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Abstract. Estimating the traversability of terrain in an unstructured outdoor en-
vironment is one of the challenging issues in autonomous vehicles. When deal-
ing with a large 3D point cloud, the computational cost of processing all of the 
individual points is very high. Thus voxelization methods are used extensively. 
In this paper, we propose a more fine-grained voxelization algorithm in the con-
text of unstructured terrain classification. While the current shape of a voxel is a 
fixed-length cubic, we construct a flexible shape voxel which has spatial and 
geometrical properties. Furthermore, we propose a new shape histogram feature 
that represents the statistical characteristics of 3D points. The proposed method 
was tested using data obtained from unstructured outdoor environments for per-
formance evaluation. 

Keywords: unmanned vehicle, unstructured terrain, traversability classifica-
tion, point cloud, voxel. 

1 Introduction 

Correctly classifying an outdoor environment into traversable and non-traversable 
regions is still a challenging task in autonomous vehicles. In particular, recognition in 
environments with unstructured terrain remains a difficult problem since the informa-
tion obtained from sensors is highly inaccurate. In this paper we explore the traversa-
bility classification problem for sparse and unstructured terrain data. There are two 
important issues of concern. 

The first is to efficiently process the large amount of 3D point cloud data. For 
problems of traversability classification in 3D point clouds, voxelization methods are 
generally employed for efficiently processing large amounts of data [1] [2] [3]. Vox-
elization is a method to divide the 3D terrain into fixed-length cubes and extract their 
features (Fig. 1(a)). When a point cloud is converted into voxels, it is possible to lose 
the geometric information of the point cloud because of its fixed-length cubic shape. 
In order to overcome this problem, we employ a flexibly shaped supervoxel (Fig. 
1(b)) which includes spatial and geometrical properties. The Voxel Cloud Connectivi-
ty Segmentation algorithm was recently proposed to generate supervoxels [4]. The 
algorithm clustered voxel-clouds which were generated from RGB-D images, and 
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segmented only structured indoor scenes. Since this algorithm is unsuitable for sparse 
point clouds in outdoor environments, we modify it to be usable for sparse point 
clouds. 

The second issue with respect to traversability classification is to define an appro-
priate feature which represents a local area well. There have been many studies on 
feature extraction for traversability classification. For point cloud classification, the 
saliency features [3] [5] have most commonly been used. The saliency features were 
used to capture the surface-ness, linear-ness, and scatter-ness of the local area. How-
ever these features could give inaccurate results when neighborhoods are not repre-
sentative of the local geometry such as within sparse regions. In this paper, we  
propose a new histogram-type shape feature which works well in any environment. 
The new shape feature represents the statistical characteristics of 3D points with re-
spect to shape and can be computed relatively fast. Furthermore, for more accurate 
classification, we extract a histogram-type color feature and combine the visual  
feature with the new shape feature. 

The proposed supervoxel method and the new histogram-type features were tested 
using data obtained from unstructured outdoor environments for performance evalua-
tion. Furthermore, this paper investigates whether the proposed methods can improve 
the performance of traversability classification. 

      
                     (a)                                         (b) 

Fig. 1. Examples of (a) voxel and (b) supervoxel over-segmentation 

2 Supervoxel 

2.1 Point Features and Distance Measure 

This section describes how to extract point features and measure the distance between 
them. Common approaches to extract a point feature is to directly use a surface nor-
mal [6]  or compute a histogram feature which captures the variations of surface 
normals in a local patch [7] [8]. Since the surface normal is estimated by fitting a 
plane to some neighboring points, it will be greatly affected by density of neighboring 
points. So the normal is unsuitable for a point feature in sparse point clouds. Moreo-
ver, plane fitting methods become very computationally expensive when applied to 
millions of points. Thus we need to find other point features which do not consider 
the surface normal for quickly extracting the point features in sparse point clouds. 
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This paper extracts geometric information by analyzing local distributions of con-
secutive points. In [9], the authors used the consecutive point information (CPI) that 
can be obtained from a 2D LIDAR system. It used the angles between the y-axis and 
the line passing through two consecutive vertical points. In our work, we convert  
the point feature into a form that can be used with a 3D LIDAR system by adding 
information about consecutive horizontal points. 

