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a b s t r a c t 

This study addresses the online multi-view stereo (MVS) problem when reconstructing precise 3D mod- 

els in real time. To solve this problem, most previous studies adopted a motion stereo approach that 

sequentially estimates depth maps from multiple localized images captured in a local time window. To 

compute the depth maps quickly, the motion stereo methods process down-sampled images or use a 

simplified algorithm for cost volume regularization; therefore, they generally produce reconstructed 3D 

models that are inaccurate. In this paper, we propose a novel online MVS method that accurately re- 

constructs high-resolution 3D models. This method infers prior depth information based on sequentially 

estimated depths and leverages it to estimate depth maps more precisely. The method constructs a cost 

volume by using the prior-depth-based visibility information and then fuses the prior depths into the 

cost volume. This approach significantly improves the stereo matching performance and completeness of 

the estimated depths. Extensive experiments showed that the proposed method outperforms other state- 

of-the-art MVS and motion stereo methods. In particular, it significantly improves the completeness of 

3D models. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Many computer vision and robotics applications require the 

recise 3D reconstruction of environments. Multi-view stereo 

MVS) [1–3] is one of the most widely used approaches in 3D 

econstruction. MVS reconstructs the structures in 3D by finding 

ense correspondences across a collection of calibrated images 

aptured from multiple viewpoints. MVS is particularly effective 

hen reconstructing large-scale scenes because it can accurately 

stimate a wide range of depths from various baseline observa- 

ions. However, general MVS approaches [1–4] run offline; they 

equire several hours to process all the acquired images in a batch. 

herefore, MVS has received less attention in applications that re- 

uire real-time scanning like robot perception, compared to other 

pproaches, such as LiDAR or depth-camera-based reconstruction 

5,6] . 

Motion stereo [7,8] addresses the problem of online MVS. Mo- 

ion stereo estimates depth maps in real time using multiple im- 
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ges captured by a localized, moving monocular camera. It uses a 

et of sequential images in a local time window as the source im- 

ges to solve the MVS problem. However, since existing studies aim 

t collision detection for mobile robots or augmented reality appli- 

ations, they focused only on estimating coarse 3D scenes instead 

f performing a detailed reconstruction. Most approaches [7,9] pro- 

essed down-sampled images or cost volumes to reduce computa- 

ion times, which as a result decreases 3D reconstruction perfor- 

ance. Furthermore, for these approaches, it is difficult to apply 

recise cost volume regularization or exhaustive noise filtering due 

o their time constraints. Therefore, existing motion stereo meth- 

ds are limited to perform precise 3D reconstruction compared to 

riginal MVS methods [1–3] . 

One way to overcome such issue is to use Convolutional Neu- 

al Networks (CNNs) for online MVS. It has been shown that us- 

ng CNNs for MVS [10–13] improves the overall reconstruction 

uality while significantly reducing the computation time com- 

ared to conventional methods [2,3] . A previous study [14] pro- 

osed an online MVS system by applying the CNN-based method 

11] to motion stereo. This system focused on accurate and de- 

ailed reconstruction instead of the fast depth computation con- 

idered in conventional motion stereo [7,8] . The system computes 

amera poses using a keyframe-based SLAM [15] and estimates 
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.109198&domain=pdf
mailto:soohwansong@etri.re.kr
mailto:khangtg@kaist.ac.kr
mailto:daekyum@seas.harvard.edu
mailto:shjo@kaist.ac.kr
https://doi.org/10.1016/j.patcog.2022.109198


S. Song, K.G. Truong, D. Kim et al. Pattern Recognition 136 (2023) 109198 

d

m

t

a

a

s

m

e

t

a

r

c

p

I

t

fi

t

p

t

d

t

p

f

M

b

p

p

r

c

m

F

m

d

o

g

i

M

2

2

v

[

s

t

f

m

s

2

s

[

v

C

l

o

f

u

e

e

f

T

i

c

a

d

t

c

u

p

m

a

e

f

t

t

a

i

s

2

a

h

s

d

d

d

p

m

a

l

M

g

H

v

s

d

epth maps of the keyframes based on MVS. The CNN-based MVS 

ethod [11] can rapidly compute a depth map within the time in- 

erval of keyframe extraction. Therefore, the system not only en- 

bled to reconstruct dense 3D models online but also achieved 

 remarkable modeling performance compared to existing motion 

tereo methods [7,8] . 

However, for this method [14] , the online modeling perfor- 

ance is still considerably lower compared to existing offline mod- 

ling. This method uses insufficient source views in a restricted 

ime window. The source views may produce incomplete cover- 

ge of a reference view, which causes many stereo matching er- 

ors from invisible pixels and temporally inconsistent depths to be 

reated. Furthermore, the restricted views make it difficult to com- 

letely filter out outliers in the background and occluded regions. 

n contrast, the offline modeling method can exhaustively check 

he consistency of depths from all available viewpoints for outlier 

ltering. 

This study proposes a novel deep-learning-based MVS method 

hat performs accurate online 3D modeling based on integrated 

rior information. This approach consists of 1) Prior depth es- 

imation network and 2) Prior depth-based MVS network. Prior 

epth estimation network predicts a prior depth map based on 

he previously estimated depths. Unlike existing sequential depth 

ropagation [8,9,16] , it considers geometrically consistent depths 

rom source views to produce noise-suppressed prior depths. Then, 

VS network constructs a cost volume using the prior-depth- 

ased visibility information and probabilistically integrates the 

rior depths into the cost volume. This approach significantly im- 

roves depth estimation accuracy by reducing stereo matching er- 

ors that caused by invisible pixels. It also estimates temporally 

onsistent depths without sequential error propagation, which is 

ainly occurred in the existing motion stereo methods [8,9,16] . 

urthermore, our method predicts the confidence of depth esti- 

ates by directly learning true depth errors. Based on the pre- 

icted confidences, the proposed method can effectively remove 

utliers even with restricted views. Finally, the proposed method 

reatly improves the completeness and accuracy of 3D model- 

ng when integrating with online MVS system as well as offline 

VS. 

The contributions of this work are: 

• A novel MVS framework for online 3D modeling that pre- 

dicts prior depth information based on the depth maps of 

source views and effectively utilizes the prior information 

to estimate a current depth map. The proposed online ap- 

proach makes it possible to reconstruct a precise 3D model 

with high completeness and accuracy using restricted source 

views. 
• A network structure that predicts a noise-suppressed prior 

depth map by fusing the geometrically consistent depths of 

source views via a normalized CNN (NCNN) [17] . 
• An MVS network for prior depth integration. The network for- 

mulates a cost volume based on visibility information and inte- 

grates the prior depth values into the cost volume probabilisti- 

cally. This method generates accurate and temporally consistent 

depth maps. 
• A confidence prediction network that learns true depth errors 

based on aleatoric uncertainty loss [18] . This network estimates 

confidences more accurately than the cost-distribution-based 

estimation [10] . 
• The proposed method is evaluated on two MVS benchmarks: 

the DTU dataset [19] and the Tanks and Temples dataset [20] . The 

performance of online 3D modeling was also evaluated using 

two aerial scenes. 
2

. Related work 

.1. Multi-view stereo 

Traditional MVS studies can be classified into three categories: 

olumetric [4,21] , point cloud-based [1] , and depth map-based 

2,3] methods. These methods rely on handcrafted features for 

tereo matching, and generally underperform on scenes that con- 

ain untextured or specularly reflected surfaces. 

