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Impact of Physical Parameters and Vision Data on Deep
Learning-based Grip Force Estimation for Fluidic Origami Soft

Grippers
Eojin Rho1∗, Woongbae Kim2,3,4∗, Jungwook Mun1, Sung Yol Yu2, Kyu-Jin Cho2† and Sungho Jo1†

Abstract—Knowing the gripping force being applied to an
object is important for improving the quality of the grip, as well
as preventing surface damage or breakage of fragile objects. In
the case of soft grippers, however, an attaching or embedding
of force/pressure sensors can compromise their adaptability or
constrain their design in scenarios involving significant deforma-
tion/deployment. In this paper, we present a vision-based neural
network(OriGripNet) that estimates gripping force by combining
RGB image data with key parameters extracted from the physical
features of a soft gripper. Real-world force data was collected
using a reconfigurable test object with an embedded load cell
while image data was collected by an RGB camera mounted on
the wrist of a robotic arm. In addition, joint position information
of the pneumatically driven origami gripper extracted from
the images, and applied pressure were used for training of
OriGripNet. OriGripNet showed a mean average error(MAE)
of 0.0636N when tested for untrained objects, yet some values
exhibited errors exceeding 20%. Nevertheless, the results show
that pressure, joint position, and image information have their
own strengths in force estimation, contact estimation, and that
they have a synergistic effect on the performance when combined.

Index Terms—Soft sensors and actuators, Deep learning in
grasping and manipulation, Force and tactile sensing

I. INTRODUCTION

ENABLING gentle and delicate interaction between robot
end-effectors and objects is an essential issue in ex-

tending the practical use of robots. By incorporating sensory
feedback into the robotic gripping system, the risk of dropping
or damaging the objects during pick-and-place operations can
be greatly reduced. Visual feedback is generally considered a
top priority, and is used to recognize the types, shapes, and
positions of objects as well as whether they are being held
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or not [1], [2]. It is implemented through the procedure of
collecting visual data with a camera installed in a workspace
or on the robotic manipulator and processing the data using
computer vision algorithms. On the other hand, force feedback
of the gripping system is also important when it is required to
prevent surface damage or breakage of vulnerable objects, and
to enable a grip that is selectively robust or adaptive to chang-
ing conditions. In many cases, rigid force/pressure sensors are
attached to the end-tips of the conventional parallel grippers
and data is directly measured while positioned between the
gripper and the object, offering the advantage of high precision
and easy integration of the sensor into the gripper system.

Meanwhile, soft grippers composed of low-stiffness mate-
rials [3], [4] are intensively studied to solve challenging tasks
that are difficult to handle with conventional systems. These
tasks specifically require gentle grip and high adaptability,
exemplified by the pick-and-place of fragile objects [5], [6],
application in the food industry [7], [8], picking and inserting
coins [9], universal gripping [10]–[12], human-robot collabo-
ration [13], and underwater operation involving the handling
of marine life [6], [14], [15]. Enabling grip force feedback for
soft grippers would enhance their usability for the applications
and mitigate the disadvantage of difficulty in control due to
their inherent nonlinearity [16]. However, direct attachment
of the conventional load cells or pressure pads(e.g., force
sensing resistor) at their soft end-tips eliminates the benefits
of conformal and adaptive contact of soft grippers, and may
cause delamination due to the difference in stiffness with the
gripper. Soft skin-like sensors, composed of elastomers, are
also being actively developed for an adaptive deformation
but they are still immature for practical use because the
shortcomings associated with robustness, hysteresis, degrada-
tion, and interconnection to electronics have not been fully
addressed [17]. Moreover, designing the wiring from the
tips to the back of the gripper is complex, especially for
highly deformable/deployable soft grippers, because it may
impact its behavior. Embedment of electronic wires or soft
sensors such as optical waveguides [18] into soft bodies, as
well as non-contact force sensing methods like the active
acoustic sensor utilizing internal microphones and speakers
[19], or an internal camera capturing the end-tip [20], neither
compromises the adaptability of the end-tips nor affects the
behavior. However, these methods require a particular internal
design or fabrication process of grippers, which limits the
design of the gripper. Taken together, the development of a
force measurement method that does not require sensors to be
attached or embedded in the gripper would facilitate a broader
range in the development and application of soft grippers.
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Fig. 1. The dual-origami soft gripper and OriGripNet for gripping force estimation. A) The deployment and bending motion of the dual-origami soft gripper.
B) Simplified diagram and PRBM model of one finger of a double origami soft gripper when an external force is applied. C) The architecture of OriGripNet
model. The abbreviations employed in the figure are as follows, Conv: Convolutional layer, Max Pool: Max pooling layer, Avg Pool: Average pooling layer,
FC: fully connected layers.

