the 
little finger as a binary number. 
The extension movements are 
performed in the same order, 
and then, the 4 wrist movements 
are performed. “1” indicates 
the flexion/extension, and “0” 
indicates the rest of each finger. 
WF, WE, WR, and WU were 
wrist flexion, extension, radial 
deviation, and ulna deviation
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corresponding movements were performed again and then 
a single trial was finished. Prior to experiments, subjects 
were familiarized with a visual interface and performed 
each movement following a visual guide.

There were several movements that were uncomfortable 
or challenging to perform for some of the subjects because 
of the muscle anatomy of the human hand. We asked the 
subjects to perform the movements as naturally as possible. 
“Naturally” means that it is acceptable to move other fin-
gers if the subject cannot move the instructed finger inde-
pendently. The subjects were instructed to apply force only 

to the designated finger, while trying to relax the fingers 
that are coupled with the instructed finger.

Subjects performed 10 trials. They produced move-
ments with a moderate force. To avoid muscular and mental 
fatigue, they had 2 min of rest time after each trial. Subjects 
were asked to perform each movement for 4.5 s followed 
by 1.5 s of rest for all 66 movements continuously during a 
single trial, as shown in Fig. 4.

2.3  Feature extraction

The time-domain features were extracted every 50 ms dur-
ing the time interval between 3.3 and 5.8 s of each move-
ment with a time window of 200 ms in duration [36]. This 
time region was selected considering the delay between the 
movement cue and actual finger movements and the move-
ments in advance of the rest cue. A sample sEMG data set 
during f11111 (S01) is represented in Fig. 5. Features were 
normalized with maximum values from each channel on 
each trial. The four time-domain features, the mean abso-
lute value (MAV), waveform length (WL), zero crossing 
(ZC), and slope sign change (SSC), were calculated [26] 
(see “Appendix” for the detail). The characteristics of MAV 
and WL are strongly correlated, and the characteristics 
of ZC and SSC are also correlated [9]. The ZC and SSC 

Fig. 4  A movement is performed for 6 s with a 1.5 s rest and 4.5 s 
contraction. After the movement cue by the visual, the subject per-
forms the movement until the rest cue is given and then the next 
movement is performed [36]

Fig. 5  Raw sEMG data during 
f11111 movements (S01, ch01–
ch11 for the proximal forearm 
and ch12–ch18 for the distal 
forearm). The signals prior to 
1.5 s were generated by previ-
ous movements f11110 because 
all movements were continu-
ously performed from f00001 
to WU. The solid line at 1.5 s 
indicates the movements cue, 
and the dashed line from 3.3 to 
5.8 s represents the extraction 
region for feature extraction and 
classification



Med Biol Eng Comput 

1 3

exhibit give indications of how quickly the signal changes. 
The features were extracted for the proximal forearm with 
11 electrodes and the distal forearm with 7 electrodes, 
respectively.

2.4  Analysis for ranking movements

In ranking process, candidate movements were sorted 
based on the distance within a movement and between 
movements. The Bhattacharyya distance (BD) has been 
widely used as a class separability measure for feature 
selection. The BD was used to quantitatively analyze how 
well classes were separated and each class was well distrib-
uted. The BD is contained two information for repeatability 
within a class and separability between classes to assess the 
feature distributions of two classes. For two classes, the BD 
is calculated as follows [10].

where μi and ∑i are the mean vector and covariance matrix 
of class i, respectively. In general, features of movements 
are well separated and classified as the BD is larger.

In data set composed of several classes, we assumed 
that the minimum of the BD value between two move-
ments would indicate that how well features of movements 
were distributed without regard to that of other movements 
which have larger BD. Indeed, the minimum of the BD 
highly influences on classification error. The rank of move-
ments was determined using the algorithm represented in 
Table 1. Set G is the set of ordered movements and is ini-
tially empty. Set R is the set of remaining movements from 
1st to 68th initially including all movements. When all 
movements were included in set G and removed from set R, 
the algorithm was finished. The result of the algorithm was 
the ordered movements in G.

To avoid biased classification results when all trials were 
included in calculating the rank, five odd-numbered trials 
among 10 trials were used and the remaining five even-
numbered trials were excluded for calculating the rank.

2.5  Subject‑specific and general ranked movements

The optimal rank order of movements was independently 
selected for each individual using the algorithm in Sect. 2.4. 
The ranked order of each individual is “personalized.” In 
order to compare the classification performance between 
the personalized rank order for each individual and a gener-
alized rank order, the generalized rank order was extracted 
based on the rank orders of 20 individuals. The sum of rank 
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order for each movement was sorted as descending order. 
The movement with the smaller sum of rank order implies 
that the movement has a higher rank. Therefore, the move-
ments with higher rank were consecutively set as the gener-
alized rank order. The above processes were performed for 
the proximal forearm and the distal forearm, respectively.

