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Microfluidic Soft Sensors
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Abstract—Soft sensors made of highly deformable materials
are one of the enabling technologies to various soft robotic
systems, such as soft mobile robots, soft wearable robots, and soft
grippers. However, major drawbacks of soft sensors compared
with traditional sensors are their nonlinearity and hysteresis
in response, which are common especially in microfluidic soft
sensors. In this research, we propose to address the above
issues of soft sensors by taking advantage of deep learning. We
implemented a hierarchical recurrent sensing network, a type
of recurrent neural network model, to the calibration of soft
sensors for estimating the magnitude and the location of a contact
pressure simultaneously. The proposed approach in this letter
were not only able to model the nonlinear characteristic with
hysteresis of the pressure response, but also find the location of
the pressure.

Index Terms—Soft Material Robotics, Deep Learning in
Robotics and Automation, Force and Tactile Sensing

I. INTRODUCTION

SOFT robotics has recently drawn keen attention and been
implemented to a wide range of robotics applications that

require increased interactions with surrounding environments.
For example, soft grippers [1], [2] and soft mobile robots are
specialized to easily adapt themselves to uncertain objects
or terrains. Soft wearable robots [3], [4] and soft haptic
devices [5] focus on physical interactions with the human
body. In such systems, soft sensors made of highly deformable
materials are one of the enabling technologies. Various types
of soft sensors have been developed using hyperelastic ma-
terials embedded with electrically conductive agents, such
as carbon particles [6], [7], silver nanowires [8], [9], room-
temperature liquid metals [10], [11], and ionic liquids [12],
[13]. All the above sensors have their own characteristics that
could be useful in different situations. However, two major
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Fig. 1. The prototypes of soft pressure sensors, (a) showing the microchannel
having three different cross-sectional areas, (b) showing the microchannel
having three different patterns.

common drawbacks of soft sensors compared with traditional
sensors are their nonlinearity and hysteresis in response, which
are easily seen especially in microfluidic soft sensors [11],
[14]. These characteristics sometimes limit the use of the soft
sensors in spite of other advantages, since it is very difficult to
characterize them not only analytically but also experimentally.
Although different approaches, such as changing microchannel
geometries [11] and by embedding solid particles [15], have
been proposed to address these issues in design, they solved
problems only partially.

Another limitation comes with arrangement of signal wires.
If multiple sensors are to be placed in a limited space, there
always exists a problem of connecting and routing multiple
wires. Although the sensor itself is compact and soft, the
signal wires to each sensing element makes the entire system
complex and not completely soft.

In this research, we propose to address the above issues
of soft sensors by taking advantage of deep learning. We
introduced a hierarchical recurrent sensing network, a type
of recurrent neural network (RNN) model, in the calibration
stage for estimating the magnitude and the location of a con-



2377-3766 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2018.2792684, IEEE Robotics
and Automation Letters

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2017

Fig. 2. Fabrication process of the soft pressure sensor (a) making patterned
layers, (b) bonding process to make complete microchannel, (c) injecting
liquid metal into microchannel, (d) inserting signal wires into the channels
and sealing process.

tact pressure simultaneously, since RNNs have demonstrated
remarkable advances for modeling temporal data over the past
decade [16], [17].

In order to acquire data in our learning process, two soft
pressure sensor samples were prepared, as shown in Fig. 1. The
first had a single straight microchannel with three different
cross-sectional areas in three segments, and the other had a
single-sized microchannel but with three different patterns in
different locations. The sensor samples were tested by com-
pressing the top surface with various speeds and pressures. The
location of the pressure was also varied during the test. Using
our custom RNN algorithm, the proposed approach in this
letter was not only able to model the nonlinear characteristic
with hysteresis of the pressure response, but also find the
location of the pressure.

The rest of this letter is as follows. Section II describes the
preparation of soft sensor samples and the experimental setup.
Section III discusses the structure of the estimation model
and the learning mechanism employed in this research, and
Section IV presents the analysis of the results. We discuss lim-
itations of the current approach and future work in Section V
and finally conclude our research in Section VI.