Recently, deep learning-based gripper force estimation
methods are being studied to avoid the constraints caused by
attaching a force sensor to an end-effector. For parallel grip-
pers, studies that estimate the gripper force using deep learning
networks with motor signals [21], vision data(deformable Fin
Ray Grippers) [22], [23], or both [24] as inputs have been
conducted for several years. In case of soft pneumatic grippers,
on the other hand, research of deep learning-based force
estimation is in its early stages with only a few studies. To
estimate the contact force of the soft pneumatic actuator,
Thuruthel et al. [25] and Loo et al. [26] used a recurrent
neural network(RNN), taking pressure values and embedded
strain/flex sensor data as inputs. Ang and Yeow predicted
a contact force of a two-chamber bidirectional pneumatic
soft actuator using internal pressures of both chambers as
inputs of the LSTM [27]. These works have proven that deep
neural networks can continuously predict the gripper forces,
when corresponding data sets such as internal pressures or
actuator geometry are adequately collected. The reason why
data-driven deep learning approaches can estimate the soft
actuators’ force is presumed to be that the geometry of the
soft systems is determined according to external force and
internal pressure [28], [29], yet existing studies have not
utilized directly domain knowledge that may be extracted from
mechanical modeling of soft robots. Furthermore, to the best
of our knowledge, there are no studies on force estimation for
pneumatic-driven soft grippers using visual feedback data and
deep neural networks, although visual feedback is commonly
used in gripper systems, yet there is a study that estimates the
force exerted to the wrist of a robot-arm through the vision
data of soft grippers [30].

In this letter, we investigate the impact of parameters
extracted from domain knowledge of soft grippers and RGB
image data on grip force estimation performance, and present
a vision-based deep learning model OriGripNet. An intu-
itive approximation modeling technique, Pseudo-Rigid-Body-
Model(PRBM), was inadequate to reflect the complexity of the
soft gripper due to nonlinear stiffness change during pneumatic
actuation. Instead, we have extracted parameters related to the
grip force based on the PRBM model, applied pressure and
joint position information. We collected grip force and image
data of dual-origami soft grippers for objects of different
sizes and surface geometries on a variety of backgrounds.
Then, we evaluated the grip force estimation and contact
estimation performances of models that selectively consider
parameters and images. The proposed model OriGripNet,
which takes the image as an input to convolutional neural
network(CNN) and the pressure and joint position information
as input to the fully connected layers(FC layers), demonstrated
grip force estimation with a x9 performance improvement over
the model using only vision data, x2.63 improvement over
models that don’t use images directly but only key parameters,
and x1.23 improvement over the model using both vision
data and pressure data. Additionally, considering joint position
information prevented more than half of the false positives for
contact estimation. We expect that our results, which show
that image, input for actuator, and current gripper geometry
gripper geometry information is not only important for grip
force and contact estimation but are also synergistic with each
other, will provide key insights into the study of vision-based
soft gripper grip force estimation.
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II. MATERIALS AND METHODS