2.6  Classification

For classification process, the five odd-numbered trials 
were used for the training set in order to optimize model 
parameters and the five even-numbered trials were used for 
the test set among 10 trials for each subject [2]. Linear dis-
criminant analysis (LDA) classifier was selected over other 
methods for classification because LDA can be simply 
implemented and fast optimized for training and test pro-
cess [23].

The sorted movements in set G from Sect. 2.4 were eval-
uated based on the classification error because we cannot 
guarantee how well the selected movements were classi-
fied. The Nm for classification increased based on a selected 
rank order. For example, if the Nm was 15, the 1st to 15th 
movements in set G were used in the classification process.

3  Results

Figure 6 shows the average BD according to the Nm from 
10 to 30 for the proximal and the distal forearms. The BD 
decreased as the Nm increased. The higher BD, calculated 
by Eq. (1), indicated that the sEMG features were distrib-
uted for better clustering. At each Nm, the BD showed sta-
tistical significance (p < 0.05) between the proximal and 
the distal forearms. For each condition (Nm and electrode 
location), sample size was 20 because five odd-numbered 
trials were used to calculate a single value of the BD for 
20 subjects. Statically analysis was performed using the 
Mann–Whitney test.

Figure 7 shows the average classification errors using 
LDA according to the Nm from 10 to 30 for the proximal 
and the distal forearms. As the Nm increased, the classifi-
cation errors increased for both conditions. The maximum 
Nm with an error lower than 10% was 20 for the proxi-
mal and 12 for the distal. At each Nm, the classification 
error showed statistically significant difference (p < 0.05) 
between the proximal and the distal forearms except 18, 20, 
and 22 Nm. The component of selected movements was dif-
ferent for individuals because the optimal movements were 
selected by the rank analysis for each subject (subject-spe-
cific condition). For all classification results, sample size 
was 100 because five even-numbered trials were used for 
20 subjects. Statically analysis was performed using the 
two-sample t test.
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Figure 8 shows the average classification error of a sub-
ject-specific set and a general set using LDA for the proxi-
mal and the distal forearm locations. As the Nm increased, 
the classification errors increased in both locations. The 
classification errors showed statistically significant differ-
ence (p < 0.05) between the specific and the general from 
12 to 30 for the proximal. For the distal, no significant dif-
ferences (p < 0.05) were shown for all Nm. Other conditions 
showed no difference between the specific and the general 
for both locations. Depending on the electrode locations, 
different generalized movements were extracted as shown 
in Table 2. All wrist movements and rest were included 

within 1st to 5th order in both locations. Twenty-four 
movements marked in bold font in Table 1 were included 
within the 30th movements for both locations.

Figure 9 shows the relationship between the classifica-
tion error and the BD for the proximal forearm and the dis-
tal forearm. Each of the data was obtained when the Nm was 
changed from 10 to 30 and the components of movements 
were the optimal movements for each subject. Exponential 
functions were chosen to fit. R2 were 0.54 for the proximal 
and 0.58 for the distal. In order to acquire the classification 
error less than 10% without regard to the Nm, BD has to be 
greater than 11.35 for the proximal and 7.88 for the distal.

Table 1  Algorithm for 
ranking movements using the 
Bhattacharyya distance (BD)

‘\’ indicates a relative complement

Data: features of each movement, M

Results: ranked movement set, G

Initialize:

G = {}

R = {M1, M2, …, M68}, candidate set

C = {(M1, M2), (M1, M3), …, (M67, M68)}, all pairs of movements in R

Find the pair with the maximum BD from C

G = {Mi, Mj}
R = R\{Mi, Mj}

while length(R) > 0 do

 for i = 1: length(R) do

  Ci, all pairs of the union composed of all movements in G and the ith movement in R

  Find minimum BDi from the computed BDs using pairs in Ci

 end

 Find the ith movement which has the maximum BD

 G = G ∪ Mi, R = R\Mi

Fig. 6  Average BD obtained from the proximal and the distal fore-
arm for 10–30 Nm

Fig. 7  Average classification errors obtained from the proximal and 
the distal forearm for 10–30 Nm
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4  Discussion

In this study, we proposed the strategy to sort the move-
ments as a rank order. In order to quantitatively determine 
the rank order of movements, the BD was calculated using 
sEMG features as the Nm increased. As a result, the ranked 
movements were extracted using the BD as shown in 
Table 2. Compared with previous pattern recognition stud-
ies, our method can help to choose the movements that can 
be used and to select movements that are wanted by a sub-
ject in prior to classification.

