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Semantic Grasping Via a Knowledge Graph of
Robotic Manipulation: A Graph

Representation Learning Approach
Ji Ho Kwak , Jaejun Lee , Joyce Jiyoung Whang , and Sungho Jo , Senior Member, IEEE

Abstract—Semantic grasping aims to make stable robotic grasps
suitable for specific object manipulation tasks. While existing se-
mantic grasping models focus only on the grasping regions of
objects based on their affordances, reasoning about which gripper
to use for grasping, e.g., a rigid parallel-jaw gripper or a soft
gripper, and how strongly to grasp the target object allows more
sophisticated robotic manipulation. In this letter, we create a knowl-
edge graph of robotic manipulation named roboKG to represent
information about objects (e.g., the material and the components
of an object), tasks, and appropriate robotic manipulation such
as which component of an object to grasp, which gripper to use,
and how strongly to grasp. Using knowledge graph embedding, we
generate semantic representations of the entities and relations in
roboKG, enabling us to make predictions on robotic manipulation.
Based on the predicted gripper type, grasping component, and
grasping force, a real robot performs seven different real-world
tasks on 42 household objects, achieving an accuracy of 95.21%.

Index Terms—AI-enabled robotics, representation learning, gra-
sping.

I. INTRODUCTION

R ELIABLE robotic grasping is the first step of successful
robotic manipulation of various objects. To allow robots

to grasp objects stably, diverse grasping policies have been
considered including ambidextrous robot grasping [1] where
heterogeneous grippers are used, a contact-sensing-based grasp-
ing [2] where contact feedback is leveraged for robust grasping
under uncertainty, and learning grasping policies from synthetic
training examples [3]. These existing grasping models focus on
objects’ physical and geometric properties and propose feasible
regions for robots to grasp regardless of the following tasks.
However, grasping regions should also be determined depending
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Fig. 1. Semantic grasping that considers which component to grasp, which
gripper to use, and how strongly to grasp. (a) & (b): A suitable grasping
component depends on the given task, i.e., lifting or opening. (c) & (d): A
robot should use a soft gripper to lift a deformable object while a robot should
strongly grasp the given object using a rigid gripper for squeezing.

on the following tasks. For example, if a target task is to open
the lid of a bottle, a robot should grasp the lid of the bottle
instead of the body. Differentiating the lid and the body requires
robots to understand the components of an object that consist
of the object. Also, robots should be able to reason about the
relationships between the given tasks and the components of the
objects to decide where to grasp depending on the tasks.

Semantic grasping has been proposed to generate task-
dependent grasps that are functionally suitable for specific object
manipulation tasks [4]. For example, recent studies in semantic
grasping propose to predict the affordances of objects via seman-
tic segmentation [5] or to use a probabilistic logic framework
to detect the most likely object component to be grasped [6].
While these methods focus only on the grasping regions of
objects, considering other factors such as which gripper to use for
grasping and how strongly to grasp benefits more sophisticated
robotic manipulation.

We propose semantic grasping that considers three factors:
which component a robot should grasp (e.g., lid, body, or han-
dle), which gripper a robot should use (e.g., a rigid parallel-jaw
or a soft gripper), how strongly a robot should grasp the target
object (e.g., strong, medium, or weak). For example, Fig. 1
shows an example of a robot grasping different components of a
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Fig. 2. Our method consists of the recognition module (including object detection, component detection, and material detection), knowledge graph embedding
and predictions on roboKG, and robotic manipulation based on the predictions.

glue stick depending on tasks, i.e., grasping the body for lifting
and grasping the lid for opening ((a) & (b)). Also, a robot should
use different gripper types with appropriate force, e.g., a robot
should use a soft gripper to lift a strawberry and use a rigid
parallel-jaw gripper with a strong force to squeeze it ((c) & (d)).