 

Fig. 2. Example of vertical and horizontal angels 

In order to extract the CPI feature, we should define the order of consecutive 
points. The Cartesian coordinates of a 3D point cloud are converted to spherical coor-
dinates (azimuth ߆ and elevation ߶) and they are discretized to predefined intervals. 
All points are sorted by azimuth and elevation, and represented as follows: 

ێێۏ
ۍێ ଶ௡ௗ߆     ଵ௦௧߆ ଵ,ଵ ࢖     ଷ௥ௗ߶ଵ௦௧    ߶ଶ௡ௗ  ߶ଷ௥ௗ߆ ଵ,ଶ ࢖ ଶ,ଵ ࢖ଵ,ଷ ࢖ ଶ,ଶ ࢖ ଷ,ଵ ࢖ଶ,ଷ ࢖ ଷ,ଶ ࢖ ۑۑے              …                          …  ଷ,ଷ ࢖

ېۑ
 

Each ࢖௜,௝ is a vector whose elements include the 3D Cartesian coordinates of ith ele-
vation and jth azimuth point. The consecutive vertical point of a point  ࢖௜,௝ is  ࢖௜ାଵ,௝ 
and consecutive horizontal point is ࢖௜,௝ାଵ. Let  ࢜௜,௝௏  be the vector passing through two 
consecutive vertical points, it can be computed as  ࢜௜,௝௏ ൌ ௜ାଵ,௝࢖ െ -௜,௝. Thus the an࢖
gle  ߠ௜,௝௏  between the x-y plain and  ࢜௜,௝௏  is computed as follows: 

௜,௝௏ߠ ൌ sinିଵ ቆ ೔,ೕೇ࢜ ൉ܢቚ࢜೔,ೕೇ ቚൈ|ܢ|ቇ                                              (1) 

where z is a z-axis unit vector. The  ߠ௏ represents the inclination angle of the surface 
generated by consecutive vertical points. Small angles indicate a flat surface such as 
the ground and large angles indicate vertically oriented object surfaces. Furthermore, 
the surface of trees or bushes has a large angle variation.  
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Let  ࢜௜,௝ு   be the vector passing through two consecutive horizontal points, it can 
be computed as  ࢜௜,௝ு ൌ ௜,௝ାଵ࢖ െ ௜,௝ுߠ  ௜,௝ . The angle࢖  between two consecutive vec-
tors  ࢜௜,௝ିଵு   and ࢜௜,௝ு  , can be computed as follows: ߠԢ௜,௝ு ൌ cosିଵ ൬ ೔,ೕಹ࢜ ൉࢜೔,ೕషభಹ|࢜೔,ೕಹ |ൈ|࢜೔,ೕషభಹ |൰ , ௜,௝ுߠ ൌ min൫ߠԢ௜,௝ு , ߨ െ Ԣ௜,௝ுߠ ൯                   (2) 

The ߠு represents a discontinuity of a horizontal surface. The small angles indi-
cate that the surface generated by consecutive horizontal points is flat such as the 
ground or the wall of a building. The large angles represent a discontinuous point, and 
the large angle variations indicate that the surface is scattered such as a tree or bush. 
Fig. 2 shows an example of vertical and horizontal angles. 

In this paper, we use the mean and standard deviation of the neighboring angles 
within a window size as geometrical point features. The mean and standard deviation 
should be normalized to be within a range of [0, 1]. In order to normalize the mean 
and standard deviation, we divide the mean by π 2⁄  and the standard deviation by stdሺ0, π 2⁄ ሻ. 

Let ߠ෠௏ and ߠ෠ு be the normalized means of vertical and horizontal angles, and ߪො௏ and ߪොு be the normalized standard deviations of each angle, the point feature ࢌ௞ used for the supervoxel over-segmentation task is defined like this: ࢌ௞ ൌ , ௞ݔൣ , ௞ݕ , ௞ݖ , ෠௞௏ߠ , ෠௞ுߠ ,ො௞௏ߪ  ො௞ு൧                                  (3)ߪ

where x, y, and z are the Cartesian coordinates of a point.  
In order to compute the point feature distances, it is necessary to normalize spatial 

distances by their respective maximum distances. We define the normalization con-
stant as the distance between the center and maximally distant point in a cluster. Let ܴ௦௘௘ௗ  be a seed resolution of initial cluster, we can normalize our spatial distance ݀௖ 
by dividing by the normalization constant √3ܴ௦௘௘ௗ . Since point shape features are 
already normalized, it is not necessary to normalize the shape distance ݀௦. By apply-
ing a weight of point distance ݓ௣௢௜௡௧ , the distance of two point features ࢌ௜ and ࢌ௝ 
is computed as follows: 

