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a b s t r a c t 

Action segmentation aims to split videos into segments of different actions. Recent work focuses on deal- 

ing with long-range dependencies of long, untrimmed videos, but still suffers from over-segmentation 

and performance saturation due to increased model complexity. This paper addresses the aforementioned 

issues through a divide-and-conquer strategy that first maximizes the frame-wise classification accuracy 

of the model and then reduces the over-segmentation errors. This strategy is implemented with the Di- 

lation Passing and Reconstruction Network, composed of the Dilation Passing Network, which primarily 

aims to increase accuracy by propagating information of different dilations, and the Temporal Reconstruc- 

tion Network, which reduces over-segmentation errors by temporally encoding and decoding the output 

features from the Dilation Passing Network. We also propose a weighted temporal mean squared error 

loss that further reduces over-segmentation. Through evaluations on the 50Salads, GTEA, and Breakfast 

datasets, we show that our model achieves significant results compared to existing state-of-the-art mod- 

els. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

From robotics [1] to behavior analysis [2] and surveillance [3,4] , 

ecent progress in a variety of fields has increased the need for 

ccurate algorithms that analyze human actions. Action segmenta- 

ion, or the partitioning of a video in which humans engage in a 

equence of actions into segments corresponding to each action, 

s undeniably an essential tool for such analyses. Frames are ex- 

racted from the video and then sequentially labeled with the al- 

orithm’s best estimate of what the action within the frame may 

e. 

Despite the extensive interest in action segmentation, segment- 

ng long and untrimmed videos still proves to be a challenging 

ask. Simply increasing modeling complexity, i.e. stacking multiple 

ayers, does not necessarily translate to a corresponding increase in 

erformance [5,6] . Furthermore, models tend to over-segment long 

ideos as they obtain greater accuracy due to the classification of 

mbiguous classes. Frames in wrongly classified action chunks will 
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ccasionally be correctly classified and vice versa, resulting in in- 

onsistency between frames, causing over-segmentation. 

Recent studies have therefore focused on dealing with the long- 

ange dependencies inherent in long, untrimmed videos. MS-TCN 

7] , for example, proposes a model inspired by Wavenet [8] that 

s composed of stacked dilated convolutions and a smoothing loss 

esigned to alleviate over-segmentation issues. Other works suc- 

eeding MS-TCN have also proposed models and smoothing meth- 

ds built upon MS-TCN to improve on its accuracy. These works 

an be categorized into two groups: one where changes are mostly 

ocused on modifying MS-TCN’s network architecture and design 

9–11] and one where over-segmentation is explicitly handled 

hrough an additional module that computes segment boundaries 

5,12,13] . While changes to network architecture are made to cap- 

ure temporal information through a variety of receptive fields 

o improve overall performance, segment boundaries are used for 

ostprocessing to smooth the original classification and reduce 

ver-segmentation. 

This paper proposes the Dilation Passing and Reconstruction 

etwork (DPRN), furthering the state-of-the-art in action segmen- 

ation. Also built off of MS-TCN, DPRN addresses the action seg- 

entation problem with a different approach from previous work: 

aximization and Restoration. DPRN consists of two novel subnet- 

orks that focus on their respective part within the Maximization 

https://doi.org/10.1016/j.patcog.2022.108764
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108764&domain=pdf
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J. Park, D. Kim, S. Huh et al. Pattern Recognition 129 (2022) 108764 

Fig. 1. Illustration of our proposed approach. We first increase frame-wise accuracy 

(Maximization), then reduce over-segmentation (Restoration). 
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nd Restoration approach. Heeding the importance of utilizing dif- 

erent temporal resolutions, the Dilation Passing Network (DPN) 

ims to dominantly increase the frame-wise classification accuracy 

y utilizing High-to-Low and Low-to-High networks that pass in- 

ormation on different receptive fields between the dilated resid- 

al layers of MS-TCN. As postprocessing performance is necessarily 

onstrained by the accuracy of the initial classification, the priori- 

ization of accuracy maximization enables the classification of am- 

iguous frames that previous state-of-the-art models found diffi- 

ult to identify. The Temporal Reconstruction Network (TRN) sub- 

equently aims to restore over-segmented frames to enforce tem- 

oral consistency within each segment and better the final pre- 

iction. TRN temporally encodes the output of DPN to latent fea- 

ures and decodes them to refine the action outputs. To further 

educe over-segmentation, we also propose a Weighted Temporal 

ean Squared Error (WT-MSE) loss function. Fig. 1 illustrates the 

haracteristics of the results from the proposed approach. 

Instead of relying on postprocessing techniques to refine the 

riginal frame-wise classification, our Maximization and Restora- 

ion approach learns the action segmentation task in an end-to- 

nd manner, avoiding several design issues: slight errors in the es- 

imated boundaries can cause a more drastic decrease in perfor- 

ance; they introduce heuristics or extra hyperparameters that are 

ot robust, which can introduce an additional source of error. 

We evaluate our approach on three datasets that are frequently 

sed in action segmentation: 50Salads, GTEA, and Breakfast. The 

ain contributions are as follows: 

• We propose a divide-and-conquer method to the action seg- 

mentation task. Maximization focuses on dominantly increas- 

ing the frame-wise accuracy. Restoration focuses on correcting 

inconsistent labels in order to reduce over-segmentation. 
• We propose two models (Dilation Passing Network and Tempo- 

ral Reconstruction Network) that are designed to be effective in 

their respective steps. 
• Extensive evaluations show that our model achieves meaningful 

results on three challenging datasets: the 50Salads, GTEA, and 

Breakfast datasets, compared to existing state-of-the-art mod- 

els. 

. Related work 

Action segmentation aims to identify the actions that an actor 

erforms in every frame in a video [14] . Recent research has looked 
2

or ways to handle the long-range dependencies of untrimmed 

ideos. Lea et al. [14] proposed temporal convolutional networks 

TCNs) that use an encoder-decoder framework. Lei and Todorovic 

15] introduced temporal deformable residual networks that incor- 

orate TCNs with deformable convolutions and residual streams to 

eal with the long-range issue. While these methods are limited to 

esting on downsampled videos, Farha and Gall [7] proposed the 

ulti-Stage Temporal Convolutional Network (MS-TCN) that ana- 

yzes videos with the full temporal resolution. It consists of multi- 

le stages of dilated convolution sets, with each stage refining the 

redictions from the previous stage. 