Recently, many studies have adopted deep-learning approaches 

or MVS, which has gained considerable performance improve- 

ents. Many studies used 2D CNNs to improve the performance of 

tereo matching or depth map fusion. Hartmann et al. [22] trained 

D CNNs from matching and non-matching patches to mea- 

ure a similarity of multiple image patches. Several researchers 

23,24] have used 3D CNNs instead of 2D features to take ad- 

antage of 3D volume information. Ji et al. [24] also trained 3D 

NNs that represent the volume-wise geometric context to regu- 

arize and classify surfaces in a voxel space. Although these meth- 

ds [23,24] explicitly predict global 3D surfaces, they may suffer 

rom precision deficiency and huge memory requirements for vol- 

me representations. 

To overcome the limitations of volumetric methods [23,24] , Yao 

t al. [10] proposed a depth-map-based method, MVSNet. It gen- 

rates the matching cost volume based on the extracted 2D deep 

eatures and then applies 3D CNNs for cost-volume regularization. 

his approach can successfully estimate accurate depth maps us- 

ng end-to-end deep learning architecture. However, because the 

ost volume requires large memory consumption cubic to the im- 

ge resolution, high-resolution images cannot be processed. To ad- 

ress this issue, several studies [11–13] applied a cascade formula- 

ion of multi-stage cost volumes. Gu et al. [11] proposed the cas- 

ade MVS network (CasMVSNet) which uses multiple small cost vol- 

mes instead of a single large cost volume to reduce the com- 

utation time and GPU memory required. It progressively esti- 

ates depths in a coarse-to-fine fashion by restricting the range 

nd number of hypothesis planes at each stage. In this work, we 

xtend CasMVSNet to also account for the sequential depth in- 

ormation. Our method first estimates the prior depth informa- 

ion from previously estimated depth maps and then integrates 

he prior depth into each cascade stage to compute more accurate 

nd complete depths. Our method also estimates pixel-wise visibil- 

ty information to perform more accurate stereo matching at each 

tage. 

.2. Sequential depth propagation 

Propagating sequential depth information can provide stable 

nd temporally consistent results. Sequential depth propagation 

as popularly been applied in video depth estimation methods, 

uch as depth prediction [25] and motion stereo [9,16] . Depth pre- 

iction can estimate the depth information in a single image by 

irectly training the correlations between visual cues and absolute 

epths. Yang et al. [25] integrated sequential depth and uncertainty 

redictions using a Bayesian fusion approach. 

Motion stereo solves a sub-problem of MVS by estimating depth 

aps online using a localized moving monocular camera. Given 

 captured current image, it uses a set of sequential images in a 

ocal time window as source images and solves the independent 

VS problem. Several motion stereo methods [9,16] have propa- 

ated sequential depth information to estimate stable depth maps. 

ou et al. [9] used Gaussian process models to propagate the pre- 

iously estimated depths through a probabilistic prior in a latent 

pace. Liu et al. [16] sequentially propagated the depth-probability 

istribution estimated from a cost volume. 
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Fig. 1. Architecture of the proposed method for MVS depth estimation. It is composed of three main networks: (a) Prior-Net: predicting the prior depth and confidence from 

the previously estimated depths and confidences of the source views ( Section 3.1 ). (b) MVS-Net: performing MVS depth estimation by integrating the prior depth information 

in the cascade cost-volume structure [11] ( Section 3.2 ). (c) Refine-Net: refining the depth and confidence maps estimated by MVS-Net ( Section 3.3 ). 
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As mentioned earlier, these methods [9,16] focus on fast depth 

omputation instead of precise 3D model reconstruction. Therefore, 

heir depth estimates may produce incomplete 3D models contain- 

ng many outliers, and the errors are propagated throughout con- 

ecutive frames. On the other hand, our method aims to recon- 

truct a precise online 3D model. Noise-suppressed prior depths 

re predicted using geometrically consistent depths of multiple 

ource views. Our method also predicts the confidence of prior 

epths to determine their reliability. The prior depths and confi- 

ences are then probabilistically propagated into a cost volume to 

stimate globally consistent depths. 

.3. Visibility estimation 

Visibility information helps reduce errors induced by invis- 

ble pixels during stereo matching. Many visibility estimation 

pproaches have been applied in traditional MVS methods [3] . 

n the other hand, visibility estimation for deep-learning-based 

VS methods has received relatively less attention. Only a few 

isibility-estimation methods [26,27] for deep-learning-based MVS 

ave been proposed. Most methods predict a pixel-wise visibil- 

ty map for each source image by using two-view cost volumes 

26] or warped image features [27] . They applied visibility-based 

eighted sum approaches to construct an aggregated cost volume 

nd regressed a depth map from the cost volume. Zhang et al. 

26] measured the entropy of a depth-probability distribution on 

 two-view cost volume to predict the visibility map. 

Like Zhang et al. [26] , our method predicts the pixel-wise visi- 

ility map based on two-view cost volumes. Moreover, our method 

onsiders the prior depth and previously estimated depth of a 

ource image, which provides important information for visibil- 

ty prediction. The application of this visibility information signifi- 

antly improves the overall performance of stereo matching. 

. Prior depth-based MVS network 

This study addresses the motion stereo problem where the 

epth map of a current frame captured from a moving monocu- 

ar camera is sequentially estimated. Given a reference image I 0 
nd N source images { I 1 , . . . , I N } with corresponding camera pa- 

ameters { Q 0 , . . . , Q N } , the depth map D and confidence map C for

 0 are estimated using the MVS method. The depths and confi- 

ences { D k , C k } N k =1 
of source images were already computed and 
3 
ere known; therefore, we could use them as prior information 

or the MVS depth estimation problem, unlike in conventional 

tudies. 

Fig. 1 depicts the proposed network architecture that effec- 

ively integrates prior depth information to allow for MVS depth 

ap estimation. The network consists of three stages: Prior-Net 

 Section 3.1 ), MVS-Net ( Section 3.2 ), and Refine-Net ( Section 3.3 ).

rior-Net first predicts a prior depth map D 

prior with the corre- 

ponding confidence map C 

prior of the current view using the pre- 

iously estimated depths and confidences of the source views. To 

redict the prior depths, we fuse geometrically consistent depths 

f source views by confidence-equipped depth propagation of 

CNN [17] . The proposed method significantly reduces the possi- 

ility of error propagation that frequently occurs in other sequen- 

ial depth integration methods [9,16] . 