The candidate movements were 62 allowable finger 
movements and 4 wrist movements as shown in Fig. 3. 
We thought that repeatability of 66 movements was more 

important because it is difficult to maintain a consist-
ent contraction for each movement if a sequence order 
was randomly selected. The allowable finger movements 
included flexions from rest and extensions from rest. The 
combinations composed of flexion and extension (e.g., 
thumb and index flexion and other fingers extension) were 
neglected because these movements were awkward in a 
daily life. Instead, the 4 wrist movements were added for 
the candidate movements because wrist movements were 
widely used to classify in previous studies. The wrist flex-
ion/extension and radial/ulnar deviation were used in this 
study. Compared with finger movements, the wrist move-
ments were selected as the higher order in ranked move-
ments as shown in Table 2 because sEMG patterns during 
wrist movements show more distinct features than finger 
movements. The muscles related to wrist movements are 
located in the superficial layer, and relationship between 
muscles and movements represents independent relation-
ship rather than finger movements.

Previous studies reported that each finger movement 
was performed with other fingers movements and that the 
dependency of the coupling movement differed for each 
finger [15, 22]. The movements of the thumb and index fin-
ger were more highly individualized than the movements 
of the middle, ring, and little fingers [15]. Independence is 
determined by separation of tendons for each finger in the 
muscle mechanical structure [22]. The effect of their mus-
cle structure could be different for individuals. However, 
in classification studies, there was no attempt to consider 
the muscle structure effects on finger movements. The pro-
posed method provided not only the specific ranking move-
ments for each individual, but also the generalized ranking 
movements that were applied for all subjects. The gener-
alized movements were selected for the proximal and the 
distal forearms (Table 2).

The classification of finger movements is more chal-
lenging compared with other movements because recorded 
sEMG signals on forearms show low amplitude and not 
distinct characteristics. As mentioned, muscles which relate 
to finger movements were located in the intermediate and 
deep layers of the forearm. Figure 10 shows that why the 
classification of finger movements is more difficult using 
raw sEMG data. The raw sEMG was recorded on the proxi-
mal forearm for S01 and S19 during two finger movements 
(f00111 and f10111). The sEMG characteristics showed 
similar patterns for different finger movements in a same 
subject, and the same movement showed the different ampli-
tudes according to subjects. The amplitudes of S01 (left fig-
ure) were larger than those of S19 (right figure). Therefore, 
we proposed the method to extract the ranked movements. 
This approach not only removed unreliable movements, but 
also extracted optimal movements for individuals.

Fig. 8  Average classification errors obtained from the specific and 
the general ranked movements for a the proximal and b the distal 
forearm
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For classification of finger movements, previous studies 
have investigated finger flexion and extension movements 
with single finger only and have not thoroughly addressed 
combinations of fingers. They have used a subset of pre-
defined movements for all subjects. Al-Timemy et al. [2] 
classified three multi-finger movements and 12 single-fin-
ger movements. Tenore et al. [36] used the extension and 
flexion of the middle, ring, and little fingers and 10 single-
finger movements. Cipriani et al. [11] analyzed four multi-
finger movements as grip types (e.g., tridigital grip and 
lateral grip) and three single-finger movements. We clas-
sified the ranked movements as the Nm changed. Figure 8 
shows the classification error of the specific and the gen-
eral ranked movements for the proximal and the distal fore-
arms. Although the classification error increased as the Nm 
increased, our method achieved less than 10% error with 
the 20 movements for the proximal and 12 movements for 
the distal.

The classification error was used to evaluate the efficacy 
of proposed method. An artificial neural network (ANN) 
was also used to compare the classification performance 
with LDA. For ANN, the number of hidden-layer neurons 
was equal to the mean of the dimensions in the input and 
output. The input dimension was determined using the 
number of electrodes and features. The dimension of the 
output neurons was varied depending on the Nm. High acti-
vation of the output neurons indicates that the ANN opti-
mizes the corresponding class as its best guess. There were 
no significant differences between ANN and LDA for all 

conditions. We did not compare the performance with other 
methods because the improvement of the classification 
error with classification algorithms was beyond the scope 
of this study. The classification error could be improved 
using the previously reported classification techniques, 
although the Nm differed in accordance with the experimen-
tal conditions. The trend of classification might be simi-
lar that the Nm increased the classification error increased 
regardless of a classification technique.