A. Dual-origami gripper

The schematic diagram of the dual-origami gripper we
developed in a previous study [9] is shown in Fig. 1A. The
dual-origami gripper was 3D printed to follow the geometry of
the Miura origami polyhedron, with pouch modules of flexible
material stacked in a zigzag pattern to form an origami fluid
network and an additional origami strain limiting layer inserted
between the pouches. When pneumatic/hydraulic pressure is
applied, all crease lines of the origami gripper begin to
gradually unfold and the body deploys mainly in the direction
of lengthening. Then, once the origami strain-limiting layers
are fully unfolded, the origami fluidic network, which is
designed to be relatively more stretched, is unfolded alone and
the entire body bends. The compact design of the dual-origami
soft gripper provides high space utilization when not in use.
However, as a trade-off for the space utilization of the folded
shape, the origami soft gripper has a complex geometry that
makes it difficult to embed appendages such as optical fiber
sensors and soft/flexible circuits.

B. Estimation of the tip force of the dual-origami soft gripper
via PRBM modeling

Single finger of the soft origami gripper can be represented
in a schematic diagram as shown in Fig. 1B(i). When the
gripper is deployed by applied fluidic pressure P and the
external force F is applied to the end, most of the deformation
occurs in the form of angle changes at the connections between
the pouches(we call them ‘joints’). Based on the deformation,
we applied a pseudo-rigid-body-model in which the rotational
deformation occurs only at the joints(Fig. 1B(ii)). For the sake
of simplicity, the following assumption(1-3) were made. (1)
For the same design, the origami gripper will always unfold
to the corresponding geometry for a given pressure value in an
environment where no external forces are applied. Namely, the
rotation angle of the n-th joint in the absence of an external
force(ϕn) would be a function of the pressure(ϕ = fϕ(P )). (2)
The object is only gripped at the gripper end, and the reaction
force only causes rotation at the joint. (3) The effects of
gravity are not considered. Letting the n-th joint be a nonlinear
rotating spring with torsional stiffness kn, the force expression
for the segmented PRBM model is given as follow where θn
is the rotation angle of the n-th joint by external force:

F⃗ =
(knθn+1 − knθn+1)(⃗i+ tan

∑N
i=1(Ai)⃗j)

Ln{cos
∑N+1

i=1 (Ai) + sin
∑N+1

i=1 (Ai) tan
∑N

i=1(Ai)}

where
Ai = (θi − ϕi)

The above expression shows that if ϕ and k are known
experimentally in advance for the gripper with a given design
geometry, the grip force vector can be estimated by detecting
the value of θ.

F = fF (k1:N , ϕ1:N , θ1:N )

However, we have concluded from simulation and experimen-
tal results that k is nonlinear with respect to P and θ due to
the complex geometry of the gripper, nonlinear materials, and
contact effects between the pouches(k = fk(P, θ)).

C. OriGripNet

As we discussed in the previous section, gripping force
estimation through the modeling of origami grippers with
nonlinear materials and complex geometries is challenging.
However, the relationship between the variables shows that
the gripping force is determined by P and the angular rotation
of the joint θ1:N due to the reaction force during gripping.
Since the angle values of the joints can be derived from the
position of the joints(Ĵ1:N = [J1, ..., JN ]), the gripping force
has the following relationship:

F = fF (P, Ĵ1:N )

Based on this domain knowledge, we developed a gripping
force estimating deep learning network OriGripNet as shown
in Fig. 1C. OriGripNet is composed of two ResNet-based
CNNs [31]. The first ResNet layer(force estimation Layer) is
based on ResNet18 and extracts vision feature HV

0 , followed
by FC layers to estimate force. We assumed that HV

0 only
partially reflects the joint position information, since the RGB
matrices of the image input to the force estimation layer
indirectly contain joint information as well as a variety of
other information(e.g., shape of the object, how much the
gripper is inflated, background environment, etc.). Therefore,
in order to directly reflect Ĵ1:N in the estimated force value,
which we believe is one of the most important factors in force
estimation, the second ResNet layer(Joint position estimation
layer), based on ResNet50, aims to accurately predict Ĵ0:N .
Then, the estimated Ĵ0:N and P measured by the pressure
sensor are input into the FC layers of the force estimation
layer, which is expected to improve performance compared
to ResNet with only vision data. The model developed in
this study, although our approach in the previous session
predicts that it may estimate a force vector in 2D space, only
estimates the force for a single direction in which the object
is compressed. This decision is based on the acknowledgment
that this force direction is dominant, aiming to facilitate easier
data collection and analysis during the theoretical validation
phase.