Next, MVS-Net performs MVS depth estimation by leveraging 

he prior depth information. We adopted the cascading cost vol- 

me formulation of CasMVSNet [11] as the MVS-Nets baseline ar- 

hitecture. It progressively narrows the range of the depth hy- 

othesis using a cascade formulation of multiple stages. This ap- 

roach efficiently processes high-resolution images with relatively 

ow GPU memory usage and fast computation time. For each cas- 

ade stage, we formulate a cost volume through visibility-based 

tereo matching. Unlike existing methods [26,27] , the proposed 

ethod accurately predicts the pixel-wise visibility from the prior 

nformation. MVS-Net then integrates D 

prior and C 

prior into the cost 

olume via Bayesian filtering. The depth map D 

post and confidence 

ap C 

post are estimated from the posterior distribution of the cost 

olume. 

Finally, Refine-Net refines the estimated D 

post and C 

post based 

n the photometric features of the reference image. It directly 

rains true depth errors to estimate confidences more accurately 

ompared to the cost-distribution-based estimation [10] . The re- 

ned depth map D 

re f ine and confidence map C 

re f ine are stored in a 

atabase and used for future depth estimation. 

.1. Prior depth prediction 

In the first stage, Prior-Net takes the depth maps { D 1 , . . . , D N } 
nd their confidence maps { C 1 , . . . , C N } of the source views as in-

uts and predicts a single prior depth D 

prior and the corresponding 

onfidence C 

prior for a reference view. Fig. 2 depicts the network 

rchitecture of Prior-Net. 
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Fig. 2. The network architecture of Prior-Net. (a) Given the depth maps { D 1 , . . . , D N } and confidence maps { C 1 , . . . , C N } of source views, (b) Prior-Net first projects them onto 

the reference view and filters their outliers. (c) The filtered depths { D 

f ilt 
1 

, . . . , D 

f ilt 
N 

} and confidences { C f ilt 
1 

, . . . , C f ilt 
N 

} are fed into the NCNN [17] to generate the propagated 

depths { D 

prop 
1 

, . . . , D 

prop 
N 

} and confidences { C prop 
1 

, . . . , C prop 
N 

} . (d) Prior-Net then integrates them into an averaged depth D 

a v g and confidence C a v g . (e) Finally, the prior depth 

D 

prior and confidence C prior are estimated by refining D 

a v g and C a v g , respectively. 
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.1.1. Outlier filtering 

To predict the prior depth map, our method only considers the 

eliable depth information of each depth map. It applies strict out- 

ier filtering and produces filtered depth maps { D 

f ilt 
1 

, . . . , D 

f ilt 
N 

} and 

onfidence maps { C 

f ilt 
1 

, . . . , C 

f ilt 
N 

} . Our method first removes depths 

ith confidence values lower than a defined threshold. Then, sim- 

lar to the method in [2] , it checks the geometric consistencies of 

he warped depths for outlier filtering. The confidences are also fil- 

ered according to the filtered depth pixels. 

.1.2. Depth propagation 

The filtered depth maps { D 

f ilt 
1 

, . . . , D 

f ilt 
N 

} are composed of reli- 

ble depths; however, they are relatively sparse and may contain 

ome empty regions. Therefore, our method generates interpolated 

epth maps by propagating the reliable depths into the neigh- 

oring regions using NCNN. NCNN propagates the high-confidence 

epths into the neighboring low-confidence or empty regions 

hrough consecutive CNN layers. The confidences are also inertially 

ropagated between the CNN layers. Therefore, NCNN can pro- 

uce not only propagated depth maps { D 

prop 
1 

, . . . , D 

prop 
N 

} but also 

ropagated confidence maps { C 

prop 
1 

, . . . , C 

prop 
N 

} using confidence- 

quipped CNN layers. Similar to [17] , the UNet architecture [28] is 

sed in NCNN, which allows for the effective propagation of multi- 

cale information, to allow for depth interpolation. 

.1.3. Average pooling 

Next, Prior-Net integrates the propagated depth maps 

 D 

prop 
1 

, . . . , D 

prop 
N 

} and confidence maps { C 

prop 
1 

, . . . , C 

prop 
N 

} into 

 single depth map D 

a v g and confidence map C 

a v g . It applies 

eighted mean and standard mean operation to output the single 

epth and confidence, respectively: 

 

a v g = 

∑ N 
i =1 D 

prop 
i 

C 

prop 
i ∑ N 

i =1 C 

prop 
i 

, C 

a v g = 

∑ N 
i =1 C 

prop 
i 

N 

(1) 

CNN may produce wrong depth completion results when input 

epth maps contain large holes. However, the influence of wrong 

epth completion can be eliminated by this confidence-based aver- 

ge pooling. We only consider the geometrically consistent depths; 

heir integration provides a reliable result. Since each C 

prop 
i 

rep- 

esents the reliability with the density of the consistent depths 

n D 

prop 
i 

, C 

a v g also reflects the integrated density of the consistent 

epths. Sparse depth or empty regions have low-confidence val- 

es in C 

a v g because most of the propagated depths with low con- 

dences in C 

prop 

k 
are integrated. On the other hand, non-empty re- 

ions on each filtered depth guarantee integration of some consis- 

ent depths; therefore, the densely distributed depths produce high 

onfidence integration results in C 

a v g . 
4 
.1.4. Prior depth and confidence prediction 

Finally, the prior depth map D 

prior and confidence map C 

prior are 

roduced by refining the averaged depth map D 

a v g and confidence 

ap C 

a v g . Our method feeds D 

a v g and C 

a v g into two UNet archi- 

ectures and then refines them independently. For depth map re- 

nement, our method employs a UNet block with a depth of 1 and 

everal residual blocks [29] . For confidence refinement, our method 

rst estimates the noise variance ˜ C 

prior 
by using a UNet block with 

 depth of 3 and a Softplus activation function, where the noise 

ariance represents the uncertainty of the predicted depth. Then, 

ur method transforms the uncertainties of ˜ C 

prior 
into normalized 

onfidences of C 

prior between 0 and 1 as follows: 

 

prior = exp 

( 

−
˜ C 

pr ior 2 

2 σ 2 
con f 

) 

(2) 

here σcon f is a constant value. 

To train Prior-Net, we employed the aleatoric uncertainty loss 

18] , which is the negative log-likelihood of a Gaussian distribu- 

ion corresponding to the L 2 loss. However, because the L 2 loss of- 

en has a bias toward pixels with high depth values in the back- 

round, we applied a new L 1 loss that considers Laplace distribu- 

ion instead of Gaussian distribution, as in the original aleatoric 

ncertainty loss [18,30] . 

 prior = 

1 

M 

∑ 

x 

( | D 

prior (x ) − D 

gt (x ) | 
˜ C 

prior 
(x ) 

+ log ̃  C 

prior 
(x ) 

)
(3) 

here M is the total number of pixels, and D 

prior (x ) and D 

gt (x ) are

he prior and ground truth depths at pixel x , respectively. ˜ C 

prior 
(x ) 

epresents the noise variance of D 

prior (x ) . 

.2. MVS Depth estimation 

The architecture of MVS-Net follows the network structure of 

asMVSNet [11] . We extend CasMVSNet to also consider prior 

epth information. We composed three cascade stages to estimate 

epth maps at different scales { 1 
16 , 

1 
4 , 1 } in a coarse-to-fine man-

er. It progressively reduces the depth hypothesis range of a cost 

olume based on the depths estimated at the previous stage. 