Several works have proposed modifications of MS-TCN to fur- 

her improve performance. Li et al. [9] modified its dilated layers 

o dual dilated layers and introduced refinement stages, creating 

S-TCN++. Chen et al. [10] trained a model that modifies the single 

tage TCN in MS-TCN to a domain adaptive TCN to segment actions 

y aligning different domain feature spaces. Gao et al. [11] pro- 

osed a global to local search scheme to find the most optimal 

eceptive field combination for MS-TCN and other state-of-the-art 

odels. 

Despite improvements in performance, these state-of-the-art 

echniques still suffer from over-segmentation. MS-TCN somewhat 

ddresses the issue with a truncated mean squared error loss be- 

ween the log probability of the current scene and the previous 

cene. To further reduce over-segmentation, some recent studies 

ave resorted to estimating the barriers of where actions start 

nd end with which they refine the outputs from the segmenta- 

ion models. Wang et al. [5] proposed local barrier pooling that 

mooths predictions by pooling neighboring frames after weight- 

ng them by how many barriers away they are. Ishikawa et al. 

12] proposed a boundary regression branch that first regresses the 

lass-agnostic action boundary probabilities, then classifies each 

egment with majority voting. Huang et al. [13] used graph convo- 

utional networks (GCN) that refine classification as well as bound- 

ry regression outputs. However, these strategies face issues where 

rames that were originally correctly classified can be mislabeled 

uring the refinement stage due to either errors in the boundary 

egression or noise in the backbone when classifying very ambigu- 

us ground-truth segments. 

Other approaches that focus on learning the relationships 

mong actions have been studied as well. Ahn and Lee [16] pro- 

osed a Hierarchical Action Segmentation Refiner (HASR) that first 

xtracts hierarchical video representations and then uses a GRU 

o refine the segmentation outputs from a backbone model. How- 

ver, since they only propose a refiner network, their overall frame 

ccuracy is generally bounded by the accuracy of the backbone. 

uch refinement networks are generally designed to reduce over- 

egmentation but not increase the frame accuracy; thus, it is es- 

ential that the accuracy of the backbone is maximized prior to 

eing processed further. Yi et al. [17] proposed Transformer for Ac- 

ion Segmentation (ASFormer), which overcomes potential issues 

f utilizing the Transformer network [18] for the action segmenta- 

ion datasets, such as the small size of the training datasets that 

akes it hard for the Transformer to learn from a large parametric 

pace. 

Unlike the above approaches that try to balance between in- 

reasing classification accuracy and reducing over-segmentation, 

ur work is the first attempt of proposing a divide-and-conquer 

trategy that a backbone network exclusively focuses on accurately 

lassifying hard-to-classify classes, and the refiner network focuses 

n minimizing over-segmentation errors. By prioritizing accuracy 

n the backbone, our model is able to correctly classify some am- 

iguous frames that are wrongly classified by other state-of-the-art 

odels. Furthermore, as our refiner network does not use bound- 

ry regression to enforce temporal consistency, our model avoids 

he aforementioned risks of boundary regression-based refinement. 
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Fig. 2. Overview of the Dilation Passing and Reconstruction Network, composed of the Dilation Passing Network (DPN) and Temporal Reconstruction Network (TRN). DPN 

incorporates the Multi-stage Temporal Convolutional Network (MS-TCN) with High-to-Low and Low-to-High networks to pass information among dilated layers of different 

receptive field sizes. TRN restores frames over-segmented by DPN to enforce temporal consistency. 
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Fig. 3. Overview of the High-to-Low and Low-to-High networks in DPN. Dilated 

information of different receptive field sizes flows downward and upward. 

c

t

p

L

d

i

M

p

fi

{

(

H

1  

H

h  
There have been other attempts to analyze human actions in 

ideos. Richard et al. [19] supplemented a recurrent neural net- 

ork (RNN) with a coarse probability model to propose a fine- 

o-coarse weak learning system. Ding and Xu [20] addressed the 

roblems of using computationally expensive models like RNNs 

nd proposed a temporal convolutional feature pyramid network. 

u et al. [21] proposed a self-supervised method to incorporate 3D 

onvolutional neural networks to sort sequential unlabeled video 

amples. Wang et al. [22] proposed a self-supervised GCN module 

o handle temporal relations within a video. Gao et al. [23] ad- 

ressed the temporal action detection task with a spatial segmen- 

ation approach. Gammuelle et al. [24] proposed a recurrent semi- 

upervised GAN model with a gated context extractor to capture 

omplex temporal relationships. However, these studies are eval- 

ated with different benchmarks and are therefore beyond our 

cope. 

. Proposed method 

.1. Overview 

This section details the Dilation Passing and Reconstruction 

etwork. Our model is composed of the Dilation Passing Network 

DPN) and Temporal Reconstruction Network (TRN), as depicted in 

ig. 2 . We provide a summary of MS-TCN in Section 3.2 , as we use

eatures from each stage as inputs to DPN. We then introduce our 

PN, TRN, and loss function in Sections 3.3 –3.5 , respectively. 

.2. MS-TCN 

MS-TCN uses multiple stages of temporal convolutional net- 

orks, each composed of dilated residual layers with doubling di- 

ation factors. Each dilated residual layer consists of a dilated con- 

olution, the ReLU activation function, and a 1 × 1 convolution 

ith a skip-connection. 

I3D features [25] are passed through a 1 × 1 convolutional layer 

o adjust the input features to a fixed hidden feature dimension 

im _ h to create the hidden feature H in , which is then passed to

S-TCN. 

.3. Dilation passing network 

DPN consists of the High-to-Low and Low-to-High networks, as 

hown in Fig. 3 . To dominantly increase the frame classification ac- 
3 
uracy, DPN fully utilizes temporal information of different ranges 

o understand the context of each frame. The High-to-Low network 

asses longer range dependencies to lower dilation layers and the 

ow-to-High network passes shorter range dependencies to higher 

ilation layers. This way, every frame gains a greater understand- 

ng on its relations with frames both nearby and farther away. 