We create a knowledge graph of robotic manipulation named
roboKG that represents object-related information (e.g., com-
ponents of an object and the material of an object), task-related
information (e.g., the task hierarchy), and manipulation-related
information (e.g., a gripper type and a grasping force). Based
on roboKG representing desirable grasping strategies for di-
verse objects and tasks, we compute the embedding vectors
of the entities and relations in roboKG by knowledge graph
embedding [7]. Using the computed embedding vectors, we
can predict the appropriate robotic manipulation factors. We
use hierarchical knowledge graph embedding methods [8]–[10]
that generate embedding vectors by reflecting not only the
structure of roboKG but also the hierarchies of the entities.
Fig. 2 shows an overview of our method consisting of the
recognition module, predictions on roboKG using knowledge
graph embedding, and robotic manipulation based on the pre-
dictions. Given an object, a recognition model identifies what
the object is, which components the object has, and which
material the object is made of. Each of these factors affect
the suitable grasping strategies. Given a specific object and
a specific task, we predict which component to grasp, which
gripper to use, and how strongly to grasp based on the embedding
vectors of our roboKG. Based on these predictions, a real robot
performs the given task on the target object. Using the dual-arm
robot IRB 14000 Yumi from ABB, our method achieves an
accuracy of 95.21% on 188 grasps consisting of seven differ-
ent real-world tasks on 42 household objects. Our contribu-
tions include a novel representation of robotic manipulation
using roboKG and knowledge representations using knowledge
graph embedding to predict the desired robotic manipulation
factors.

II. RELATED WORK

Different semantic grasping strategies have been proposed for
task-oriented grasping [5], [6], [11]. For example, CAGE [12]
is a context-aware grasping engine that considers affordance,
material, object status, and task constraints. A grasp plan-
ner considers stability, tactile contacts, and hand kinematics
by using a semantic affordance map [4]. Even though some

recent grasping models use a knowledge graph [13], [14], it
is quite different from our roboKG, which is firstly introduced
in this letter. More importantly, these existing semantic grasping
methods only focus on detecting grasping regions of objects and
do not consider other factors such as gripper types and grasping
forces as we do.

In robotics, the knowledge representation and reasoning
mechanisms have been studied in various contexts with different
types of knowledge bases. For example, KnowRob 2.0 [15]
has been proposed to represent a general ontology covering a
broad range of human manipulation knowledge about motor
cognition and robot control. In some scenarios such as making
pancakes, robots can retrieve instructions from the World Wide
Web and exploit the predefined ontology to semi-automatically
translate it into a robot plan [16]. Recently, ontology-based
knowledge representation has shown great successes in purpo-
sive learning [17], e.g., inferring human activities from complex
observations by defining the semantic rules using a knowledge
base [18].

A knowledge graph is a knowledge base in the form of
a graph consisting of entities and relations. While a graph
is a discrete data structure, representing nodes and edges in
a graph in continuous feature space is beneficial for solving
diverse machine learning and data mining problems such as
link prediction and node classification [19]. For this, many
different graph representation learning methods have been pro-
posed [20]. Knowledge graph embedding aims to represent
entities and relations in a knowledge graph as low-dimensional
feature vectors by preserving the structure of the given knowl-
edge graph. Among a number of knowledge graph embed-
ding methods [7], some methods take into account a hierar-
chical structure between entities [8]–[10], [21]. We use HAKE
[8], MuRP [9], and ConE [10] in our experiments because
these methods can be applied to our roboKG with no extra
constraints.

Knowledge graph embedding has been considered in robotics
very recently with diverse applications. RoboCSE [22] gener-
alizes semantic knowledge about object affordances, locations,
and materials even though it is not tested on object manipula-
tion of a real robot. In the context of one-shot task execution,
knowledge graph embedding has been explored to integrate
task plans with domain knowledge for task generalization [23].
Also, the incremental knowledge graph embedding problem has
been studied for continual learning [24]. Different from these
approaches, we define a new knowledge graph, roboKG, which is
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used to predict the factors required for the robotic manipulation
of a real robot using knowledge graph embedding.