MVS-Net first extracts multi-scale deep features for each image 

nd constructs the cascade cost volumes by fusing the extracted 

eatures. For each image I k , the feature pyramid network [31] is 

pplied to extract three photometric features { F photo 

k, 1 
, F 

photo 

k, 2 
, F 

photo 

k, 3 
} 

t multiple scales. Each feature map is used to generate a cost vol- 

me with the same spatial resolution at each stage. 

Fig. 3 shows the architecture of the MVS-Net at a single stage; 

he stage number s is omitted for simplicity. MVS-Net first pre- 
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Fig. 3. The network architecture of MVS-Net. (a) MVS-Net produces the two-view cost volume CV two 
k with visibility map B k of each source image I k . It then aggregates all 

two-view cost volumes into a single cost volume CV agg using a weighted sum. (b) MVS-Net applies 3D CNNs to produce the probability volume P prob from CV agg . (c) Next, it 

integrates P prob with the prior probability volume P prior into the posterior probability volume P post . (d) Finally, depth map D 

post and confidence map C post are estimated from 

P post . 
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icts pixel-wise visibility B k for each source image I k using prior 

epth information. It then generates a cost volume CV 

agg by ag- 

regating multiple matching costs { CV 

two 
1 , . . . , CV 

two 
N } while also 

onsidering their visibility maps { B 1 , . . . , B N } . The visibility infor- 

ation is used to reduce the influence of mismatching errors in 

he occluded areas. Next, MVS-Net produces a probability volume 

 

prob by regularizing CV 

agg using 3D CNNs. The probability vol- 

me represents the probability distribution of each depth direc- 

ion. The prior depth D 

prior is then directly integrated into P 

prob , 

esulting in the posterior depth probability distribution P 

post . Fi- 

ally, the depth map D 

post is estimated by computing the expec- 

ation value along each depth direction on P 

post . The estimated 

epth map is propagated into the next stage to reduce the range of 

he depth hypothesis for the higher-resolution image. The follow- 

ng descriptions detail each component of the MVS-Net in a single 

tage. 

.2.1. Visibility-aware cost volume formulation 

For each source image I k , MVS-Net warps the feature map F 
photo 

k 
nto different fronto-parallel planes of the reference image I 0 us- 

ng differentiable homography. A two-view cost volume CV 

two 
k is 

enerated by computing the group-wise correlations between the 

eference and warped feature maps [26] . MVS-Net then predicts 

 visibility map B k representing the pixels visibility in the source 

mage I k . In contrast to existing methods [26,27] that focus only 

n matching the cost distribution for visibility prediction, MVS- 

et applies an occlusion-aware strategy in that it considers the oc- 

luded areas estimated from the prior depth. 

Fig. 3 a shows the architecture of the visibility prediction net- 

ork. It is a lightweight 2D CNN composed of several 2D convolu- 

ional and ReLU blocks. The network takes the maximum and av- 

rage cost matching information F max 
k and F 

a v g 
k 

, respectively of a 

wo-view cost volume CV 

two 
k as input features. The highest and av- 

rage cost matching information implicitly reflects the saliency or 

atching quality [27] . Like the MVSNet-based methods [10,11,27] , 

e applied a weighted Euclidean distance to estimate the match- 

ng where a { 1 × 1 × 1 } convolution layer trains the weights. The

atching cost is interpreted as a matching score that has a high 

alue when two matched features are similar. Therefore, we use 

he maximum cost instead of the minimum cost to measure a 

atching quality. Similar to PVA-MVSNet [27] , we do not normal- 

ze these feature maps F max 
k and F 

a v g 
k 

. A normalized feature value 

t a pixel could vary significantly depending on the number of 

epth hypotheses, which leads to inconsistency of visibility pre- 

iction at different cascade stages. Therefore, normalizing cost vol- 

me before extracting F max 
k and F 

a v g 
k 

will not benefit the visibility 

rediction. 
5 
Furthermore, the network takes additional input features F occ 
k 

nd F 
occ _ con f 

k 
, which represents the occluded area and its confi- 

ence, respectively. The occluded area of a source image is roughly 

stimated from the prior depth information, which is strongly re- 

ated to the visibility. Given a propagated depth map D 

prop 

k 
com- 

uted as described in Section 3.1 and a prior depth map D 

prior , the 

eature map F occ 
k representing the occluded area is computed using 

he relative difference 

 

occ 
k = 

| D 

prop 

k 
− D 

prior | 
D 

prior 
(4) 

here F occ 
k is resized to the resolution of output depth map at 

 stage. Since several sub-regions of D 

prop 

k 
and D 

prior may be in- 

ccurate, their confidence C 

prop 

k 
and C 

prior should also be consid- 

red. The feature map F 
occ _ con f 

k 
representing the confidence of F occ 

k 

s computed as 

 

occ _ con f 

k 
= min ( C 

prop 

k 
, C 

prior ) (5) 

here C 

prop 

k 
is the propagated confidence map, and C 

prior is the 

rior confidence map that has a same scale with C 

prop 

k 
. 

For each source image I k , the visibility prediction net- 

ork predicts the visibility map B k from the extracted features 

 F max 
k , F 

a v g 
k 

, F occ 
k , F 

occ _ con f 

k 
} . Pixels with low visibility are more likely 

o be occluded in the reference view; therefore, their matching 

ost should have a small impact on cost aggregation. Given the 

redicted visibility maps { B 1 , . . . , B N } , the two-view cost volumes 

 CV 

two 
1 , . . . , CV 

two 
N } are aggregated into a single cost volume CV 

agg 

y the weighted sum: 

V 

agg = 

∑ N 
k =1 B k � CV 

two 
k ∑ N 

k =1 B k 

(6) 

here � represents the element-wise multiplication operation. 

his approach reduces the influence of mismatching errors induced 

y invisible pixels in advance. We further provide the illustration 

f the feature maps and the visibility map in the supplementary 

aterial (Section 4). 

.2.2. Cost volume regularization 

The aggregated cost volume CV 

agg generally contains a large 

mount of noise. Therefore, MVS-Net applies 3D CNNs for cost- 

olume regularization to reduce the noise and enforce the smooth- 

ess constraint [10] . It then normalizes the regularized cost volume 

long each depth direction using the softmax function. The nor- 

alized cost volume refers to the probability volume P 

prob , which 

s generally used in per-pixel depth probabilities; P 

prob (x, d) repre- 

ents the probability that pixel x has a depth value d. 



S. Song, K.G. Truong, D. Kim et al. Pattern Recognition 136 (2023) 109198 

3

P

r

s

p

g

T

b

t

o

m

d

m

n  

v

P

w

O

w

F

a

P

W

n

a

D

w

t

3

b

q

a

i

e

c

p

a

p

fi

F

L

a

m

a  

d

V

w

t

Fig. 4. An illustration of the confidence refinement for (a) the reference image. (b) 

The refined depth map D 

re f ine and (c) the depth error between the refined depth 

and ground truth (gray color denotes none depth information). Refine-Net refines 

(e) the integrated confidence C post and produces (f) the refined confidence map 

C re f ine . (d) The original confidence map is estimated from the cost distribution on 

probability volume at last stage as in [11] . The refined confidence represents the 

true depth error more accurately than the original and integrated confidences. 