D. Real-world data collection and training

Data collection through FEA simulation and transfer to the
real world may be applicable for conventional parallel grippers
with relatively simple geometries and deformations. However,
for soft origami grippers made of hyperelastic materials,
simulation errors are large and FEA convergence is difficult.
We set up a data collection platform and collected real world
data. As shown in Fig. 2A, the gripper was mounted on the
end of the robot arm and an RGB camera(1080P Low Light
Wide Angle USB Camera, ArduCam) was installed on the
wrist of the robot arm(RB5-850, Rainbow Robotics) to record
the entire process of the gripper deployment and bending. In
order for the learning model to effectively track each joint, we
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Fig. 2. Collection of visual and force data during object gripping. A) The 6-module dual-origami soft gripper and RGB camera mounted at the end of the
robot arm. B) For data diversity, 3D printed reconfigurable objects with variable shape and size, four different backgrounds, and two grippers with different
designs were used. (left). Real-world image data. (right). C) Example of continuously collected object grap-and-release image data.

marked each joint with different colors(Fig. 2A). Each joint
location was labeled using the DeepLabCut toolkit [32]. We
selected 100 images from the RGB image through k-means
clustering [32], and each joint location of the 100 images was
manually labeled using the GUI provided by the DeepLabCut
toolkit.

Six length modules(1, 10, 15, 20, 30, and 40 mm) and two
shape modules(Flat, Round) were 3D printed and assembled
with a singe-axis load cell(333FDX, KOYTO) to create a
test object. The load cell was placed inside the object so
as not to affect the grip. For the diversity of image data to
prevent overfitting, three different backgrounds(white, green,
and black) were utilized with various objects(Fig. 2B and
2C). The force, image data, and input pressure(was controlled
using pressure regulator(ITV1050, SMC) and analog voltage
output module(National Instruments)) were simultaneously
collected for two different gripper designs(3-joints and 2-joints
gripper) using LABVIEW(National Instruments). In addition,
gripping and releasing data were collected by varying the
pressure profile applied to the gripper. The applied pressure
profiles include holding the object for a long time with a
constant pressure, slowly changing the pressure continuously
or step-wise, and quickly gripping and releasing the object
with a rapid applied pressure increase followed by a rapid
decrease(Fig. 3). In addition, the data of lifting an object by
moving the robot arm in the opposite direction of gravity and
then moving it back and forth and side to side were also
included.

The network models proposed in this study undergo two
training processes. First, the Joint layer was trained to ac-
curately predict the positions of each joint. The Joint layer
was trained for 100,000 iterations with a learning rate of
0.001 and weight decay of 0.01 using the Adam Optimizer.
Subsequently, the pretrained joint layer was used to train

the force estimation model. The Force estimation model was
also trained with a learning rate of 0.001 and weight decay
of 0.01 using the Adam Optimizer and was trained for 100
epochs. Model training was performed using three of the same
GPUs(Titan V, NVIDIA, USA). To measure the performance
of the models, we used the mean square error(MSE) loss
function. For the case of grip force estimation on unseen
objects, we additionally used the mean absolute error(MAE)
and mean absolute percentage error(MAPE) loss functions for
detailed performance evaluation:

MSE(N2) =
1

n

n∑
i=1

(Yi − Ŷi)
2

MAE(N) =
1

n

n∑
i=1

|Yi − Ŷi|

MAPE(%) =
100

n

n∑
i=1

|Yi − Ŷi

Yi
|

where n is the number of data, Yi is the measured grip force
value, and Ŷi is the predicted force value. For MAPE, a small
value ϵ was introduced for cases where Yi is zero. Performance
evaluation results vary depending in scale depending on the
ratio of gripping data(Yi > 0) to non-gripping data(Yi = 0)
in the test dataset, the scale of the gripping force, etc. There-
fore, rather than interpreting absolute performance evaluation
values, we believe it is more appropriate to make relative
comparisons, and therefore we compare the models only for
cases tested on the same dataset in the following sections.