II. MATERIALS
A. Sensor Design

We designed sensor samples with various dimensions of
microchannels. A total of two pressure sensors with a single
microchannel filled with a liquid metal (eutectic gallium-
indium or EGaIn) were fabricated. The first had a straight
channel with three different cross-sectional areas (0.20 mm2,
0.09 mm2, and 0.02 mm2) in three different segments, as
shown in Fig. 1-a, and the other had a single-sized (0.04 mm2)
channel with three different serpentine patterns (square, tri-
angle, and circle), as shown in Fig. 1-b. The microchannels
of both sensors had square cross-sections and they were
embedded in a 30 mm × 70 mm rectangular elastomer matrix
that had a 1 mm thickness.
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Fig. 3. Experiment setup. (a) CNC milling machine with a flat end type
indenter. (b) Schematic diagram of the data acquisition. (c) Hysteresis and
nonlinear characteristics of soft sensor samples with 1 mm/s of compression
rate in different locations.

B. Sensor Fabrication

The sensor samples were fabricated using the layered mold-
ing and casting process developed in previous work [10].
Molds with an embossed pattern were made using a 3D
printer (Object 30, Stratasys). Polymer layers with embedded
microfluidic channels were made by pouring liquid silicone
elastomer (Ecoflex 0030, Smooth-On) in the molds (Fig. 2-a).
A patternless polymer layer was made using 3D printed
patternless mold, and a thin silicone film was formed on the
pattern-free layer by spin-coating. Then, the thin film was
partially cured to be an adhesive agent on the patternless layer.
The layers with microchannels were then attached to the sticky
surface of the patternless layer (Fig. 2-b). The layers were then
baked in a convection oven at 60◦C until the two layers fully
bond to each other. After curing, EGaIn was injected into the
microchannel using hypodermic syringes (Fig. 2-c). Finally,
wires were inserted into the ports of the channels, and the
periphery of the wiring were sealed to prevent the liquid metal
from leaking (Fig. 2-d).
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TABLE I
CHARACTERISTICS OF DATASET

Max Pressure
(kPa)

Pressing Speed
(mm/s) Number of Trials

Training Data 50, 100, 190 1,2,3,4,5 46 per option
in each location

Test Data random
from 50−190

random
from 1−5

125 per location
with random option

C. Experimental Setup
The experimental setup for acquiring training data is shown

in Fig. 3. The soft sensor was mounted on a three-axis
commercial load cell (RFT60-HA, Robotous). A cylindrical
indenter (radius: 5 mm) attached to a motorized test stand
that was modified from a tabletop CNC milling machine
(MiniMill, OpenBuilds) applied vertical pressure (Fig. 3-a)
to the different locations of the sensor with varied speeds.
The pressure deformed and decreased the cross-section of the
microchannel and consequently increased the channel’s elec-
trical resistance [14]. The change in resistance was detected
by a simple voltage divider circuit, and the data was collected
using a data acquisition (DAQ) device (USB-6211, National
Instrument). At the same time, the actual force applied to the
soft sensor was measured by the commercial load cell. The
pressure data from both the soft sensor and the commercial
load cell were collected at 20 Hz. The data was transferred to
the PC via serial communication using MATLAB. There was
no filtering or post-processing applied to the data in this stage.
Fig. 3-b shows a schematic diagram of the setup, and Fig. 3-c
shows the sensor signals including hysteresis and nonlinear
characteristics of the soft sensor.

D. Data Acquisition
1) Training Data: To obtain training data sets that reflect

different pressure conditions, experiments were carried out by
loading and unloading the sensor with varied pressure levels.
Different pressures were applied by controlling the depth of
the indenter. Three pressure levels, 50 kPa, 100 kPa, and
190 kPa, were selected in our experiments. The rate of the
pressure was varied from 1 mm/s to 5 mm/s with an increment
of 1 mm/s. With the above conditions, each location of the
three segments in each sensor sample was pressed 46 times,
making the total of 2,070 training data sets for each sensor.

2) Test Data: The test data were collected in the entire
range of the training conditions. Random pressures between
50 kPa to 190 kPa were applied to the sensor, and the
pressure rates were also randomly selected between 1 mm/s
and 5 mm/s. Each location of the three different segments in
each sensor was pressed 125 times, making the total of 375
test data sets for each sensor.