Fig. 5. The network architecture of Refine-Net. Refine-Net refines the posterior 

depth map D 

post and confidence map C post using the photometric features. 
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.2.3. Prior depth integration and depth regression 

Next, our method integrates the prior depth information into 

 

prob . The prior depth provides complementary information for the 

esults of current stereo matching and helps produce temporally 

table depths with improved accuracy. Our method formulates a 

rior probability distribution from D 

prior and C 

prior and then inte- 

rates it with the cost distribution on P 

prob via Bayesian filtering. 

his integration approach considers the posterior probability distri- 

ution of a depth value instead of considering a single depth value; 

herefore, our method is able to mitigate the effect of mismatching 

r error propagation implicitly through statistical distributions. 

Given a prior depth map D 

prior and confidence map C 

prior , our 

ethod first constructs a prior probability volume P 

prior . For each 

epth direction of a pixel x on P 

prior , our method generates a uni- 

odal distribution peaked at the prior depth D 

prior (x ) with the 

oise variance ˜ C 

prior 
(x ) . The probability of a pixel x having a depth

alue d on the unimodal distribution is defined as [32] 

 

prior (x, d) = softmax 

(
−| d − D 

prior (x ) | 
˜ C 

prior 
(x ) 

)
(7) 

here ˜ C 

prior 
(x ) controls the sharpness of the peak around D 

prior (x ) . 

ur method then integrates the prior probability P 

prior volume 

ith the current probability volume P 

prob using Bayesian filtering. 

or each pixel x and depth d, the posterior probability is computed 

s 

 

post ( x, d ) = 

P 

prior ( x, d ) × P 

prob ( x, d ) ∑ d max 

d= d min 
P 

prior ( x, d ) × P 

prob ( x, d ) 
(8) 

e refer to volume P 

post as the posterior probability volume. Fi- 

ally, the depth values are regressed using the expectation value 

long each depth direction on P 

post as 

 

post (x ) = 

d max ∑ 

d = d min 

d × P 

post (x, d) (9) 

here d max and d min are the maximum and minimum ranges of 

he depth hypotheses on D 

post , respectively. 

.2.4. Integrated confidence estimation 

The posterior probability volume P 

post represents the proba- 

ility distributions along each depth direction, which reflects the 

uality of the depth estimation. The confidence (or uncertainty) of 

n estimated depth is generally measured by the depth probabil- 

ty [10] or the variance [27] of the probability distribution. How- 

ver, because the probability volume P 

post 
s at stage s in the cas- 

ade structure is constructed with restricted ranges of depth hy- 

otheses, as shown in Fig. 4 d, its probability distribution is not 

ppropriate for confidence estimation. To address this issue, we 

rovided a probabilistic method to calculate a representative con- 

dence map from multiple probability volumes { P 

post 
1 

, P 

post 
2 

, P 

post 
3 

} . 
or each stage s , we model the depth probability on P 

post 
s as a 

aplacian distribution over the entire hypothesis range. The prob- 

bility distributions at multiple stages are then integrated using a 

ixture model. 

Given a probability volume P 

post 
s and estimated depth map D 

post 
s 

t the s th stage, the depth variance V s (x ) at pixel x and stage s is

efined as [13] 

 s (x ) = 

d max 
s ∑ 

d = d min 
s 

P 

post 
s (x, d) × | d − D 

post 
s (x ) | (10) 

here d max 
s and d min 

s are the maximum and minimum ranges of 

he depth hypotheses on P 

post 
s , respectively. We then define the 
6 
robability of depth d at pixel x and stage s using the Laplacian 

istribution [18] 

 

(
d | D 

post 
s (x ) , V s (x ) 

)
= 

1 

2 V s (x ) 
exp 

(
−| d − D 

post 
s (x ) | 

V s (x ) 

)
(11) 

inally, the integrated confidence C 

post (x ) of the estimated depth 

t pixel x is calculated using the mixture model 

 

post (x ) = 

∑ 

s =1 , 2 , 3 

w s p 

(
D 

∗(x ) | D 

post 
s (x ) , V s (x ) 

)
(12) 

here D 

∗ is the final depth map and is equal to the depth map 

 

post 
3 

in the last stage. The mixture weights are set to equal val- 

es: w 1 = w 2 = w 3 = 

1 
3 . Fig. 4 e illustrates an example of the es-

imated confidence map. The integrated confidence map contains 

ewer outliers in the background and boundary regions compared 

o the initial confidence estimate ( Fig. 4 d). 

.3. Depth and confidence refinement 

In the last stage, Refine-Net produces the final depth map 

 

re f ine and confidence map C 

re f ine by refining the posterior depth 

ap D 

post and confidence map C 

post (see Fig. 5 ). The integration 

f two probability volumes, D 

prior and D 

prob may produce discon- 

inuous depths in a plane area. To alleviate these problems, our 

ethod uses the photometric features of the reference image as 

uidance information during depth map refinement. Furthermore, 

s shown in Fig. 4 e, the confidence map estimated using the prob- 

bility volume cannot accurately represent the true depth errors. 

efine-Net directly learns depth estimation errors to produce a 

ore accurate confidence map than the posterior confidence map. 
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.3.1. Depth refinement 

Refine-Net applies a 2D CNN to refine the posterior depth map 

 

post . The 2D CNN includes several 2D convolutional layers fol- 

owed by ReLU activations. This network takes the photometric fea- 

ure F 
photo 
0 , 3 

of the reference image I 0 , depth map D 

post , and confi- 

ence map C 

post as inputs to predict the residual depth map D 

res 

10] . The residual depth map is then added back into the input 

epth to generate the refined depth map D 

re f ine . 

.3.2. Refined confidence estimation 

Refine-Net employs a 2D UNet architecture to predict the re- 

ned confidence map C 

re f ine . The network takes both the poste- 

ior confidence map C 

post and the residual depth D 

res , computed 

rom the depth refinement stage, as inputs. Similar to the network 

or prior confidence estimation ( Section 3.1 ), the UNet architecture 

as Softplus activation at the final layer to output the noise vari- 

nce ˜ C 

re f ine 
. Our method then transforms ˜ C 

re f ine 
into the normal- 

zed confidences C 

re f ine by applying the Gaussian weighting func- 

ion as in Eq. (2) . Fig. 4 f shows the refined confidence map, which

epresents the true depth errors precisely. 

.3.3. Loss function 

We obtain the depth loss L 

s 
depth 

by using L 1 loss for each stage 

 after the prior integration procedure. 