III. RESULT

For convenience of description, we refer to Img as the
input of the image set to the force estimation layer, P as the
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TABLE I
GRIP FORCE ESTIMATION PERFORMANCE FOR EACH GRIPPER

Model 3-joints-gripper(MSE) 2-joints-gripper(MSE) Comp. Time(S)

Round Flat Round+Flat Round Flat Round+Flat
Img 0.0084 0.0078 0.0079 0.0079 0.0042 0.0036 0.0061
Img+J 0.0104 0.0106 0.0122 0.0073 0.0013 0.0013 0.0301
Img+P 0.0011 0.0011 0.0009 0.0016 0.0008 0.0011 0.0062
Img+P+J 0.0008 0.0007 0.0005 0.0029 0.0004 0.0007 0.0261
P+J 0.0018 0.0007 0.0023 0.0011 0.0009 0.0003 0.0218

J indicates joint information
P indicates pressure information

Comp. Time indicates Computational Time

input of the pressure values to the FC layers, and J as the
input of the joint positions estimated from the joint position
estimation layer to the FC layers. For example, OrigripNet can
be denoted as Img+P+J. When only pressure and joint data
were directly used and image data was used only for joint
position estimation, it is denoted as P+J.

A. Grip force estimation performance

Table I shows the performance results of grip force esti-
mation networks that selectively used information from the
parameters. The grip force estimation networks were trained
with data sets of only Flat objects, only Round objects,
or both(Flat+Round), and tested on all types of datasets
for the corresponding gripper design(2-joints and 3-joints).
Additionally, Fig.3 shows the results of the force estimation
networks on the same dataset with various force/pressure
profiles. Both the numerical and visualization results show
that image information alone is an inaccurate predictor of grip
force, but the addition of pressure information is significantly
helpful in predicting grip force. For example, adding pressure
information increased performance by more than x8 for a
3-joint gripper(from 0.0079 to 0.0009) and x3 for a 2-joint
gripper(from 0.0036 to 0.0011), each trained on Round+Flat
dataset. On the other hand, the effect of adding joint informa-
tion alone(Img+J) was inconclusive, as it degraded the perfor-
mance of the 3-joint gripper and improved the performance of
the 2-joint gripper. Interestingly, however, when joint informa-
tion was added to Img+P, i.e. OriGripNet, the performance
generally increased(five of six cases). The force estimation
performance of OriGripNet for the 3-joints-gripper and 2-
joints-gripper trained on the Round+Flat dataset was 0.0005
and 0.0007, respectively, which is 1.8x and 1.57x better than
the performance of Img+P(0.0009 and 0.0011, respectively).
It was also noteworthy that networks that do not use image
data directly, but only utilize key parameter information(P+J),
performed as well as or better than OriGripNet in few cases.
This result supports our claim that grip force can be estimated
from only the important parameters(F = fF (P, Ĵ1:N )), and
implies that other kinds of sensors besides camera providing
the joint position information of the gripper(e.g., embedded
bending sensors) can be also utilized to estimate the grip force.
However, we also suspect that the similarity of the test and
training subjects may have contributed to the high performance

Fig. 3. Visualization of the actual applied force(true f) and the predicted force
of each deep learning model(pred f) when gripper grip the test objects with
varying force and duration.

of P+J, as the performances of the network are relatively weak
for the contact and release detection and unseen objects which
are presented in the following sections(III-B and C).