III. RECOGNITION MODULE

Given an object, a robot should recognize what the object is,
what components consist of the object, and what material the
object is made of. We apply the existing object detection, part
detection, and material recognition methods for this recognition
module. Our robot is equipped with an RGB-D camera on its
body to inspect objects from a diagonal view; we use images and
point clouds of objects for the recognition module. We consider
94 different household objects, including food items, kitchen
items, tool items, shape items [25], etc. In order to get a list of
common household objects, we consider the YCB dataset [25],
GMU Kitchen dataset [26] and RGB-D object dataset [27].
Since the same object can be differently named on different
datasets, we convert the object names based on ConceptNet [28].
For object detection, we use the YOLOv5 model [29], [30]
pre-trained with the MS-COCO dataset [31]. Given an image,
the YOLOv5 model returns the object label. Once an object
label is determined, we label each component of the object (e.g.,
body, lid, or handle) using PartNet [32] which provides labels of
each component by semantic part detection using point clouds.
The material types are chosen from the MINC dataset [33], one
of the standard datasets for material recognition. For material
recognition, we use the DEP model [34] pre-trained with the
MINC2500 [33] dataset.

IV. KNOWLEDGE GRAPH EMBEDDING OF ROBOTIC

MANIPULATION

We create roboKG, a knowledge graph of robotic manipu-
lation to represent human knowledge about desirable robotic
grasping for various tasks. Using knowledge graph embedding
methodologies, we convert the factors of robotic manipulation
into semantic representation vectors. We predict the appropriate
factors for successful robotic manipulation of different tasks
using the feature space representations.

A. roboKG: Knowledge Graph of Robotic Manipulation

Given an object and a task a robot should perform (e.g., lifting
a bottle or pushing a cup forward, etc.), a robot should decide
where to grasp, which gripper to use, and how strongly to grasp
the given object. These factors can be decided based on what the
object is, which components the object has, which material the
object is made of, and which task a robot should perform using
the object. For humans, given a specific object and a specific
task, we can designate the desirable factors to accomplish the
task.

A knowledge graph represents human knowledge, where each
known fact is represented by a triplet consisting of a head entity,
a relation, and a tail entity. Formally, a knowledge graph is
defined as G = (E ,R, T ) where E = {e1, e2, · · · , e|E|} is a set
of entities, R = {r1, r2, · · · , r|R|} is a set of relations, and T =
{(ei, rk, ej)|ei ∈ E , rk ∈ R, ej ∈ E} is a set of triplets. Once
human knowledge is organized using a knowledge graph, we can
apply a graph representation learning technique to convert the

TABLE I
ENTITY TYPES IN ROBOKG

entities and relations in a knowledge graph into representations
in continuous feature space; this conversion allows us to make
predictions on missing links in the knowledge graph.

We create roboKG, a novel knowledge graph representing
human knowledge about desirable robotic manipulation for
various tasks on various objects. We define ten different entity
types, ten different relations, and ten different triplet types in
roboKG as shown in Table I and Table II where Freq. indicates
the frequency. Our roboKG contains 1,524 entities, 10 relations,
and 4,588 triplets. To represent objects, we define an entity type
called ObjectClass (e.g., Bottle, Apple, Bag, Jar, Ball,
Screwdriver, etc.).