 

s 
depth = 

1 

M 

∑ 

x 

| D 

post 
s (x ) − D 

gt (x ) | (13) 

he prior loss L prior for training Prior-Net is described in 

ection 3.1 . Similar to the prior loss, we designed the loss for the 

efined depth and confidence maps by using L 1 aleatoric uncer- 

ainty loss 

 re f ine = 

1 

M 

∑ 

x 

( 

| D 

re f ine (x ) − D 

gt (x ) | 
˜ C 

re f ine 
(x ) 

+ log ( ̃  C 

re f ine 
(x )) 

) 

(14) 

n summary, the total loss is defined by the weighted sum over the 

osses above, as follows 

 total = 

3 ∑ 

s =1 

λs L 

s 
depth + λprior L prior + λre f ine L re f ine (15) 

here λs =1 , 2 , 3 , λprior , and λre f ine are constant weights for each loss 

erm, and in this study, we set the weights as λs =1 , 2 , 3 = λprior = 

re f ine = 1 . 0 . 

.4. Efficiency improvement strategy 

In this section, we introduce how to improve the efficiency of 

ur network model. Since we focus on online 3D modeling, the ef- 

ciency of memory and computation time is also an important is- 

ue. However, the proposed framework ( Fig. 1 ) sometimes requires 

 lot of memory and computation time because several complex 

etworks are integrated. 

Similar to the efficient methods [26,33,34] , we can also apply a 

epth up-sample and refinement layer at Refine-Net to address this 

ssue. MVS-Net quickly computes low-resolution depth and confi- 

ence maps (a quarter resolution) at three cascade stages instead 

f full-resolution maps. Refine-Net then up-samples the depth and 

onfidence maps to the original high-resolution by performing a 

ightweight refinement using the RGB image. We used several 2D 

onvolution layers to refine the depth and a 2D UNet with Soft- 

lus activation to output the refined confidence. This design can 

e used optionally according to a memory budget or runtime con- 

traint. 
7 
. Experiments on MVS benchmark 

.1. Implementation details 

Training : The proposed network model was trained using the 

TU dataset [19] . We directly used the ground-truth depths and 

iew selection method provided by Yao et al. [10] . Similar to Cas- 

VSNet [11] , we set the image resolution to 640 × 512 , the num-

er of input views to 4, and the number of depth hypothesis planes 

o { 64 , 32 , 8 } for training. The proposed MVS-Net was initialized

rom the pre-trained CasMVSNet model to increase the training 

peed. Prior-Net was also initialized by independently training the 

odel (over 20 epochs with a batch size of 8) on the DTU train- 

ng set without using the pre-trained model provided in the NCNN 

aper [17] . To train Prior-Net, the outputs of CasMVSNet were di- 

ectly used as pre-computed depth and confidence maps of the in- 

ut source images. After initializing both MVS-Net and Prior-Net, 

e trained the entire network end-to-end using the Adam opti- 

izer with an initial learning rate of 0.0 0 05. 

Evaluation : The performance of the trained model was evalu- 

ted on the DTU evaluation set. The generalized performance of 

ur network was also evaluated on the Tanks and Temples dataset 

20] using the same trained model without fine-tuning. Similar to 

he model training, we used the depth and confidence maps com- 

uted by CasMVSNet as the inputs into Prior-Net. We set the num- 

er of input views to 7. We reconstructed the final point cloud 

y filtering the low-confidence depths based on confidence us- 

ng a threshold of 0.5 and fusing all the depth maps [2] . We

et the disparity threshold to 0.08, and the number of consistent 

iews to 2. 

.2. Results for DTU dataset 

We compared the performance of our method with conven- 

ional [2,3] and learning-based methods using the DTU dataset. 

e also evaluated the performance of the efficient version of our 

ethod (described in Section 3.4 ) denoted as Ours-fast . MVS-Net 

n Ours-fast estimates the depth maps at the resolution scales 

 

1 

64 
, 

1 

16 
, 

1 

4 
} in the first three stages. It then up-sampled and re- 

ned the depth in Refine-Net to output a full-resolution depth 

n the last stage. We applied the identical setups with the orig- 

nal version described above for the training and evaluation pro- 

ess. Similar to our method, several learning-based methods [11–

3,26,27] adopted the cascade structure for MVS depth estimation, 

hich progressively navigates through depths in a coarse-to-fine 

anner by narrowing the depth hypothesis ranges. Some meth- 

ds [26,27] also considered the visibility or attention information 

o perform depth estimation. 

.2.1. Evaluation on 3D modeling 

Table 1 provides the quantitative results of the DTU evaluation 

ataset. We considered the three standard error metrics [19] : ac- 

uracy, completeness , and overall error. The learning-based methods 

hat used the cascade structure [11–13] or visibility/attention in- 

ormation [26,27] generally outperformed the other learning-based 

ethods [10,35,36] . Our method exhibited the best performance in 

erms of overall error. In particular, the overall error of our method 

t 0.319 had a significant margin over to the second-best performer 

t, 0.344. This indicates that an approach which considers prior 

epth information can remarkably improve the modeling perfor- 

ance. 

Fig. 6 shows the qualitative comparison results of scans 13, 77, 

nd 11. As can be seen in the figure, our method successfully pro- 

uced clean and detailed reconstructions. Furthermore, our recon- 

truction provided larger areas of coverage of the target objects 
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Fig. 6. Qualitative results of PVA-MVSNet [27] , UCSNet [13] , CasMVSNet [11] , CVP-MVSNet [12] , and our method on the DTU evaluation dataset. 

Table 1 

Quantitative results on the DTU evaluation dataset [19] . 

Methods Mean error distance (mm) 

Acc. Comp. Overall 

Gipuma [2] � 0.283 0.873 0.578 

Colmap [3] � † 0.400 0.664 0.532 

MVSNet [10] 0.396 0.527 0.462 

R-MVSNet [35] 0.385 0.459 0.422 

P-MVSNet [36] 0.406 0.434 0.420 

Fast-MVSNet [37] 0.336 0.403 0.370 

Vis-MVSNet [26] ◦† 0.369 0.361 0.365 

CasMVSNet [11] ◦ 0.325 0.385 0.355 

UCSNet [13] ◦ 0.338 0.349 0.344 

PVA-MVSNet [27] ◦† 0.379 0.336 0.357 

CVP-MVSNet [12] ◦ 0.296 0.406 0.351 

PatchMatchNet [33] ◦† 0.429 0.277 0.352 

IterMVS [34] ◦† 0.373 0.354 0.363 

Ours ◦† 0.351 0.287 0.319 

Ours-fast ◦† 0.350 0.305 0.327 

� conventional method, ◦ cascade structure, † visibility/attention-based method. 

t

c

4

r

m

l

c

c

o

(

s

t

s

e

c

(

o

c

e

fi

s

a

fi

A

M

c

a

v

b

f

M

m

a

a

d

t

r

o

m

O

a

p

o

4

m

b

d

s

t

o

T

s

han the others, which significantly improved the reconstruction 

ompleteness. 

.2.2. Evaluation on depth and confidence maps 

We also evaluated the quality of the estimated depths and cor- 

esponding confidences on the DTU evaluation dataset. The esti- 

ation quality of our method was compared with that of other 

earning-based methods [10,11,27,35] ; all these methods produced 

onfidence maps from the probability volume. To allow for a fair 

omparison, we used the pretrained models of the target meth- 

ds with the same parameter settings, namely depth resolution 

 1152 × 864 ), input views (5), and the number of depth hypothe- 

is planes (192). 