DPN processes the outputs of the dilated residual layers within 

S-TCN through the High-to-Low and Low-to-High networks to 

ass information among dilation features with different receptive 

elds. We indicate the output of each dilated residual layer l ∈ 

 1 , 2 , . . . , L } as H 

l . 

The High-to-Low network propagates the features from the top 

highest dilation) to the bottom (lowest dilation). First, the output 

 

l of each dilated residual layer l from MS-TCN is encoded by a 

 × 1 convolution with the same filter size to create D 

l 
in 

. Then the

igh-to-Low features D 

l 
out are calculated for each layer from the 

ighest to the lowest layer. We first let D 

L 
out = D 

L 
in 

. Then, D 

l+1 
out of
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Fig. 4. Architecture of a 3-stage Temporal Reconstruction Network (TRN). Each TRN 

stage takes frame-wise class probabilities as input and temporally refines the fea- 

tures through a process of encoding and decoding. 
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he layer above is fed through a 1 × 1 convolutional layer, which is 

hen added to the current layer’s features D 

l 
in 

to create D 

l 
out . This 

peration is continued for the rest of the layers as follows: 

 

l 
out = Con v (D 

l+1 
out ) + D 

l 
in (1) 

Then, in the Low-to-High network, we perform similar opera- 

ions in the opposite direction. The features D 

l 
out are encoded by 

 1 × 1 convolution to create U 

l 
in 

. For each layer, the features U 

l−1 
in 

f the layer below are encoded by a 1 × 1 convolution and added 

o the current layer’s features U 

l 
in 

to create U 

l 
out , with U 

1 
out = U 

1 
in 

for

he bottom-most layer 1: 

 

l 
out = Con v (U 

l−1 
in 

) + U 

l 
in (2) 

The final hidden features U 

l 
out of each layer are concatenated 

ith the first hidden feature H in and are then reduced to the di- 

ension dim _ h using a 1 × 1 convolution layer. Finally, to get the 

rame-wise class probabilities, a final 1 × 1 convolution is applied, 

ollowed by a softmax function to produce the final output. For 

ulti-stage DPN, this output is passed through MS-TCN again be- 

ore it is passed onto the next DPN stage. 

.4. Temporal reconstruction network 

DPN aims to correctly classify as many frames as possible. This 

pproach can lead to over-segmentation in that consecutive frames 

ometimes end up being classified as different classes even though 

hey actually belong to the same class. TRN, as shown in Fig. 4 ,

s designed to overcome this. The encoder of TRN uses convolu- 

ional layers to better capture the context around each frame and 

reate an encoded feature that focuses more towards the correctly 

lassified frames while ignoring short, incorrectly classified frames. 

hen, as the decoder maps the encoded feature back to the original 

ength, the deconvolutional layer passes on each encoded feature 

o multiple adjacent frames, to ultimately enforce temporal consis- 

ency within the frames. 

For the training data, the output of DPN may not be sig- 

ificantly over-segmented. In order for the model to be robust 
4 
gainst over-segmentation, we first intentionally increase over- 

egmentation errors for the training data with a segment replace- 

ent algorithm. The replacement algorithm first obtains the lo- 

ations of each action boundary in the output of DPN. At each 

oundary, two numbers between 0 and t/ 2 are randomly gener- 

ted, which indicate how many frames to the left and right of the 

oundary will be replaced. Once those are determined, a chunk 

f the appropriate length is then randomly chosen from the orig- 

nal output of DPN and replaces the frames near the boundary. 

or the N bd extra replacements, replacement locations and replac- 

ng chunks were both chosen randomly. This way, frames are re- 

laced by potentially incorrect labels, causing inconsistency be- 

ween frames. 

TRN takes as input the frame-wise class probability output of 

PN that is modified through the segment replacement algorithm 

escribed above. Since TRN aims to reduce over-segmentation, it 

nly uses frame-wise probabilities, not original video features, as 

nput in order to focus solely on the temporal consistency between 

rame actions. It is composed of an encoder and decoder that re- 

uces and expands this input, respectively. The encoder starts with 

 1 × 1 convolution to expand the input to a hidden dimension 

im _ h , followed by the ReLU activation function. To reduce the 

emporal dimension of the hidden features, a 1D convolution of 

ernel size k , padding k/ 2 , and stride 2 is first applied, producing

eatures that are half the length of the input features. This is then 

ollowed by a MaxPool operation that further reduces the length 

y half, another 1D convolution and another ReLU. The length of 

he final features from the encoder becomes 1 
4 of the length of the 

nput. 

To expand the encoded features back to the video length, the 

ecoder first upsamples the features by a scale factor of two, fol- 

owed by a dropout layer. Then, a 1D deconvolution with the same 

arameters as the encoding convolution produces features with the 

ame length as the original video input. Finally, a 1 × 1 convolution 

s applied to produce the class probabilities. 

.5. Loss function 

Loss function for DPN To train DPN, we use the same loss func- 

ion as in Farha and Gall [7] , which combines the classification loss 

nd the temporal mean squared error (T-MSE) loss as follows: 

 

DPN 
s = L cls + λDPN L T −MSE (3) 

here λDPN is a hyperparameter. 

Given the video length T and the number of action classes C, 

he classification loss L cls and T-MSE loss L T −MSE are as follows: 

 cls = 

1 

T 

∑ 

t 

−log(y DPN 
t,c ) (4) 

 T −MSE = 

1 

T C 

∑ 

t,c 

ˆ �2 
t,c (5) 

ˆ 
t,c = 

{
�t,c if �t,c ≤ τ
τ otherwise 

(6) 

t,c = (| l ogy DPN 
t,c − l ogy DPN 

t−1 ,c | ) (7) 

here y DPN 
t,c is the softmax probability of predicted class label c at 

from the output of DPN, and τ is a hyperparamterer. 

Loss function for TRN The loss function for TRN consists of the 

lassification loss and a weighted reconstruction loss L W T −MSE . 