For network computation time, OriGripNet on average took
0.0261 seconds which is about 38.3 calculations per second.
This result shows that when sensing with a real-time camera
at 30 fps, OriGripNet can process the data in real-time
to estimate the grip force. In comparison, Img and Img+P
were more than x4 faster than OriGripNet(0.0061 second and
0.0062 second, respectively). This is because these networks
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TABLE II
GRIP FORCE ESTIMATION PERFORMANCE WITH SELECTIVE FALSE DATA

Model Rand. Info. MSE(N2)
Img None 0.0042
Img+P P 0.0055
Img+P+J P+J 0.0073
Img+P+J P 0.0032
Img+P+J J 0.0018
Img+P+J None 0.0004

J indicates joint information
P indicates pressure information

Rand. Info. indicates random information added to the model

TABLE III
CONTACT DETECTION PERFORMANCE

Model Window Recall(%)

Gripping Releasing Avg

Img 200 87.6 77.6 82.6
Img+J 200 89.2 78.6 83.9
Img+P 200 90.3 66.3 78.3
Img+P+J 200 94.7 86.2 90.5
P+J 200 82.2 74.6 78.4

J indicates joint information
P indicates pressure information

do not utilize joint position information, while the separate
process of extracting joint information requires a relatively
long computation time.

To further validate the result that gripper’s state information
P and J increase the grip force estimation performance, we
trained the networks with false datasets of P or J that are
randomly generated. As shown in Table II, the performance
of Img becomes progressively worse as the incorrect gripper
state information P and J are added(MSE performance of
0.0042 worsens to 0.0055 and 0.0073, respectively). Also
interestingly, OriGripNet improves performance over Img if
at least one of the two gripper state information is genuine,
even if the other is false(0.0018 and 0.0032 for genuine P or
J, respectively), yet their performances are significantly worse
compared to the reference OriGripNet with MSE of 0.0004.
We believe that this result also supports the idea that both P
and J information are important for estimating grip force, and
it can also be concluded from both Tables I and II that P is
particularly important.

B. Contact estimation performance

Determining whether the gripper has contacted an object is a
necessary information for assessing the feasibility of gripping
and releasing actions. From the force estimation results, we
found that force estimation through learning is subject to
false positives of contact, which are not simply represented by
performance numbers. To evaluate this, grip force estimation
models proposed in this paper were tested to confirm whether
they could accurately detect contact with the object. We have
manually labeled the gripping and release point, and only

data around the actual contact(200 frames around the contact)
was used as test data to obtain recall(true positive rate for
all actual contact, TP/(TP + FN)) near where the actual
contact occurs. Each model was trained on data of gripping
flat objects against a black background. The result for the
recall of each learning model in determining contact is shown
in Table III. As a result, OriGripNet demonstrated the best
recall among the proposed networks, 94.7% for gripping and
86.2% for releasing with an average recall of 90.5%. On the
other hand, the P+J model averaged 78.4% contact detection
performance, which is about 12% lower than OriGripNet,
showing that image information obviously plays an important
role for the contact decision. The average recall of the Img
model was 82.6%, and there was a slight performance increase
when adding joint position information(83.9% for Img+J). We
believe this is because the detailed gripper geometry infor-
mation derived from J is intuitively important in determining
whether contact is made. Also, the Img+P model showed more
than 12% performance degradation in contact information
during releasing compared to the Img model. However, when
comparing the Img+J model to OriGripNet, we see that
OriGripNet has better contact information recall performance
during both gripping and releasing, suggesting that pressure
information helps improve the contact detection performance
when combined with detailed geometry information(J) of the
gripper.

C. Grip force estimation for unseen objects

To investigate the generalizability of our learning models,
we evaluated the performance of our proposed model with
unseen objects of different shapes commonly encountered in
everyday life. Three test objects - a cylinder, a sphere, and a
cup - were 3D printed in half-form to allow for the load cell
to be built inside and assembled as shown in Fig 4A. These
unseen objects gripping data were also collected for various
applied pressure profiles in different background environments
as described in session II-D(Fig. 4B). The performance of
pretrained models for the unseen objects is shown in Table
IV and Fig. 4C.