To evaluate the performance of the depth maps, we measured 

wo error metrics: mean absolute error (MAE) and precision . Preci- 

ion is defined as the average percentage of depths for which the 

rror is below a certain threshold. To measure the quality of the 

onfidence maps, we used the area under sparsification error plots 

AUSE) [38] . Two root-mean-square error (RMSE) curves for vari- 

us depth densities were computed based on the filtered depths by 
8

hanging the applicable thresholds for confidence and true depth 

rror. The differences between these two RMSE curves were de- 

ned as the sparsification error plots, which represented the con- 

istency between the predicted confidence and true errors. AUSE is 

 representative measure that quantifies the confidence quality. 

Table 2 presents the quantitative results for the depth and con- 

dence estimations. CasMVSNet performed the worst in terms of 

USE, but still showed comparable performances in precision and 

AE. As mentioned in Section 3.2 , CasMVSNet produces imprecise 

onfidence maps because its cascade structure does not provide 

n integrated probability volume for the entire depth range. Con- 

ersely, because MVSNet and R-MVSNet formulate a single proba- 

ility volume over an entire depth range, they showed better per- 

ormances in terms of AUSE than the cascade-based methods, Cas- 

VSNet and PVA-MVSNet. Our method achieved the best perfor- 

ance in terms of all the metrics. Even though our method also 

pplied the cascade structure, it had the best AUSE of 0.283 with 

 significant margin over the second place, 0.335. Our method 

irectly learns depth-estimation errors using the aleatoric uncer- 

ainty loss [18] . Therefore, the estimated confidences accurately 

epresent the true depth errors. 

Fig. 7 shows the qualitative comparisons of the tested meth- 

ds. MVSNet and PVA-MVSNet produced discontinuous confidence 

aps with many outliers in the background and boundary regions. 

n the other hand, our method estimated smooth confidence maps 

nd accurately identified the background regions. Our method also 

recisely captured the low-confidence areas at the boundary and 

ccluded regions. 

.3. Results on tanks and temples dataset 

In this section, we verify the generalization capability of our 

ethod by evaluating its performance on the Tanks and Temples 

enchmark, which contains diverse outdoor and indoor scenes. The 

etails of the experimental results are described in Section 2 in the 

upplementary material. Tables 1 and 2 in the supplementary ma- 

erial show the quantitative results of our method and other state- 

f-the-art methods on the intermediate and advanced datasets. 

he tables show that our method achieved the best average F- 

core with comparable individual results in the intermediate and 
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Table 2 

Quantitative results of depth and confidence maps on the DTU evaluation dataset. 

Depth Map Confidence 

Methods Prec. 2mm (%) Prec. 4mm (%) MAE (mm) AUSE 

MVSNet [10] 70.30 79.68 16.69 0.335 

R-MVSNet [35] 62.95 76.11 21.98 0.355 

CasMVSNet [11] 75.16 80.26 12.53 0.483 

PVA-MVSNet [27] 47.67 66.19 19.52 0.418 

Ours 77.80 82.82 9.68 0.283 

Fig. 7. Qualitative results of estimated depth map (top) and confidence map (bottom) on the DTU evaluation dataset (scan 4 and scan 77). 

Table 3 

Comparisons of our method with different model variants to evaluate the effectiveness of each module (visibility estimation V , prior depth integration I , 

depth refinement R ). 

Methods Depth Map Pointcloud Time & Memory 

Prec. 2mm Prec. 4mm MAE (mm) Acc. (mm) Comp. (mm) Overall (mm) # of Param Time (s) Mem (Mb) 

Baseline 75.16 80.26 12.53 0.325 0.385 0.355 934K 0.368 5843 

Model-A (V) 77.05 82.20 11.07 0.372 0.289 0.330 1428K 0.631 7030 

Model-B (V + I) 77.79 82.81 9.68 0.371 0.275 0.323 1428K 0.634 7137 

Model-C (V + I+R) 81.19 86.40 6.94 0.352 0.291 0.322 1554K 0.640 8397 
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dvanced datasets. In particular, compared to CasMVSNet, which is 

he base approach of our method, we obtained better scores on all 

cenes. This demonstrates the effectiveness of our method in com- 

lex outdoor and indoor scenes. 

.4. Ablation study 

We conducted an ablation study using the DTU evaluation 

ataset to verify the effectiveness of the key components of our 

ethod. We used the same settings as CasMVSNet [11] , namely 

mage resolution ( 1152 × 864 ), number of input views (5), and 

umber of depth planes (192). We measured the time and memory 

onsumption on a workstation with an Intel Xeon CPU (48 cores) 

ith 252 GB of RAM and a Tesla V100 GPU with 32 GB of mem-

ry. We provided the performance gain of each key component in 

 progressive manner by comparing the four model variants as fol- 

ows: 

• Baseline : CasMVSNet [11] was directly adopted as the baseline 

method. 
• Model-A : Only the visibility-aware cost-volume formulation, 

described in Section 3.2 , was applied to the baseline model. 
• Model-B : The prior depth integration step, described in 

Section 3.2 , was applied to Model-A, which is the same as the 

full model of MVS-Net. 
• Model-C : This is our full model, including Refine-Net in 

Section 3.3 . 

Table 3 presents the performances of the variant models 

ith respect to depth estimation, point cloud reconstruction, and 

ime complexity. Model-A showed better performance in terms of 

epth estimation and point cloud reconstruction than the base- 

ine method. The visibility-based cost-volume formulation achieved 

 significant performance improvement over the original cost- 

olume formulation [11] . Model-B performed better than Model-A 
9 
or all the criteria. Our method probabilistically integrated noise- 

uppressed prior depths into the current cost volume. This ap- 

roach enhanced the accuracy of the estimated depths by reducing 

he possibility of error propagation as much as possible. Model- 

 applied strict outlier filtering based on predicted confidences; 

herefore, Model-C had lower model completeness than Model-B 

ut showed a higher reconstruction accuracy. In particular, Model- 

 showed much better performance in terms of depth estimation 

han Model-B. This indicates that Refine-Net could effectively im- 

rove the quality of the estimated depths. 

Each computation time on Table 3 represents the average time 

o process a single frame. Compared to CasMVSNet, Model-C takes 

ore computation time of 0.272 s longer to process a single frame. 

his study focuses on accurate 3D modeling instead of fast depth 

omputation; therefore, Model-C sacrifices some computation time 

verhead to improve the modeling performance. However, this 

ime gap does not cause a bottleneck of the whole system in that 

he keyframe extraction period in the online modeling system is 

uch longer than the computation time of Model-C. Both Cas- 

VSNet and Model-C can compute a depth map of the current 

eyframe before extracting the next keyframe, so online modeling 

s possible for both methods without any bottleneck. In addition, 

he performance gain of Model-C is significant. 

In the supplementary material, we also provide additional ab- 

ation studies, including (i) accuracy of prior depth map, (ii) effi- 

iency for different image resolutions, and (iii) influence of depth 

lane number. Please refer to Section 3 in the supplementary ma- 

erial for detailed results. 