 W T −MSE aims to further reduce over-segmentation errors, defined 

s follows: 

 W T −MSE = 

1 

T C 

∑ 

t,c 

�2 
t,c (8) 
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Table 1 

Comparison of baseline (MS-TCN), DPN, DPRN with L T−MSE , DPRN with 

L W T −MSE and DPRN jointly fine-tuned on 50Salads. 

50Salads F1@{10,25,50} Edit Acc 

MS-TCN [7] 76.3 74.0 64.5 67.9 80.7 

DPN 31.5 30.4 26.9 25.6 86.9 

DPRN ( L T−MSE ) 86.3 84.4 78.6 80.3 86.8 

DPRN ( L W T −MSE ) 87.2 85.8 79.1 80.8 86.8 

DPRN (jointly tuned) 87.8 86.3 79.4 82.0 87.2 

MS-TCN + TRN 82.5 80.6 70.4 75.3 80.6 

MS-TCN + layer concat. 42.8 41.4 36.0 37.1 82.6 

The bold values indicate the highest value for each metric (column) 

in that table/comparison. 
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t,c = 

1 

2 

W t 

(| l ogy T RN 
t,c − l ogy T RN 

t−1 ,c | + | logy T RN 
t,c − logy T RN 

t+1 ,c | 
)

(9) 

 t = 

n (B t,w 

) 

max (n (B 1: T,w 

)) 
(10) 

here y T RN 
t,c is the softmax probability of the predicted class label c

t t from the output of TRN, and n (B t,w 

) is the number of bound-

ries within the segment of length w centered at time t of the 

nput. The weight W t is the normalized n (B t,w 

) value and aims to

mphasize regions in the video that are heavily over-segmented. As 

ur L W T −MSE loss uses input probabilities to calculate the weight of 

ach frame, it is therefore designed only for models like TRN that 

ake frame-wise class probabilities as inputs. 

The overall loss function of TRN is then defined as: 

 

T RN 
s = L cls + λT RN L W T −MSE (11) 

here, L s is the loss function at stage s and λT RN is a hyperparam- 

ter. 

While TRN uses our newly proposed L W T −MSE loss which en- 

ourages frames to be classified as the same action as that of both 

he previous and the next frame, DPN uses the L T −MSE loss from 

he works of MS-TCN [7] which encourages frames to be classified 

imilarly to the next frame only. They have shown that L T −MSE sig- 

ificantly reduces over-segmentation and also improves the frame 

ccuracy by a fair margin. We will show from our experiments that 

RN with L W T −MSE can reduce over-segmentation better than TRN 

ith L T −MSE . For DPN, however, because the main purpose is to 

aximize the frame accuracy even through inducing more over- 

egmentation, using L T −MSE leads to an overall higher performance 

han using L W T −MSE . 

.6. Implementation details 

We first train DPN with L 

DPN 
s for each stage. The underlying lay- 

rs of MS-TCN are trained together with DPN. Once DPN is finished 

raining, we train TRN using the output of the final stage of DPN as 

nput. Fixing the weights of DPN, we calculate L 

T RN 
s on the output 

f each stage of TRN. TRN is trained after DPN as TRN requires a 

uch shorter training time. To further improve performance, DPN 

nd TRN may additionally be jointly fine-tuned with a lower learn- 

ng rate. 

DPN We use a four-stage architecture, where each stage con- 

ists of eleven dilated convolution layers. The dilation factor, start- 

ng from 1, is doubled at each layer up to 512, and the hidden

imension is set to 64 in all layers. The dilated layers all have a 

ernel size of 3, while the High-to-Low and Low-to-High network 

ayers have a kernel size of 1. As in Farha and Gall [7] , we set τ
 4 and λDPN = 0.15 for the loss function. The Adam optimizer is 

sed with a learning rate of 5 e- 4 for 50Salads and Breakfast and 

 e- 3 for GTEA. 

TRN We use a three-stage architecture for TRN. All 1D convolu- 

ions have a hidden dimension of 64. The Adam optimizer is used 

ith a learning rate of 1 e- 4 for all datasets. For segment replace- 

ent, t max is set to 60 for 50Salads, 10 for GTEA, and 50 for Break-

ast, and t min = 

1 
5 t max . For the encoding and decoding convolutions, 

e set the kernel size k to 101 for 50Salads, 71 for GTEA, and

61 for Breakfast. The segment length parameter w for L 

T RN 
s is set 

qual to the kernel size k for each dataset. Hyperparameters t max 

nd k are roughly correlated to the action lengths of each dataset; 

TEA has the smallest parameters as the actions are short. 

Joint fine-tuning The Adam optimizer is used with a learning 

ate of 1 e − 5 for 50Salads and 1 e- 7 for GTEA and Breakfast. 
5 
. Experiment 

Datasets The proposed model was evaluated using three 

atasets: 50Salads [26] , GTEA [27] , and Breakfast [28] . 

The 50Salads dataset consists of 50 videos in which 25 people 

repare two different salads. There are 17 action classes related 

o cutting, placing vegetables, adding ingredients, and serving. To 

valuate the proposed model, five-fold cross validation was used 

s in Stein and McKenna [26] . 

The GTEA dataset consists of 28 videos of 4 people perform- 

ng daily activities. The dataset has 11 action classes including the 

ackground class, each of which has 20 instances on average. 4- 

old cross validation was used. 

The Breakfast dataset contains 1712 videos of 10 activities re- 

ated to breakfast preparation in 18 different kitchens. The dataset 

ims to classify the 48 action units within the videos, each of 

hich has 6 action instances on average. The standard 4-fold cross 

alidation was used as in Kuehne et al. [28] . 

Evaluation metrics To evaluate the proposed model, we use 

rame-wise accuracy, a commonly used evaluation metric that 

easures how many frames are correctly classified in a video. 

his metric cannot measure the degree of over-segmentation; we 

herefore also report the segmental edit score and the segmen- 

al F1 score. The edit score penalizes errors that come from over- 

egmentation. The F1 score aims to measure the prediction qual- 

ty [14] ; we use temporal intersection of union (tIoU) thresholds of 

0%, 25%, and 50%. The action start and action end classes of 50Sal- 

ds and the background class of GTEA were ignored when calculat- 

ng the F1 and edit scores. 