Robotic grasping strategies can be changed depending on
which material an object is made of and which components an
object has. Therefore, we specify objects based on their materials
and their components. For example, if there are two bottles where
the first bottle is made of plastic and has a lid and the second
bottle is made of glass and does not have a lid, then we differently
name these bottles, e.g., we call the former Bottle_1 and the
latter Bottle_2. The ObjectInstance represents an instance
of an object with a specific material and specific components.
For each object, the number of entities of ObjectInstance is
related to the combinations of materials and components of the
objects. The relationInstantiateObject connects Object-
Class and ObjectInstance. For example, to indicate Bottle_4
is a bottle, we create a triplet such as (Bottle, Instanti-
ateObject, Bottle_4). We consider 11 different materi-
als: Ceramic, Fabric, Food, Glass, Leather, Metal,
Paper, Plastic, Rubber, Stone, and Wood. The Mate-
rialClass represents these materials. To map a material to a
specific object, we define the relation Make and triplets such
as (Glass, Make, Bottle_4). We consider three possible
components of an object: Body, Handle, and Lid represented
by ComponentCategory. While all objects have the body by
default, the handle or lid can be missing depending on the
objects. To represent a component of a specific object, we define
ComponentClass, e.g., Bottle_Body and Bottle_Lid. To
connect ComponentCategory and ComponentClass, we define
the relation SpecifyComponent and triplets such as (Lid,
SpecifyComponent, Bottle_Lid). To represent which
object instance has which components, we define the relation
IsComponentOf and triplets such as (Bottle_Lid, Is-
ComponentOf, Bottle_4).

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 06,2022 at 06:01:27 UTC from IEEE Xplore.  Restrictions apply. 



9400 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

TABLE II
RELATIONS AND TRIPLET TYPES IN ROBOKG

We consider seven different tasks from [35]: Grasp, Lift,
Open, Pour, Push, Rotate, and Squeeze represented by
TaskCategory. To differentiate each of these tasks based on
a target object, we define TaskClass that represents which
task is performed on which object, e.g., Push_Bottle,
Squeeze_Sponge, etc. To narrow down TaskCategory to
TaskClass, we define the relation SpecifyTask and triplets
such as (Open, SpecifyTask, Open_Bottle). Depending
on a specific object, possible tasks are differently determined.
For example, we can open a bottle’s lid only if the bottle has
a lid. Thus, we define TaskInstance to map each task to a
specific object, e.g., Open_Bottle_4 and Open_Jar_3. To
narrow down TaskClass to TaskInstance, we define the relation
InstantiateTask and triplets such as (Open_Bottle,
InstantiateTask, Open_Bottle_4). Also, each Task-
Instance should be connected to ObjectInstance to represent
which task includes which object. To represent this, we define
the relation Include and triplets such as (Open_Bottle_4,
Include, Bottle_4).

Finally, we define three special relations that are directly
related to robotic manipulation: WhichGripper, Which-
Force, and WhichComponent. Given a specific object and
a specific task, we represent which gripper a robot should
use, how strongly a robot should grasp the object, and which
component a robot should grasp. In our experiments, we have
two different types of grippers: a rigid parallel-jaw gripper
(denoted by ParallelJaw) and a soft gripper (denoted by
SoftGripper). Also, we define three different forces for
GraspingForce in a discrete manner: Weak, Medium, and
Strong. For each TaskInstance, we designate a desirable grip-
per type, grasping force, and a grasping component. For exam-
ple, we create triplets such as (Open_Bottle_4, Which-
Gripper, SoftGripper), (Open_Bottle_4, Which-
Force, Strong), and (Open_Bottle_4, WhichCompo-
nent, Bottle_Lid).

B. Semantic Representation of Robotic Manipulation

Given a knowledge graph, knowledge graph embedding aims
to represent the entities and relations in continuous feature space
while preserving the structure of a knowledge graph [7]. Once
the entities and relations are represented as feature vectors, the
problem of predicting a missing link in a knowledge graph
becomes more tractable. Let ei ∈ Rde denote an embedding
vector of an entity ei and rk ∈ Rdr denote an embedding vector

of a relation rk where de and dr are dimensions of an entity em-
bedding vector and a relation embedding vector, respectively. A
knowledge graph embedding method defines a scoring function
of a triplet (ei, rk, ej), denoted by f(ei, rk, ej), using the em-
bedding vectors of the corresponding entities and relations such
that a more plausible triplet receives a higher score. For example,
TransE [36], defines f(ei, rk, ej) := −||ei + rk − ej ||. Then,
TransE minimizes a margin-based loss which is defined by