OriGripNet clearly performed the best for force estimation
on unseen objects, with MSE of 0.0082, MAE of 0.0636, and
MAPE of 4.31%. For the models do not use pressure data
P(Img and Img+J), the MSE values were more than x9 higher
than OriGripNet, which are unacceptably poor performances
for use as shown in Fig. 4. The performance of Img+P
was 23% lower than OriGripNet based on the MSE value,
again showing a significant performance improvement when
combining J data with P. We also found that the Img+P
model tended to estimate false positives for unseen objects
even before gripping occurred, which is well shown in the
cases where the gripping force increases continuously/step-
wisely(Fig. 4C). We suspect this is because the Img+P model
relies too heavily on the pressure input value, while it does
not extract detailed geometry of the gripper from the image
alone(especially with background data that is the same color
as the gripper, black). In other words, the Img+P model seems
to be estimating the false positive values just because the
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Fig. 4. Test results for unseen objects. A) Design of the unseen objects with a built-in load cell. B) Image data of the soft gripper gripping the unseen objects.
C) Grip force estimation results for unseen objects.

TABLE IV
GRIP FORCE ESTIMATION PERFORMANCE FOR UNSEEN OBJECTS

Model MSE(N2) MAE(N) MAPE(%)
Img 0.0808 0.2315 16.32
Img+J 0.0778 0.2184 11.34
Img+P 0.0101 0.0760 7.08
Img+P+J 0.0082 0.0636 4.31
P+J 0.0220 0.1189 6.21

J indicates joint information
P indicates pressure information

input pressure value is increasing. The false positive problem
is mitigated in models with both P and J data, OrigripNet
and P+J, indirectly supporting our speculation. Finally, in
contrast to the good performance of the P+J model on known
objects in Table I, the performance on unseen objects was
half of OriGripNet(more than x2 based on MSE value). We
believe that this is an intuitive result that demonstrates the
effectiveness of Img data in ”seeing” unseen objects.

IV. CONCLUSIONS

In this letter, we explored the impact of parameters related
to the gripping force of a deployable origami soft gripper on
the force estimation of a vision-based deep learning model.
We built a data collection setup and collected real-world data
of gripping 3D printed reconfigurable objects with various
backgrounds and applied pressure profile. As a result, we
found that the model which utilizes only image and actuation
level(applied pressure) data showed ’acceptable’ performance,
but there was a drawback that it seemed to rely too much
on the pressure value rather than the image, resulting in false
positives even when the gripper does not make contact with
the object. On the other hand, when the model considers the
joint positions extracted from the markers in the image, the
force estimation performance increased by at least 25%, and
the incorrect contact detection was more than halved, from
21.7% to 9.5%. The results showed that the key parameters,
P and J, and image data not only have their own distinct
roles in force estimation, but also have a synergistic effect in
improving performance when considered together. Finally, the
computational performance of approximately 38 fps and the
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force estimation performance showed the usability of the pro-
posed model, OriGripNet. We believe our approach provides
fruitful insights into the utilization of domain knowledge for
soft machines and the practical application of deep learning
models using real-world data.

On the other hand, because our work focused on identi-
fying the impact of key information parameters rather than
increasing the absolute performance or practicality, there is
much room for improvement. For example, our study only
estimated the force of a single axis in the direction of the object
being pressed, which is the most dominant. However, for more
delicate object handling, a multi-axis force/torque sensor can
be utilized instead of a 1-axis load cell to obtain the data. We
expect our method to sufficiently estimate the force vector in
the plane of the gripper, i.e., in two axes. To estimate the force
along the remaining axis, we posit that additional physical
input, specifically related to the weight of the object, would
be required. Also, categorizing the test dataset by type and size
to derive performance evaluation values would imbue each of
these metrics with a more tangible and practical significance.
Moreover, we conducted training and verification only on
objects that are rigid and not easily deformed, and the future
work should be conducted on soft objects since soft grippers
mainly handle them. At this point, the force estimation model
that not only considers the physical property of the gripper
but also the physical property of object can be designed. For
example, our previous work that estimates the contact force
between tendon-driven wearable robot and deformable objects
utilized the estimated stiffness of objects from actuation data
[33]. Similarly, a stiffness estimation model that utilizes vision
and gripper data could be developed and applied to OriGripNet
to improve performance, especially for soft objects.
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