.1. Study on DPRN 

This section investigates the effect of the proposed method us- 

ng 50Salads. We show MS-TCN as a baseline and compare it with 

ncrementally integrated structures as follows: (1) DPN: incorpo- 

ating the High-to-Low and Low-to-High networks with the dilated 

utputs from 4-stage MS-TCN; (2) DPRN: adding the 3-stage TRN 

ith the classification and temporal mean squared losses as in 

arha and Gall [7] to DPN; (3) DPRN w/ loss: using L W T −MSE in- 

tead of L T −MSE for TRN; and (4) DPRN (jointly tuned): jointly tun- 

ng DPRN with a lower learning rate after both models are trained. 

o verify the novelty of DPN and TRN, we also compare MS-TCN 

ith (5) Appended TRN: attaching TRN with L W T −MSE to the end 

f MS-TCN and (6) Layer concatenation: directly concatenating the 

eatures H 

l from each dilation layer l of MS-TCN with the first hid- 

en feature H in , and then reducing the dimension to get the proba- 

ilities (essentially MS-TCN with DPN without the High-to-Low and 

ow-to-High networks). Table 1 shows the results. 

DPN increases the frame-wise accuracy by a significant amount, 

s information on different dilations are passed from layer to layer. 

t the same time, the F1 and edit scores decrease significantly 

rom the MS-TCN baseline, indicating over-segmentation. A frame 
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Fig. 5. Qualitative results on 50Salads. Each row represents the frame-wise results of the following, respectively: Ground-truth labels (GT), results from MS-TCN, results from 

DPN only, and results from DPRN. It is notable that DPN is capable of obtaining several correct frames in regions that MS-TCN labels incorrectly. However, this comes at the 

cost of increasing oversegmentation, which TRN corrects as shown by the results of DPRN. 

c

o

a

s

T

t

i

w

R

m

f

m

s

w

1

e

c

o

5

m

t

e

t

e

r

c

t

t

a

o

ǣ
r

a

D

c

b  

5

w

T  

s

m

s

m  

w

r

t

m

r

o

R

r

m

4

l

k

D

t

s

n

s

w

D

n

f

d

w

i

T

e

t

o

s

k  

7

T

n  

t

k

s

orrectly classified within an otherwise wrongly classified chunk 

nly minutely increases the accuracy but greatly decreases the F1 

nd edit as the chunk is divided into multiple segments. 

TRN fulfills its role well by correcting over-segmentation is- 

ues from DPN, as seen through the F1 and edit scores of (2). 

he frame-wise accuracy however is almost unchanged, showing 

hat the accuracy of TRN is roughly bounded by the accuracy of 

ts backbone, DPN. This phenomenon can also be seen in previous 

orks [5,12,16] , showing why our approach of Maximization and 

econstruction is essential for significantly improving the perfor- 

ance. 

The weighted temporal mean squared error loss ( L W T −MSE ) 

urther improves on all scores except for accuracy, which was 

aintained. As L W T −MSE mainly penalizes predictions in over- 

egmented regions, it is successful in improving segmental scores 

hile minimally affecting the classification score. 

Fine-tuning DPRN on 50Salads with a lower learning rate ( lr = 

 e − 5 ) further improves all scores by at most 1.2 percent. How- 

ver, this requires searching for the learning rate parameter that 

an produce optimal results. 

Appending TRN to MS-TCN shows significant improvements 

ver the original MS-TCN, improving the F1/edit scores by at least 

.9. This therefore verifies its effectiveness in reducing overseg- 

entation and potential for application to other action segmenta- 

ion models. Similarly to DPN, layer concatenation of MS-TCN lay- 

rs increases the frame-wise accuracy, but does so by trading off

he F1 and edit scores. This is expected as concatenating differ- 

nt dilation information focuses more on each frame individually 

ather than the relationships among frames. However, simply con- 

atenating layers results in an accuracy inferior by 4.3 percent to 

hat of DPN, proving the effectiveness of our DPN architecture for 

he Maximization approach. 

Fig. 5 visualizes the segmentation results for DPRN on 50Sal- 

ds. As seen in the results, MS-TCN often misclassifies ambigu- 

us action classes such as ǣcut_cucumber ǥ, ǣcut_lettuce ǥ, and 

cut_cheese ǥ. Compared to MS-TCN, DPN performs more accu- 

ately in terms of frame-wise classifications; however, there still 

re some occasional misclassifications, causing over-segmentation. 

PRN produces smoother results, removing action frames that are 

lassified differently within an action chunk. Similar results can 

e seen in the results of GTEA and Breakfast in Fig. 6 . As with

0Salads, DPN performs well in terms of the frame-wise accuracy 

hile DPRN successfully reduces over-segmented regions. Based on 

able 1 and Figs. 5 and 6 , it can be concluded that TRN corrects

parse misclassifications leading to higher F1 and edit scores while 

aintaining frame-wise accuracy. 
c

6 
As TRN reduces then increases the temporal dimension, very 

hort segments from DPN may occasionally be incorrectly re- 

oved. One example can be seen in the GTEA results ( Fig. 6 .a)

here a short red segment by DPN in the middle of the video is 

emoved by TRN. As the encoder of TRN encodes the input fea- 

ure into a feature 1 
4 of the original length, extremely short actions 

ay get ignored in the process. However, considering the frame 

ate of the input features (15 fps), short actions of even just 1 sec- 

nd would still take up around 4 frames in the encoded feature. 

ather, if DPN correctly identifies an action segment, but inaccu- 

ately detects it to be much shorter than the true length, TRN may 

istakenly remove such segments. 

.2. Ablation study 

To analyze the influence of hyperparameters, we conducted ab- 

ation studies on the number of stages of DPN and TRN, and the 

ernel sizes of TRN. 

Table 2 (top) shows the performance for different numbers of 

PN stages with and without TRN. The 4-stage DPRN produces 

he best performance overall, showing that simply stacking more 

tages does not always increase performance. Nonetheless, other 

umbers of stages still outperform the baseline MS-TCN; the 1- 

tage DPRN shows a higher accuracy of 83.4 compared to MS-TCN 

ith 80.7. For all models, TRN successfully refines the outputs of 

PN to improve the F1 and edit scores. 