∑

(ei,rk,ej)∈Ttr

∑

(e′i,rk,e
′
j)∈Ttr

′

[γ − f(ei, rk, ej) + f(e′i, rk, e
′
j)]+

where γ is a margin, [z]+ := max(0, z), Ttr is a set of triplets
in the training set, Ttr ′ is a set of corrupted triplets where
(e′i, rk, e

′
j) indicates a corrupted triplet. Given (ei, rk, ej) ∈ Ttr,

we randomly replace ei or ej with an entity e′i or e′j in E to make
a corrupted triplet. By minimizing the above loss function, we
learn embedding vectors to encourage the patterns of the triplets
observed in the training set and discourage the patterns of the
corrupted triplets. The resulting entity and relation embedding
vectors naturally reflect the structure of the given knowledge
graph, encoding the interactions between the entities and rela-
tions.

When we consider the structure of roboKG, we see that
there exist some hierarchies between entity types: MaterialClass
→ ObjectInstance, ComponentCategory → ComponentClass,
ObjectClass → ObjectInstance, and TaskCategory → TaskClass
→ TaskInstance. To appropriately incorporate these entity hier-
archies into knowledge graph embedding, we use three differ-
ent recently proposed knowledge graph embedding methods:
HAKE [8], MuRP [9], and ConE [10]. For example, HAKE
maps entities into the polar coordinate system such that the radial
coordinate represents entities at different levels of the hierarchy
and the angular coordinate distinguishes entities at the same
level of the hierarchy. In HAKE, the embedding vectors are
decomposed into two different parts: the modulus part and the
phase part. The scoring function of HAKE is defined by

f(ei, rk, ej) :=−||emi ◦rmk − emj ||2−λ||sin((epi +rpk − epj)/2)||1
where xm is the modulus part of a vector x, xp is the phase
part of x, x can be ei, rk, or ej , ◦ is the hadamard product, and
λ ∈ R is a model parameter. Based on this scoring function, the
loss of HAKE is defined with self-adversarial training adapted
from [37]. The other two methods, MuRP and ConE, consider
the hyperbolic embedding space to model hierarchies. Using
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Fig. 3. Entity Embedding Vectors of HAKE. Embedding vectors of a higher
hierarchy entity type are represented as outer rings, whereas embedding vectors
of a lower hierarchy entity type are represented as inner rings.

HAKE, MuRP, and ConE, we learn embedding vectors of enti-
ties and relations in roboKG. For example, Fig. 3 shows entity
embedding vectors generated by HAKE. In HAKE, entities at
different hierarchy levels are separated by the radial coordi-
nate. We visualize two different hierarchical entity structures:
(a) MaterialClass: Plastic → ObjectInstance: Bottle_1
and (b) ComponentCategory: Body→ComponentClass: Bot-
tle_Body. Using HAKE, the entity embedding vectors of
a higher hierarchy entity type are represented as outer rings,
whereas the entity embedding vectors of a lower hierarchy entity
type are represented as inner rings. Once we represent the entities
and relations as feature vectors, we can predict missing links in
a knowledge graph, which allows automated reasoning about
appropriate actions to accomplish specific tasks.

C. Prediction Using Knowledge Graph Embedding

Given roboKG, we learn embedding vectors of the entities
and relations using a training set of triplets. At test time, we
predict an appropriate gripper, force, and grasping component
for a task instance that is not observed during training.
Let G = (E ,R, T ) denote roboKG. Recall that we have
three special relations: WhichGripper, WhichForce,
and WhichComponent. Let us call these three special
relations querying relations. Given a specific object and a
specific task, denoted by the TaskInstance entity type, e.g.,
Open_Bottle_4, our problem can be thought of as the
problem of predicting tail entities of (Open_Bottle_4,
WhichGripper, ?), (Open_Bottle_4, WhichForce,
?), and (Open_Bottle_4, WhichComponent, ?). For an
entity t of TaskInstance, let St denote the triplets containing
the three querying relations for t, i.e., St := {(t, rk, ej)|rk ∈
{WhichGripper,WhichForce,WhichComponent}, ej
∈ E}. Also, let S denote all triplets containing the querying
relations, i.e., S := ∪tSt, t ∈ E . To appropriately train a
knowledge graph embedding method, we randomly split S into
the training, validation, and test sets with the ratio of 8:1:1 such
that St belongs to the same set for each t. The validation set
is used to tune the hyperparameters of the methods. Note that
S ⊂ T , and the triplets in T \S represent information about the
properties of objects, e.g., (Glass, Make, Bottle_4) or the
task hierarchy, e.g., (Open, SpecifyTask, Open_Bottle).
We assign the triplets in T \S to the training set.