Summaries for the training and the test data are shown in
Table I. We applied these parameters to both samples in the
same way.

III. METHODS
Linear combinations are impractical for modeling the non-

linear and complex relationships between the analog voltage

Fig. 4. (a) The structure of a RNN unit. (b) An LSTM cell (derived from
the initial LSTM design proposed in [19].)

outputs and the input pressures. We predicted the magnitudes
and their locations simultaneously using a single neural net-
work that can handle temporal dynamics.

A. Recurrent Neural Network

A RNN is a type of neural network particularly well suited
for modeling sequential phenomena. At each time step t, the
RNN takes the n dimensional input vector xt ∈ Rn and the
previous hidden state ht−1 ∈ Rm which is an m dimensional
vector. It learns to produce the hidden state ht via the following
recurrence equation:

ht = f (Wxt +Uht−1 +b) (1)

where f is an element-wise nonlinearity, such as a sigmoid
or hyperbolic tangent, and W ∈Rm×n, U ∈Rm×m and b ∈Rm

are parameters to connect each states. A RNN unit is shown
in Fig.4-a. In theory, the hidden state ht contains information
about whole past sequences and it produces an output zt ∈Rm

that reflects all histories. In practice, however, there are some
limits to learning long-range dependencies due to the vanish-
ing and exploding gradients problem [18] which is caused by
the Jacobian’s multiplicativity with respect to time. This can
result in an extremely nonlinear behavior of recurrent network.

As a special RNN structure, Long Short-Term Memory
(LSTM) provides a stable and powerful solution by adding
some controllable gates that allow the network to learn when to
forget previous hidden states and when to update hidden states
given new information. Fig. 4-b indicates a cell of LSTM. It
produces cell vector ct ∈Rn given the inputs xt , ht−1 and ct−1
by using the following operations:

it =σ(W ixt +U iht−1 +bi)

ft =σ(W f xt +U f ht−1 +b f )

ot =σ(W oxt +Uh
t−1 +bo)

gt =tanh(W gxt +Ught−1 +bg)

ct = ft � ct−1 + it �gt

ht =ot � tanh(ct)

(2)

where σ(·) and tanh(·) are the element-wise sigmoid and
hyperbolic tangent activation functions, and � is an element-
wise multiplication operation. The vector it ∈Rn, ft ∈Rn and
ot ∈Rn respectively denote input gates, forget gates and output
gates for controlling data flow inside the cell. W k, Uk and
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Fig. 5. The structure of the hierarchical recurrent sensing network.

bk where k ∈ {i, f ,o} are parameters for each of the gates.
These additional cells make the LSTM capable of learning
extremely complex and long-range temporal data that a RNN
simply cannot learn properly. LSTMs have been successfully
proven to outperform RNNs on many tasks such as language
modeling [17] and sequence generation [20].

B. Hierarchical Recurrent Sensing Network

We now present our hierarchical recurrent sensing network.
Our model can concurrently learn to estimate both pressure
magnitude and location while considering the hysteresis prob-
lem. It is composed of three modular networks so as to enable
multi-task learning in a single structure. Fig. 5 illustrates our
hierarchical recurrent sensing network architecture.

1) Signal-level Recurrent Network: At the beginning, the
signal-level recurrent network (SigRN) transforms the sequen-
tial input data to a representation where learning of temporal
dynamics is easy. It aggregates temporal information with
three recurrent layers. We use LSTM units for recurrent layers
and denote each layer as r(1), r(2) and r(3). At each time
step t, vector xt which includes raw voltage and gradient
of signal, of a sequence X = (x1, · · · ,xt) passes through the
three LSTM layers to produce temporal representation. The
temporal representation and the last input xt are then mapped
into a hidden space using independent, fully connected layers
parameterized by θ 0

r and θ 1
r , respectively, using rectified units

followed by another fully connected unit θ 2
r to combine

the information from both components. It produces sensing
feature s given historical input vectors and note that it can
infer both temporal and actual features at the same time. We

Fig. 6. The attention mechanism for the pressure estimation network.

explicitly let the following two networks consider both features
to enhance performance across following estimation tasks,
especially the task of pressure estimation. This empirically
reduces some estimation errors around peak of sensor outputs
in a pressing trial when predicting magnitude of pressures.