Table 2 (bottom) tabulates the results of DPRN with different 

umbers of TRN stages on 50Salads. The results show robust per- 

ormances regardless of the number of stages. The 3-stage TRN 

oes not always provide the best results on all metrics; however, 

e chose the 3-stage TRN for our state-of-the-art comparisons, as 

t gives the highest average value on all metrics. 

We also investigated whether changes in the kernel size of 

RN affects over-segmentation. Fig. 7 shows the scores for differ- 

nt kernel sizes. We can see that the kernel size does not affect 

he frame-wise accuracy of TRN but does influence the extent of 

ver-segmentation as can be seen from the changing F1 and edit 

cores. Even for the worst performing and smallest kernel size of 

 = 21 , the F1@(10, 25, 50), edit, and accuracy scores are 82.1, 80.4,

3.8, 74.4, and 86.8, respectively, showing improvements from MS- 

CN. Performance further increases and then stabilizes as the ker- 

el size is increased. The best kernel size is k = 101 as it results in

he best F1 and edit scores while conserving the accuracy. As the 

ernel size becomes greater than k > 121 , the overall scores tend to 

lightly decrease. As the kernel gets larger, it loses the ability to fo- 

us on the most essential local context around each frame and in- 
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Fig. 6. Qualitative results on (a) GTEA and (b) Breakfast. 

Table 2 

Study on the number of DPN stages (top) and TRN stages(bottom) on 50Salads. 

DPN only DPRN (using 3-stage TRN) 

DPN F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc 

1-stage 21.8 20.4 17.7 16.1 84.6 81.9 79.9 72.1 75.6 83.4 

2-stages 29.3 27.7 24.4 22.2 85.9 84.5 82.7 75.6 79.2 85.3 

3-stages 31.3 30.0 26.5 24.6 86.2 85.0 83.2 77.1 79.1 86.1 

4-stages 31.5 30.4 26.9 25.6 86.9 87.2 85.8 79.1 80.8 86.8 

5-stages 36.3 35.0 31.0 28.4 86.3 85.5 84.1 77.5 79.8 86.2 

DPRN (using 4-stage DPN) 

TRN F1@{10,25,50} Edit Acc 

1-stage 86.8 85.0 78.8 80.2 87.0 

2-stages 86.8 85.3 78.8 81.3 86.9 

3-stages 87.2 85.8 79.1 80.8 86.8 

4-stages 87.2 85.3 78.8 80.8 86.7 

The bold values indicate the highest value for each metric (column) in that table/comparison. 

Fig. 7. Study on TRN’s kernel size on 50Salads. 
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Table 3 

Study on DPRN with different backbones on 50Salads. 

50Salads F1@{10,25,50} Edit Acc 

MS-TCN [7] 76.3 74.0 64.5 67.9 80.7 

MS-TCN & DPRN 87.2 85.8 79.1 80.8 86.8 

ETSN [29] 85.2 83.9 75.4 78.8 82.0 

ETSN & DPRN 85.9 84.5 77.4 79.7 85.9 

MS-TCN + [9] 80.7 78.5 70.1 74.3 83.7 

MS-TCN + & DPRN 85.5 84.0 76.4 78.2 85.0 
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tead looks at each frame with a general context. This hinders the 

ncoder and decoder from making relevant corrections for tem- 

oral consistency and results in a sub-optimal over-segmentation 

evel. Nonetheless, TRN performs well within a reasonable range of 

he kernel size. 

In general, these results show the robustness of our model to 

hanges to its hyperparameters. Further ablation studies (e.g., com- 

arison of λ values, effects of segment replacement and its t max ) 

re provided in the Appendix. 

.3. Study on other backbones 

DPN works with features extracted from varying temporal reso- 

utions to better capture the temporal context of each frame. Con- 

equently, it requires models such as MS-TCN where the input 
7 
eature is processed through multiple layers of different dilations. 

o investigate whether DPRN works well across various backbone 

odels, we experimented with two other backbone models: MS- 

CN++ and ETSN. Other models such as BCN or ASRF that propose 

n extension or variation of MS-TCN were not considered, as they, 

uch like our model, are models that entail extra computation on 

op of the dilated features. Furthermore, models such as Bi-LSTM 

r GTRM that build upon recurrent networks were also not con- 

idered since such backbones do not explicitly produce features of 

ultiple temporal resolutions. 

As shown in Table 3 , while DPRN performs best with MS-TCN 

s the backbone, it also shows meaningful improvements when 

sed on other backbone models as well. Differences in the stan- 

alone performances of these models become less significant when 

hey are used as DPRN’s backbone. In fact, MS-TCN performs the 

orst out of the three models when used alone, but outperforms 

he others when used with DPRN. ETSN and MS-TCN++ modify the 

ilated layers of MS-TCN to capture multiple temporal dependen- 

ies within every layer. This overlap of functionality with DPN may 

ave either induced over-fitting or caused the input features of 

PN to be less comprehensive, leading to a worse performance 

han the MS-TCN backbone. Nonetheless, our results show that 

PRN is applicable to any other backbone as long as the backbone 

enerates features of multiple temporal resolutions for the High- 

o-Low and Low-to-High networks of DPN to work with. 
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Table 4 

Study on the effect of model capacity on 50Salads. The number of parameters and FLOPs of 

our model are compared with other models. The FLOPs are calculated using an input feature 

from 50Salads with the length fixed at 10 0 0 frames. 