Fig. 4. Training Triplets and Test Triplets of roboKG.

After training a knowledge graph embedding method using
the training set, we test whether we can correctly predict a
gripper type, a grasping force, and a grasping component for
each TaskInstance at the test set. Let t̂ denote an embedding
vector of an entity t̂ in the test set, and r̂ denote an embed-
ding vector of WhichGripper. Also, let x1 and x2 denote
embedding vectors of ParallelJaw and SoftGripper,
respectively. Then, to solve (t̂, WhichGripper, ?), we com-
pare the scores of (t̂, WhichGripper, ParallelJaw) and
(t̂, WhichGripper, SoftGripper) using the scoring func-
tion described in Section IV-B. If f(t̂, r̂,x1) < f(t̂, r̂,x2), we
conclude that a robot should use a soft gripper for the task t̂.
Similarly, we can also make predictions on WhichForce and
WhichComponent.

Fig. 4 shows a subgraph of roboKG where the solid arrows
indicate the triplets in the training set and the dotted arrows
indicate the triplets in the test set. In this example, our goal is
to predict appropriate factors for Open_Bottle_4. We see
that both Bottle_4 and Jar_3 are made of Glass, and
have a Lid. Due to these shared properties, a knowledge graph
embedding method attempts to place the embedding vectors of
Bottle_4 andJar_3 closely. Also, sinceOpen_Bottle_4
and Open_Jar_3 share Open in their entity hierarchies, one
can infer that a robot can open Bottle_4 just as the robot
opens Jar_3. A knowledge graph embedding method learns
embedding vectors by reflecting the structure of a given knowl-
edge graph, implying all these complicated connections between
entities. Therefore, we can predict an appropriate gripper type,
grasping force, and grasping component for a specific task at
test time using the learned embedding vectors.

V. ROBOTIC MANIPULATION VIA SEMANTIC GRASPING

We use a dual-arm robot IRB 14000 Yumi from ABB, which
has 7-DoF on each arm. To control the robot, we use the
source codes developed by UC Berkeley Automation Lab [38].
Each hand is equipped with a different type of gripper: a rigid
parallel-jaw gripper on the left hand and a soft gripper [39]
on the right hand. An RGB-D camera is attached on the top
to inspect objects in the workspace. Based on the predictions
on GripperType, ComponentClass, GraspingForce
for each TaskInstance, the robot manipulates the target
object. For each component of an object, the exact coordinates
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and orientations are predefined to the robot system. Recall that
GraspingForce is controlled with three different levels:
Weak, Medium, and Strong. We set the grasping force of
the parallel-jaw gripper as 10 N, 15 N, 20 N, and the gauge
pressure inside the soft gripper as 0.8 MPa, 1.0 MPa, 1.2 MPa,
each corresponding to the three different levels, respectively.

VI. EXPERIMENTS

We conduct three different types of experiments. First, we
measure the accuracy of knowledge graph embedding methods
to see whether roboKG is appropriately created, and a knowledge
graph embedding method successfully predicts a missing entity
at test time. Second, we operate a real robot based on the pre-
dictions made by knowledge graph embedding methods. Third,
we test an end-to-end model where the objects, components, and
materials are automatically identified by the recognition module.