2) Localization Network: The localization network gener-
ates a predicted location l for which location on the soft
pressure sensor is being pressed. The localization network
fl(θl) has a fully connected layer and a softmax layer. The
fully connected layer takes the sensing feature s of the SigRN
and produces new features which can hold suitable properties
for localization. The softmax layer generates classification
probabilities which corresponds to those of the pressing lo-
cation. Then, the location which has the largest probability is
inferred as being pressed at that time.

3) Pressure Estimation Network: The pressure estimation
network predicts the magnitude of pressure p corresponding
to sensor outputs which are analog voltages. We defined
the pressure estimation network as fp(θp). The feature s
from the SigRN pass through an attention module and two
separate, fully connected layers parameterized by θ 0

p and θ 1
p

respectively. Fig. 6 indicates the architecture of the pressure
estimation network and the attention mechanism. When the
fully connected layer with parameter θ 0

p encodes the sensing
feature s into the number of localization classes, it is multiplied
with class probabilities from a softmax layer from fl(θl) using
an element-wise product. In this way, the statistical attributes
for localization can also be utilized for the pressure estimating
procedure which lets the model learn what to attend to based
on the locational features.

C. Learning

Our model is composed of an end-to-end optimization over
a hierarchical structure. The training cost with two independent
functional networks, the localization network and the pressure
estimation network, are combined into a single cost function
so that the model can learn to handle both tasks. In particular,
the localization network uses the cross entropy objective
function and the pressure estimation network uses the mean
squared error (MSE) function to measure the loss between the
predicted and the ground truth value for each task. These two
are fused by simple addition. Also, dropout [21] is applied to
each LSTM layer (except on the last LSTM layer) with a 50%
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Fig. 7. (a) Results of both pressure estimation and localization using test data of three different cross-sectional channel areas. It separates the pressure
estimation signals into three parts based on the localization results. (b) A selection of localization procedures and results of a categorical distribution for each
case.

dropout rate to prevent the model from overfitting our training
dataset.

IV. RESULT

We evaluated our model with two different datasets from
the two sensor samples to assess the ability of estimating
both contact pressure and location. The first sample has
various cross-sectional areas on its channel, and the other has
different patterns with a uniform dimension. Processing the
two datasets, we used an analog voltage and a gradient of
its value as a two-dimensional input. Training is performed
with a stochastic gradient descent (SGD), and we trained for
100 epochs on both datasets. The model was trained using
the Adam optimizer [22] with a base learning rate of 0.001.
Each update was done by using 40 sequence lengths, and
components of each sequences comprised voltages which have
a value over a specific threshold. In addition, 32 units were
used in each LSTM, and fully connected layers except for the
last layer in the pressure estimation network was interleaved
with rectified unit function. We implemented the entire model
into the Tensorflow framework [23].

Fig. 7 illustrates both pressure estimation and localization
results with time using the test data of the three different cross-
sectional channels. Loc1, Loc2 and Loc3 indicates different
channel cross-sectional areas of 0.20 mm2, 0.09 mm2 and
0.02 mm2, respectively. We divided the pressure estimation
signals into three parts based on the localization results.
Fig. 7-a shows our model can successfully predict a magnitude
of pressure and its location simultaneously on every location
considering nonlinear characteristics. Examples of localization
procedures are shown in Fig. 7-b. Our model generates new
categorical distribution on every input and choose the pressure
location at which the categorical probability is maximized.
Combining those two estimations concurrently, there were
some signals that fluctuated during an iteration of pressure
estimation. Since our model predicts a new location on every
input, it can sometimes generate different localization results
at every time step even during the same iteration.