50Salads #Params FLOPs F1@{10,25,50} Edit Acc 

DPRN 4.1 M 7.0G 87.2 85.8 79.1 80.8 86.8 

- DPN 1.6 M 3.2G 31.5 30.4 26.9 25.6 86.9 

- TRN (3 stages) 2.5 M 3.8G 87.2 85.8 79.1 80.8 86.8 

- TRN (2 stages) 1.7 M 2.6G 86.8 85.3 78.8 81.3 86.9 

- TRN (1 stage) 0.8 M 1.2G 86.8 85.0 78.8 80.2 87.0 

MS-TCN (Reported) [7] 0.8 M 1.6G 76.3 74.0 64.5 67.9 80.7 

MS-TCN (Implemented) 0.8 M 1.6G 71.6 68.7 59.1 63.0 81.1 

MS-TCN, dim _ h = 96 1.7 M 3.4G 61.8 59.2 52.5 55.2 82.7 

MS-TCN, # layers = 16 1.2 M 2.4G 57.3 54.3 46.1 48.5 82.0 

MS-TCN, # stages = 8 1.5 M 3.0G 71.0 68.1 59.9 63.3 82.1 

ASFormer [17] 1.1 M 2.2G 85.1 85.4 79.3 81.9 85.9 

ASRF [12] 1.3 M 2.6G 84.9 83.5 77.3 79.3 84.5 

BCN [5] 12.8 M 25.6G 82.3 81.3 74.0 74.3 84.4 

ASRF + HASR [16] 19.2 M 25.8G 82.3 81.3 74.0 74.3 84.4 

MS-TCN + [9] 1.0 M 2.0G 80.7 78.5 70.1 74.3 83.7 

ETSN [29] 0.8 M 1.6G 85.2 83.9 75.4 78.8 82.0 

Table 5 

Comparison with state-of-the-art models on 50Salads, GTEA and Breakfast. 

50Salads 

F1@{10,25,50} Edit Acc 

Bi-LSTM [30] 62.6 58.3 47.0 55.6 55.7 

MS-TCN [7] 76.3 74.0 64.5 67.9 80.7 

ETSN [29] 85.2 83.9 75.4 78.8 82.0 

G2L [11] 80.3 78.0 69.8 73.4 82.2 

GTRM [13] 75.4 72.8 63.9 67.5 82.6 

DA [10] 82.0 80.1 72.5 75.2 83.2 

MS-TCN + [9] 80.7 78.5 70.1 74.3 83.7 

ASRF + HASR [16] 86.6 85.7 78.5 81.0 83.9 

BCN [5] 82.3 81.3 74.0 74.3 84.4 

ASRF [12] 84.9 83.5 77.3 79.3 84.5 

ASFormer [17] 85.1 85.4 79.3 81.9 85.9 

DPRN 87.2 85.8 79.1 80.8 86.8 

DPRN (jointly tuned) 87.8 86.3 79.4 82.0 87.2 

GTEA Breakfast 

F1{10,25,50} Edit Acc F1{10,25,50} Edit Acc 

GRU [19] – – – – – – – – 60.6 –

Bi-LSTM [30] 66.5 59.0 43.6 – 55.5 – – – – –

MS-TCN [7] 85.8 83.4 69.8 79.0 76.3 52.6 48.1 37.9 61.7 66.3 

ETSN [29] 91.1 90.0 77.9 86.2 78.2 74.0 69.0 56.2 70.3 67.8 

G2L [11] – – – – – 76.3 69.9 54.6 74.5 70.8 

GTRM [13] – – – – – 57.5 54.0 43.3 58.7 65.0 

DA [10] 90.5 88.4 76.2 85.8 80.0 74.2 68.6 56.5 73.6 71.0 

MS-TCN + [9] 88.8 85.7 76.0 83.5 80.1 64.1 58.6 45.9 65.6 67.6 

ASRF + HASR [16] 89.2 87.2 74.8 84.5 76.9 74.7 69.5 57.0 71.9 69.4 

SSTDA + HASR [16] 90.9 88.6 76.4 87.5 78.7 – – – 60.6 –

BCN [5] 88.5 87.1 77.3 84.4 79.8 68.7 65.5 55.0 66.2 70.4 

ASRF [12] 89.4 87.8 79.8 83.7 77.3 74.3 68.9 56.1 72.4 67.6 

ASFormer [17] 90.1 88.8 79.2 84.6 79.7 76.0 70.6 57.4 75.0 73.5 

DPRN 92.6 91.3 81.0 89.9 81.7 75.2 70.2 57.4 74.7 71.6 

DPRN (jointly tuned) 92.9 92.0 82.9 90.9 82.0 75.6 70.5 57.6 75.1 71.7 

The bold values indicate the highest value for each metric (column) in that table/comparison. 
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.4. Study on model capacity 

The High-to-Low and Low-to-High networks of DPN introduce 

oughly 4 SL 1 × 1 convolutional networks, where S is the number 

f stages and L is the number of layers in each stage. This re-

ults in DPN having roughly 1.6 M parameters when using 4 stages 

nd 10 dilation layers, while MS-TCN has around 0.8 M parame- 

ers. To show that the increase in performance of our model is due 

o our design choices rather than an increase in model capacity, 

e compared our model with modifications of MS-TCN where we 

ncreased the number of parameters by increasing three different 
8 
yperparameters: hidden dimension, number of stages, and num- 

er of layers. 

The results, provided in Table 4 , show that the number of pa- 

ameters of the three modifications of MS-TCN are roughly the 

ame as that of DPN. However, although the modifications show 

 slight increase in frame-wise accuracy compared to the orig- 

nal MS-TCN, the improvements are much less significant than 

he improvement shown by DPN. This shows that the High-to- 

ow and Low-to-High networks are particularly effective in cap- 

uring the relevant temporal features for more accurate frame 

lassification. 
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Furthermore, we have tabulated the number of parameters and 

LOPs (floating point operations) of state-of-the-art models for ref- 

rence. FLOPs is a widely used metric in computer vision and ac- 

ion segmentation [17] to compare computational time while fac- 

oring out differences in hardware resources. Compared to mod- 

ls such as ASFormer, ASRF, and MS-TCN that perform fairly well 

ith around 1M parameters and 2G FLOPs, DPRN requires a greater 

umber of parameters and FLOPs, being composed of two explicit 

odels. However, the increased model capacity is within an ac- 

eptable range, remaining much smaller than larger models such 

s BCN and ASRF + HASR. Furthermore, TRN takes up a large por- 

ion of the model capacity. However, considering that TRN per- 

orms as well even with fewer stages, as shown in Table 2 , the

umber of stages in TRN can be reduced in order to minimize 

odel capacity without much influence on performance. 

.5. Comparison with the state-of-the-art 

This section compares DPRN with state-of-the-art models on 

hree datasets: 50Salads, GTEA, and Breakfast. Table 5 tabulates the 

esults. 