A. Knowledge Graph Embedding for Semantic Grasping

Given a specific object and a specific task, we test how
accurately a knowledge graph embedding method can predict a
suitable gripper type, grasping force, and grasping component.
As discussed in Section IV-B, we use three recently proposed
knowledge graph embedding methods: HAKE [8], MuRP [9],
and ConE [10]. We compare these methods with three base-
line methods: Naïve Bayes Classifier (denoted by NBC) [40],
random prediction (denoted by RD), and distribution-based
random prediction (denoted by DRD). Let us briefly describe
how we apply a naïve Bayes classifier [40]. To decide which
gripper to use for Open_Bottle_4, for example, we compare
the probabilities of p(ParallelJaw|Open_Bottle) and
p(SoftGripper|Open_Bottle). Using Bayes’ theorem,
p(ParallelJaw|Open_Bottle) can be computed by

p(Open_Bottle|ParallelJaw)p(ParallelJaw)
p(Open_Bottle)

where p(Open_Bottle|ParallelJaw) is computed by

N(Open_Bottle&ParallelJaw) +mp

N(ParallelJaw) +m

where N(Open_Bottle&ParallelJaw) is the num-
ber of triplets of (Open_Bottle_?, WhichGripper,
ParallelJaw), N(ParallelJaw) is the number of
triplets of (?, WhichGripper, ParallelJaw), p is
a prior probability, and m is a hyperparameter of m-
estimate. Similarly, we can also compute the probability of
p(SoftGripper|Open_Bottle), and predict a gripper type
of a higher probability. For random prediction, we randomly
predict a gripper type, and for a distribution-based random
prediction, we consider the underlying distribution to predict
a gripper type, e.g., if 40% of the tasks use a soft gripper, the
chance we select a soft gripper is 0.4. We can predict a grasping
component and grasping force similarly. Table III shows the
search space of the hyperparameters of each method. The best
hyperparameters are bold faced. We select the best hyperparam-
eters on the validation set and use them at test time. We use
the notations in the original source codes of the methods except

TABLE III
HYPERPARAMETERS OF EACH PREDICTION MODEL

TABLE IV
ACCURACY OF 10-FOLD CROSS-VALIDATION

Fig. 5. Real-world objects (ObjectInstance) used in our experiments.

de and dr, which denote the dimensions of entity and relation
embedding vectors, respectively. We use the Adam optimizer for
HAKE and ConE, and use the Riemannian SGD for MuRP. We
use the batch size of 512, 128, and 1024 for HAKE, MuRP, and
ConE, respectively. Table IV shows the average accuracy of each
method using 10-fold cross validation. The last row of Table IV
indicates how accurately a method predicts the gripper type,
grasping force, and grasping component simultaneously. We see
that the knowledge graph embedding methods, HAKE, MuRP,
and ConE, significantly outperform other baseline methods,
showing approximately 90% accuracy.

B. Robotic Manipulation Without Recognition Module

We operate a real robot based on the predictions made on
roboKG. We use 42 objects (ObjectInstance) of 34 different
ObjectClass shown in Fig. 5. Seven different tasks are considered
resulting in 188 TaskInstance in total. Table V shows the tasks
and the criteria of successful trials1. Recall that our recognition

1Our demo video about the tasks is available on https://youtu.be/
BXOmLaGSHEc.
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Fig. 6. Robotic Manipulation with the End-to-End Model. Examples of TaskInstance are shown.