. Experiments on online 3D modeling 

To verify the performance of our method during online 3D 

odeling, we conducted comparative experiments using motion 

tereo methods. We evaluated the modeling performance on large- 
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Fig. 8. Qualitative comparison of the reconstructed 3D models obtained from (a) our method, (b) CasMVSNet [11] , (c) Neural-RGBD [16] , and (d) REMODE [8] for Scenario 1. 

Fig. 9. Qualitative comparison of the reconstructed 3D models obtained from (a) our method, (b) CasMVSNet [11] , (c) Neural-RGBD [16] , and (d) REMODE [8] for Scenario 2. 
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Table 4 

Averaged computation time and GPU memory consumption of each MVS depth es- 

timation method under the online 3D modeling scenarios. 

Methods Ours CasMVSNet Neural-RGBD REMODE 

Time (s) 0.778 0.468 2.353 0.792 

Mem (Mb) 8,861 6,273 13,609 299 
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a

cale structures in outdoor environments. We considered two sce- 

arios: modeling a single structure (Scenario 1; Fig. 8 ) and mod- 

ling multiple structures (Scenario 2; Fig. 9 ). For each scenario, 

e acquired sequential images of aerial scenes using a monocular 

amera mounted on a micro aerial vehicle (MAV) and used them 

o perform online 3D modeling. 

Our method was compared with two state-of-the-art motion 

tereo methods: 

• REMODE [8] : This is a classic motion stereo method that uses 

handcrafted features for stereo matching. For each input source 

image, it updates the mean depth, variance, and inlier prob- 

ability using a recursive Bayesian estimation approach. It re- 

moves outlier depths based on the estimated variance and in- 

lier probability instead of the consistency check. Given a refer- 

ence frame, it uses 10 neighboring frames as source images. 
• Neural-RGBD [16] : This is a deep learning-based method for 

motion stereo. It sequentially propagates the depth probability 

distribution by integrating two consecutive cost volumes under 

a Bayesian filtering framework. It uses five source images. We 

used the provided pretrained model with the same parameter 

settings. 

We also evaluated the performance of CasMVSNet [11] , consid- 

ring it as a baseline MVS method. We used the pretrained models 

ith the same settings. 

We applied each depth estimation method to the online 3D 

odeling system proposed in [14] . The implementation details for 
10 
he online modeling system are presented in the supplementary 

aterial (Section 1). The system acquired image frames with a res- 

lution of 1200 × 900 and estimated their poses using ORB-SLAM 

15] . To estimate the camera poses accurately, we acquired sta- 

le images by using a gimbal camera stabilizer and by restrict- 

ng the motion speed of the MAV to be small. Every method con- 

tructed a 3D model from the same pose estimation results of 

LAM. 

Table 4 tabulates the computation time and GPU memory con- 

umption of each method. Note that all methods except Neural- 

GBD allow online reconstruction of high-resolution 3D models. 

ince the SLAM extracts a keyframe every 1.3 s on average, there is 

o bottleneck caused by depth estimation for our method. Neural- 

GBD requires the largest computation time and GPU memory 

ince it constructs a single large cost volume, unlike the cascade 

ost volume construction. Therefore, Neural-RGBD is not appropri- 

te for online depth estimation of high-resolution images. REMODE 

ses the least GPU memory as it is a classical method that does not 

pply a deep learning model. 
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The qualitative results of the reconstructed models for each sce- 

ario are shown in Figs. 8 and 9 . REMODE generated relatively 

parse models compared to other methods. It performed stereo 

atching based on handcrafted features, which generally produce 

parse point clouds for untextured or specularly reflected surfaces. 

eural-RGBD generated the most inaccurate reconstructed mod- 

ls with many outliers. When it propagated the depth probability 

istribution, incorrect predictions were continuously propagated to 

onsecutive frames. This caused many outliers and inaccurate re- 

onstructions. 

Our method showed better qualitative performance than Cas- 

VSNet. Our method completely reconstructed the entire surface 

f multiple structures with fewer outliers. It used sequentially esti- 

ated depth maps as prior information, which improved the com- 

leteness of the reconstructed models. To compute the prior infor- 

ation, our method checked the consistency of multiple depths on 

he source images, which significantly reduced the possibility of er- 

or propagation. Furthermore, our confidence estimates accurately 

epresented the true depth errors; therefore, our method could fil- 

er outliers more precisely than CasMVSNet. These results demon- 

trate the feasibility of the proposed MVS method in an online 3D 

odeling system for outdoor scenes. 

. Limitations and discussion 

Although our method could achieve outstanding results on 

enchmark datasets [19,20] and real-world aerial scenes, it has 

everal major limitations. First, the depth maps of the source im- 

ges should be computed first for prior depth estimation to take 

lace. Our method determines the source images from insufficient 

andidates that are restricted to the previously processed frames. 

herefore, it is difficult to obtain a set of source images that suf- 

ciently cover the entire area of the reference image plane. At 

imes, this can degrade the completeness of the estimated depth 

aps. 

Second, our method concentrates on precise reconstruction in- 

tead of fast depth computation; therefore, it requires more com- 

utation time than CasMVSNet. When scenes change rapidly be- 

ause of dynamic or fast camera motions, motion stereo meth- 

ds that can compute depth maps quickly may be more effective. 

o speed up the computation time of our method, we also pro- 

ide an efficiency improvement strategy in Section 3.4 . This strat- 

gy computes a low-resolution depth map quickly and then up- 

amples the depth map to the original high resolution by using a 

ightweight refinement filter. This approach significantly improves 

he efficiency of runtime and memory consumption while it sacri- 

ces a small amount of performance. Several studies [33,34] pro- 

osed an efficient MVS network model that did not use 3D CNNs 

or cost-volume regularization. Their models require only about 

.25 s to process a single frame at a one-megapixel resolution. The 

pplication of the backbone of these models [33,34] to our method 

ould be a good direction for future work. 

Third, the proposed method was developed based on the as- 

umption that the camera poses estimated by the SLAM module 

re accurate. Therefore, the reconstruction quality of the online 

odeling system is strongly affected by localization errors. When a 

igh localization error occurs, our method may produce an inaccu- 

ate 3D model which would contain multiple inconsistent surfaces. 

o address this issue, we intend to apply dense bundle adjustment 

39] to our method in future work. It solves the dense SfM problem 

y optimizing the depth maps and camera poses simultaneously. 

. Conclusion 

We present a novel network framework for online MVS recon- 

truction that effectively integrates sequentially estimated depth 
11
nformation. The framework first predicts a prior depth map by 

using the reliable depths of the source views. It then generates 

he cost volume based on the pixel-wise visibility information. The 

ramework integrates the prior depth into the cost volume prob- 

bilistically. This approach improves the stereo-matching perfor- 

ance and completeness of estimated depth maps. Furthermore, 

he framework predicts the confidences of the estimated depths, 

hich accurately represents the true depth errors. The predicted 

onfidences are used to filter a large number of outliers. The exper- 

mental results on the MVS benchmarks show that the proposed 

ethod outperformed other state-of-the-art methods, especially in 

erms of the completeness of 3D model. The results for the scenar- 

os using aerial scenes demonstrated that our method could recon- 

truct precise models even online. 
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