For baseline comparisons, we referred to Bi-LSTM [30] for 

0Salads and GTEA and GRU [19] for Breakfast. For recent state- 

f-the-art models, MS-TCN [7] , GTRM [13] , MS-TCN++ [9] , BCN [5] ,

SRF [12] , DA [10] , G2L [11] , ETSN [29] , HASR [16] and ASFormer

17] were used. We report the results of jointly fine-tuned DPRN 

eparately for thorough comparison. 

In terms of the frame-wise accuracy, DPRN outperforms all 

ther models by at least 0.9 and 1.6 percent on 50Salads and GTEA, 

espectively, and achieves the second highest accuracy for Break- 

ast, trailing behind ASFormer by 1.9 percent. On GTEA, DPRN out- 

erforms all the aforementioned models on all metrics, while on 

0Salads, it outperforms the models on the accuracy and the seg- 

ental F1@10 and F1@25 scores, but is second to ASFormer for the 

1@50 and edit scores. On Breakfast, DPRN performs sub-optimally 

o ASFormer, but remains the second best performing model for 

ost metrics. 

Joint fine-tuning improves the performance of all metrics by at 

ost 1.2, 1.9 and 0.4 percent for each dataset, respectively. Conse- 

uently, jointly tuned DPRN outperforms all models on both 50Sal- 

ds and GTEA, and performs similarly to ASFormer on all metrics 

xcept the frame accuracy on Breakfast. 

. Conclusion 

In this paper, we presented a model called Dilation Pass- 

ng and Reconstruction Network (DPRN) for temporal action seg- 

entation. We proposed a two-stage strategy to perform ac- 

ion segmentation: Maximization of frame-wise classification ac- 

uracy, and Restoration of over-segmentation. This strategy is 

ell-suited for improving both frame classification and segmen- 

ation performance as post-processing networks that refine over- 

egmentation exhibit frame accuracies that are bounded by their 

ackbones. The Dilation Passing Network (DPN) first maximizes 

he frame-wise classification accuracy by passing information of 

ifferent dilations to model long-range dependencies within the 

ideo. Then, the Temporal Reconstruction Network (TRN) greatly 

educes over-segmentation errors by encoding and decoding the 

egmentation outputs in the temporal dimension. We also intro- 

uced a weighted temporal reconstruction loss that further re- 

uces over-segmentation errors. Through the evaluations of each 

ub-component of our model, we have shown that DPN is capable 

f significantly increasing the accuracy, and TRN is able to mini- 

ize over-segmentation while maintaining the accuracy. Further- 

ore, through empirical evaluations on three datasets, we have 

hown that DPRN outperforms state-of-the-art methods. 
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ppendix A. Impact of λDPN and λT RN 

We studied how λDPN and λT RN affect the performance of DPRN 

 Table A.6 ). For DPN, although λDPN = 0 . 15 obtains the highest ac-

uracy, the F1 and edit scores are lower compared to those for 

DPN = 0 . 05 and λDPN = 0 . 25 . As previously mentioned, these re-

ults show that the model becomes overly segmented as it starts to 

btain correct predictions for sparse frames within action chunks 

hat are incorrectly predicted. As over-segmentation is handled by 

RN, λDPN = 0 . 15 results in the best overall performance for DPRN. 

For λT RN , DPRN with λT RN = 1 . 0 obtains the highest score on 

ll metrics except the F1@50. These scores are closely followed by 

hose for λT RN = 0 . 6 . For the F1@50 score, however, λT RN = 1 . 8 re-

ults in the highest performance. Overall, changes in λT RN barely 

ffect the high performance of DPRN, with differences of at most 

.6 for the scores from the best overall λT RN = 1 . 0 . This shows that

PRN is robust to the λT RN parameter. 

able A.6 

ffect of λDPN (top) and λTRN (bottom) on 50Salads. 

DPN only DPRN 

λDPN F1@{10,25,50} Edit Acc F1@{10,25,50} Edit Acc 

0.05 48.0 45.7 40.3 38.1 84.5 83.8 82.0 75.3 76.6 84.8 

0.15 31.5 30.4 26.9 25.6 86.9 87.2 85.8 79.1 80.8 86.8 

0.25 52.9 50.0 44.1 43.4 84.4 84.2 82.5 74.8 77.7 84.6 

DPRN 

λTRN F1@{10,25,50} Edit Acc 

0.2 87.0 85.5 79.1 80.2 86.7 

0.6 87.1 85.8 79.2 80.6 86.8 

1.0 87.2 85.8 79.1 80.8 86.8 

1.4 86.9 85.6 79.0 80.3 86.7 

1.8 87.1 85.3 79.3 80.3 86.5 

he bold values indicate the highest value for each metric (column) in that ta- 

le/comparison. 

ppendix B. Impact of segment replacement and t max 

To investigate the influence of segment replacement, we com- 

ared the performance of DPRN with and without segment re- 

lacement, and with different t max values ( Table B.7 ). Using seg- 

ent replacement improves the F1 and edit scores, with increases 

anging from 0.9 to 2.2. The accuracy, however, is slightly greater 

ithout segment replacement. Nonetheless, DPRN without seg- 

ent replacement still shows meaningful results in comparison to 

tate-of-the-art models. 

While the overall metrics exhibit the robustness of the pro- 

osed model in regard to t max , the frame-wise accuracy does 

lightly decrease as t max increases. This is because as the replace- 

ent size increases, the output of DPN, which primarily aims to 

https://doi.org/10.13039/501100003725
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Table B.7 

Effect of segment replacement (top) and parameter 

t max (bottom) on 50Salads. 

SR F1@{10,25,50} Edit Acc 

with 87.2 85.8 79.1 80.8 86.8 

without 85.9 84.9 77.6 78.6 87.3 

t max F1 @{10,25,50} Edit Acc 

30 86.7 85.5 78.5 80.4 87.0 

60 87.2 85.8 79.1 80.8 86.8 

90 87.2 85.7 79.3 80.5 86.5 

120 86.5 85.5 77.4 78.7 86.1 

The bold values indicate the highest value for each 

metric (column) in that table/comparison. 
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