We used a root mean sqaured error (RMSE) and nomarlized
RMSE (NRMSE) as an evaluation metric to measure perfor-
mance of our model as follows:

RMSE =

√
1
N

N

∑
i=1

(ŷi − yi)2

NRMSE =
RMSE

ymax − ymin
×100%

where ŷ is predicted values and y is true values. Moreover, we
measured the accuracy for localization by counting success-
fully classifications with each test dataset.

A. Cross-Sectional Areas

The results of the sample are shown in Tables II and III. Our
model achieved an overall NRMSE of 6.64% for estimation
and obtained a localization accuracy of 81.87%. The fact that
the localization accuracy of the smallest cross-sectional area
(i.e. Loc3) was over 94% implies that it has a more distinctive
pressure hysteresis curve compared to those of the other two
locations. In addition, even though localization results of the
other two areas were approximately 69% below 50 kPa, they
showed over 87% of accuracy above 100 kPa.

B. Patterns

We can see that the NRMSE of pressure estimation is 5.81%
and the accuracy of localization is 85.42% over all of the
test cases. The performance is shown in Tables IV and V.
Especially, our model achieved over 93.2% of localization ac-
curacy on every part above 100 kPa. Having different patterns
denotes that it varies the number and shape of channels inside
a pressure area. It provides a bigger and more diverse overall
range of the sensor’s analog voltage and also makes distinctive
hysteresis curves. It should be noted that the range of the
analog voltages on the circular area was substantially smaller
than those of the other patterns. This is because the circular
pattern geometrically hinders the liquid metal from quickly
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Fig. 8. Comparison between reference pressures and estimated pressures on three different cross-sectional channel areas. (a) Results from various pressures
with a constant pressing speed of 1 mm/s. (b) Results from various pressing speeds with a constant pressure 180 kPa.

TABLE II
EXPERIMENTAL RESULTS OF PRESSURE ESTIMATION ON THE THREE

DIFFERENT CROSS-SECTIONAL CHANNEL AREAS.

Pressure Estimation
Test Error Overall Loc1 Loc2 Loc3

RMSE (kPa) 10.81 10.43 13.59 7.91
NRMSE 6.64% 6.94% 8.38% 5%

TABLE III
EXPERIMENTAL RESULTS OF LOCALIZATION ON THE THREE DIFFERENT

CROSS-SECTIONAL CHANNEL AREAS.

Test Accuracy Predicted Location
Loc1 Loc2 Loc3

True Location
Loc1 75.48% 21.41% 3.11%
Loc2 9.8% 74.59% 15.61%
Loc3 0.58% 4.74% 94.68%

Test Accuracy Overall Loc1 Loc2 Loc3
0≤ kPa <50 76.49% 69.15% 69.59% 90.72%

50≤ kPa <100 85.28% 78.79% 77.02% 98.85%
100≤ kPa <150 94.96% 97.47% 87.22% 100%
150≤ kPa <180 100% 100% 100% 100%
Overall Range 81.87% 75.48% 74.59% 94.68%

moving away from the pressure area compared to the other
two patterns. Due to all of the above reasons, the classification
worked relatively well in all locations.

C. Further Observations

Fig. 8 and Fig. 9 show the test results of estimating pressure
magnitudes and locations with varied maximum pressures and
rates for the two samples, respectively. The sensor responses
were highly nonlinear and hysteretic, but the estimations from
our model showed good match with ground truths. During
the experiments, it was observed that the lower maximum
pressure makes the lower hysteresis, and the higher pressure
rate yielded the lower pressure sensitivity. Therefore, our
model was able to estimate the applied pressures under various
conditions of pressure magnitudes and rates.

Note that the overall pressure estimation results indicate
a well-fitted model on each location as shown in the Tables
II and IV. Comparing with other pressure estimation results
from different type of soft sensors, it is also in an acceptable
range. Soft silicon pressure sensors [24] which are developed
for a lower limb exoskeleton obtained a NRMSE of normal
force estimation with a range of 2.7% to 8.5% and the normal
and shear tactile force prediction for MIT’s Cheetah’s footpad
sensor [25] showed a NRMSE between 1.17% and 10.14%.