TABLE V
CONSIDERED TASKS AND CRITERIA OF SUCCESSFUL TRIALS

TABLE VI
ACCURACY OF ROBOTIC MANIPULATION

module includes an object detection, a component detection,
and a material detection model, each of which is pre-trained
on the standard datasets as described in Section III. In practice,
it is hard to simultaneously get the correct answers from all
three detection methods for an arbitrary object using the current
technologies. Therefore, in this experiment, we assume that the
object labels, their components, and their materials are given.
Table VI shows the accuracy of robotic manipulation with
different knowledge graph embedding methods, HAKE, MuRP,
and ConE and the two baseline methods: the rule-based model
(denoted by Rule) and the centroid-based grasping (denoted by
Centroid). For the rule-based model, we specify the following
rules: (i) the robot uses SoftGripper for the objects made
of Ceramic, Food, and Glass, and uses ParallelJaw for
the other objects. (ii) the robot grasps Lid when the task is
Open, grasps Handle if the object has a handle, and grasps
Body for the other cases. (iii) the GraspingForce is set to be
Strong if the task isSqueeze andMedium for the other tasks.
For the centroid-based grasping, we fix the GripperType to be
ParallelJaw and the GraspingForce to be Medium. Then,
the robot grasps the centroid of a given object with additional
consideration about the object’s width and the gripper’s width.
In Table VI, we see that the three knowledge graph embedding

methods outperform the rule-based model and the centroid-
based grasping. In particular, these two baseline methods fail to
lift a table tennis ball because both of the baseline methods use
ParallelJaw instead of SoftGripper. Since the surface
of a table tennis ball is slippery and has a curvature, the robot fails
to appropriately lift it using ParallelJaw. On the other hand,
the hierarchical knowledge graph embedding methods, HAKE,
MuRP, and ConE, successfully predict the GripperType to be
SoftGripper for this task because the embedding vectors are
trained using a hierarchy that a table tennis ball is an instance
of Ball, and the vectors are learned to encode that the desired
GripperType for the ball-related tasks is SoftGripper. Using
roboKG and its embedding, we can operate a real robot more
sophisticatedly. We see that the accuracy of robotic manipulation
is higher than the accuracy of a knowledge graph embedding
method itself. For example, the accuracy of HAKE itself is
90.8% shown in Table IV whereas the accuracy of our robot
operated based on the predictions made by HAKE is 95.21%.
This is mainly because there are some cases where a robot
succeeds in accomplishing a task using a different grasping
component from a preferred component represented in roboKG.
For example, when lifting an object with a handle, we define
the handle to be the appropriate grasping component. Thus, if
HAKE predicts the grasping component to be the body instead
of the handle, the prediction is considered to be incorrect. But,
in practice, our robot succeeds in lifting the object by grasping
the body.

C. Robotic Manipulation With Recognition Module

We test the performance of our end-to-end model that in-
cludes the recognition module. Among the objects we have,
11 ObjectInstance are supposed to be correctly recognized by
the recognition module, i.e., their object labels, components,
and materials can be correctly identified using the methods in
Section III. However, in practice, the YOLOv5 [29] method
returned wrong answers for two objects, PartNet [32] returned
wrong answers for one object, and DEP [34] returned wrong
answers for three objects. Since our prediction procedure at least
requires correct identification of an object, we conducted the
robotic manipulation experiments with the nine object instances
by excluding the two wrongly identified object instances by
YOLOv5. For the nine ObjectInstance, we have 43 TaskIn-
stance. Fig. 6 shows some example TaskInstance. Based on the
predictions by HAKE, the robot succeeded in 34 out of 43
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TaskInstance, resulting in 79.07% accuracy. The failures were
mainly due to a wrong part detection by PartNet or a wrong
material detection by DEP. For example, if an object in-
stance’s material is wrongly detected, the target ObjectInstance
is mapped into a different one, returning possibly wrong manip-
ulation factors. However, we also observed that sometimes the
returned manipulation factors happened to be very similar to the
correct ones; in this case, the robot successfully accomplished
the task.

VII. CONCLUSION

We define roboKG, a knowledge graph representing the
properties of objects, the relationships between tasks, and the
appropriate factors of robotic manipulation. In our roboKG,
an object is represented in terms of its label, compo-
nents, and material. Using hierarchical knowledge graph em-
bedding methods, we generate semantic representations of
the entities and relations in roboKG, which allows us to
make predictions on a gripper type, a grasping component,
and a grasping force for semantic grasping. Based on the
predictions, a real robot succeeds in accomplishing various tasks
on diverse household objects. We plan to extend and apply our
approaches to other robotics applications requiring automated
reasoning and advanced knowledge representation.
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