The effect of electrode location on the BD and the 
classification error was investigated for the extrinsic 
muscles on the forearm. The muscles located on the fore-
arm have been widely used because the number of avail-
able sites is limited for intrinsic muscles. In this study, 
locations were divided for the proximal forearm and the 
distal forearm as shown in Fig. 2. The extracted general-
ized movements showed similar components for the rest 

Table 2  Generalized ranked movements among 31 flexions and 31 
extensions finger movements and 4 wrist movements

Movements with bold are included in both locations

Rank order Electrode location Rank order Electrode location

Proximal Distal Proximal Distal

1 Rest Rest 16 F10000 F01000

2 WE WU 17 E11000 F01111

3 WF WE 18 F10010 F11110

4 WR WF 19 F00100 F01001

5 WU WR 20 E00100 F00011

6 F11111 F11111 21 F00011 E10001

7 E10001 F00001 22 F00110 F00111

8 E01000 E10000 23 F10111 F10011

9 F00001 E01000 24 F11011 F11000

10 F00111 E00001 25 F11110 F1011

11 E00001 F10000 26 E10111 F10111

12 E10000 F00010 27 F11100 F00110

13 F00010 F00100 28 F01010 E11101

14 F01000 E00100 29 F11001 F10111

15 F01111 F10001 30 E11100 F00100

Fig. 9  Exponential fits of the BD to classification errors for a the 
proximal forearm and b the distal forearm
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and 4 wrist movements that were contained within 5th 
order for both locations as shown in Table 2. The same 
24 movements were included for both locations among 
30 movements from 1st to 30th. Compared with the distal 
forearm, proximal forearm showed superior results (clas-
sification errors) although the components of movements 
were different.

Previous PR studies have used many electrodes on 
the forearm for wrist and finger movements classifica-
tion. Depending on subject condition and experimental 
setup, locations of electrodes were changed. Although this 
approach provides more accurate classification results, the 
increase in electrode number showed limited improvement 
in terms of accuracy after certain number of electrodes. 
Several studies were performed to determine the optimal 
number of electrodes in PR. Al-Timemy et al. [2] showed 
that the classification accuracy for 15 finger movements 
reached a plateau using 6 electrodes despite the use of a 
total of 12 electrodes on the forearm. Naik et al. [30] pro-
posed a method to determine the minimum number of elec-
trodes based on independent component analysis (ICA) and 

Icasso clustering for 12 finger movements. Fewer number 
of electrodes would provide dexterity, flexibility, and con-
trollability for PR-based systems. However, in this study, 
same number of electrodes was used 11 electrodes for the 
proximal forearm and 7 electrodes for distal forearm to 
maintain consistent experimental setup for all participants. 
In other words, we did not consider finding the optimal 
number of electrode in this study.

The proposed method could be used for sEMG-based 
interfaces in a normal use scenario. First, usable move-
ments could be extracted from all allowable movements. 
The ranked movements and corresponding accuracy could 
be provided depending on the number of input commands 
as the user desires. The BD value might be an indicator to 
determine whether which movements are included or not. 
Second, if a user desires specific movements for input com-
mands, the availability of the desired movements could be 
evaluated based on the BD. The desired movements are not 
recommended if the movements exhibit inconsistent sEMG 
features, but the movements are selected for input commands 
if the movements have reliable and repeatable characteristics.

Fig. 10  Raw sEMGs of Ch1 to Ch11 on the proximal forearm. a f00111 and b f10111 for S01; c f00111 and d f10111 for S19. The f00111 is 
the middle, ring, and little finger flexion. The f10111 flexion is the thumb, middle, ring, and little finger flexion
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5  Conclusion

We investigated a ranking method to extract appropri-
ate hand movements among candidate movements using 
sEMG patterns in prior to a classification process. Our 
method provided the ranked movements from 62 finger 
movements and 4 wrist movements using the BD values 
that are criteria to identify whether a subset of movements 
was approximately clustered for classification. The subject-
specific and general ranked movements were extracted 
from the proximal forearm and distal forearm. For the 
subject-specific condition, the maximum Nm with an error 
lower than 10% was 20 for the proximal forearm and 12 
for the distal forearm. For the general condition, classifi-
cation errors were greater than that of the subject-specific 
condition. Using the proposed method that considers their 
personal characteristics, user could create more commands 
with their movements for PR techniques.
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Appendix

Mathematical definitions of time-domain features which 
were used in this study are as follows [26]. xi(k) is the kth 
signal sample, i is the ith window, N is the number of sam-
ples in the window, and xth is the threshold value.

Mean absolute value (MAV)

Waveform length (WL)

WL is a combined measure of waveform amplitude, fre-
quency, and duration.

(2)MAVi =
1

N

N
∑

k=1

|xi(k)|,

(3)WLi =

N−1
∑

k=1

(|xi(k)− xi(k + 1)|).

Zero crossing (ZC)

where

ZC represents the number of points in the window where 
the sign of a function changes (e.g., from positive to nega-
tive). This feature is an estimate of the properties in the fre-
quency domain.

Slope sign change (SSC)

where

This feature is similar to ZC regarding the frequency 
properties.
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