In Tables III and V, localization accuracy was the highest
at Loc3 and Circle for the two samples, respectively. This is
because the response curves were more distinctive compared
to those of the other locations in both cases, as shown in Fig.8
and Fig.9. Our model was able to catch this characteristics.
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Fig. 9. Comparison between reference pressures and estimated pressures on three different patterns. (a) Results from various pressures with a constant pressing
speed of 1 mm/s. (b) Results from various pressing speeds with a constant pressure 200 kPa.

TABLE IV
EXPERIMENTAL RESULTS OF PRESSURE ESTIMATION ON THE THREE

DIFFERENT PATTERNS.

Pressure Estimation
Test Error Overall Square Triangle Circle

RMSE (kPa) 13.2 16.23 12.12 10.59
NRMSE 5.81% 7.15% 6.05% 5.12%

TABLE V
EXPERIMENTAL RESULTS OF LOCALIZATION ON THE THREE DIFFERENT

PATTERNS.

Test Accuracy Predicted Location
Square Triangle Circle

True Location
Square 84.37% 12.61% 3.02%

Triangle 12.9% 81.47% 5.63%
Circle 4.31% 5.28% 90.41%

Test Accuracy Overall Square Triangle Circle
0≤ kPa <50 73.31% 73.42% 65.61% 80.21%

50≤ kPa <100 92.58% 88.64% 90.69% 98.23%
100≤ kPa <150 95.3% 94.6% 93.2% 98.38%
150≤ kPa <200 97.04% 99.64% 94.02% 98.27%
Overall Range 85.42% 84.37% 81.47% 90.41%

V. DISCUSSION AND FUTURE WORK

The main contribution of this letter is tackling the modeling
of problems for nonlinear signals of soft sensors using the
proposed recurrent network model. Our hierarchical recurrent

sensing network showed that it could estimate the magnitude
of pressure and location simultaneously for different inputs.

Although our model was able to estimate the pressure
locations with relatively high accuracy, the number of locations
are currently limited to the number of discrete sections in
the microchannel. Therefore, one possible future improvement
will be to design the microchannel to have continuous geomet-
rical changes over its length. In this way, the localization will
be also more continuous, which will expand the sensor to a
two-dimensional area from the current one-dimensional line.

In addition, in this study, we performed learning using
the data obtained by applying pressures to only one location
of the soft sensor at a time. However, we will continue to
investigate whether multiple pressures in different locations
can be detected and even be localized. The result obtained
from this additional study will allow us to develop a high-
performance soft pressure sensor array having a small number
of signal wires.

Furthermore, for our method to be more practical, the sensor
should be able to estimate and localize pressures from uncon-
trolled indenters, such as human hands. In the current system,
touch from a fingertip will generate totally different outcomes
with the model that is trained by our dataset since human
skin also has many nonlinear factors. Therefore, another area
of future work will be to collect pressing data using a human
hand with various environmental conditions that include varied
temperature and humidity.
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VI. CONCLUSIONS
In this letter, we proposed a method of characterizing

pressure responses of microfluidic soft sensors using a deep
learning scheme based on a hierarchical recurrent sensing
network. The proposed method was able to not only estimate
nonlinear responses with high hysteresis but also localize the
contact locations. Two different sensor designs were used for
testing: a straight microchannel with different cross-sectional
areas in three segments and a single-sized microchannel with
different patterns in three areas. In the first design, the estima-
tion results showed an RMSE of 10.81 kPa and an NRMSE of
6.64%. The localization accuracy was 81.87%. In the second
design, the results showed an RMSE of 13.2 kPa and an
NRMSE of 5.81%, and the localization accuracy was 85.42%.
These outcomes show that learning can simplify the calibration
processes of soft sensors, and reduce the number of signal
wires for a soft sensor array.

To the best of our knowledge, this is the first approach
to implement RNN to estimate both contact pressure and
location of soft sensors that have highly nonlinear and hys-
teretic characteristics. In addition, the capability of localization
significantly simplifies the mechanical and electrical system
by minimizing the number of signal wires in the system.
Therefore, this study will create opportunities for soft sensors
to be used more practically in various applications.

Our code is available at https://github.com/seunghyunhan/
deep-characterization-soft-sensor.
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