݀௖ ൌ ට൫ݔ௜ െ ௝൯ଶݔ ൅ ൫ݕ௜ െ ௝൯ଶݕ ൅ ൫ݖ௜ െ                                                      ௝൯ଶݖ
݀௦ ൌ ට൫ߠ෠௜௏ െ ෠௝௏൯ଶߠ ൅ ൫ߠ෠௜ு െ ෠௝ு൯ଶߠ ൅ ൫ߪො௜௏ െ ො௝௏൯ଶߪ ൅ ൫ߪො௜ு െ                ො௝ு൯ଶߪ
݀ ൌ ටݓ௣௢௜௡௧ ቀ ௗ೎√ଷோೞ೐೐೏ቁଶ ൅ ൫1 െ  ௣௢௜௡௧൯ሺ݀௦ሻଶ                                       (4)ݓ
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2.2 Supervoxel Segmentation 

The supervoxel segmentation algorithm is summarized in Algorithm 1. The algorithm 
was originally motivated by previous work in [4]. The supervoxel segmentation algo-
rithm in [4] used a dense depth image and it clustered the voxel-clouds. Therefore we 
modified the algorithm to be usable in sparse point clouds by clustering cloud points 
instead of voxel-clouds. 
 

Algorithm 1�Supervoxel segmentation 

1. Construct neighborhood graph G. 
2. Generate voxels ௞ܸ with resolution ܴ௦௘௘ௗ.  
3. Initialize cluster center points ௞ܲ௦௘௘ௗ to center of ௞ܸ. 
4. Change the center points ௞ܲ௦௘௘ௗ to the lowest gradient in radius ܴ௦௘௔௥௖௛ of each center. 
5. Assign each ௜ܲ in ௞ܸ to each cluster ܥ௞ and calculate distances ܦ௜௠௜௡ between ௜ܲ א  ௞ܥ

and ௞ܲ௦௘௘ௗ. 
6. for each cluster ܥ௞ do 
7.   Extract the neighbor points ܲכ in radius 2 ൈ ܴ௦௘௘ௗ of ௞ܲ௦௘௘ௗ. 
8.   Calculate distances כܦ between ܲכ and ௞ܲ௦௘௘ௗ. 
9.   Remove points whose distance כܦ are higher than minimum distance ܦ௠௜௡ from ܲכ. 
10.   Find the connected points ෠ܲכ of ܲכ from ௞ܲ௦௘௘ௗ by using BFS of G. 
11.   Assign the each points of ෠ܲכ to cluster ܥ௞ and update ܦ௠௜௡ to its distance כܦ. 
12. end for 

 
We begin by constructing a neighborhood graph G, which ensures that discon-

nected points are not clustered in the same cluster. We obtained the neighborhood 
graph by connecting the six nearest neighbors of each point. Then, we divide the 
whole point cloud into a voxelized grid ௞ܸ with seed resolution ܴ௦௘௘ௗ . The seed 
points are initialized to the nearest point to the center of each voxel grid cell. The 
initial points are changed to the lowest gradient position in the search range ܴ௦௘௔௥௖௛ 
of each point. The ith point gradient ࢍ௜ is computed as:  ࢍ௜ ൌ ∑ ೏ೕೌ࢖אೖ|ேೌ೏ೕ௞ࢌ೔ିࢌ|                                            (5) 

where ࢖௔ௗ௝ and ௔ܰௗ௝  represent the neighboring points of the neighborhood graph 
and number of neighbor points, respectively.  

We generate supervoxels by clustering points based on their distance between each 
seed point, ܲ௦௘௘ௗ . Each point is assigned to the nearest cluster center. First, the points 
within a same ௞ܸ are initialized to the same cluster ܥ௞, and their distances to ௞ܲ௦௘௘ௗ  
are stored in variable ܦ௠௜௡. Then, the method iterates the following procedures for 
each cluster ܥ௞ . First we extract the neighbor points ܲכ in radius 2 ൈ ܴ௦௘௘ௗ  of ௞ܲ௦௘௘ௗ  and calculate their distances, כܦ, to ௞ܲ௦௘௘ௗ . Then, the points whose distances כܦ are lower than their ܦ௠௜௡ are assigned to cluster ܥ௞ and update ܦ௠௜௡. In order 
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to ensure the connectivity of the points in ܥ௞, only points connected to ௞ܲ௦௘௘ௗ  are 
selected. We find the connected points by traversing G using breadth-first search 
(BFS).  

2.3 Features of Supervoxel 

In this section, we define the features of each supervoxel cluster. The feature space 
consists of two different histogram feature sets, one with color characteristics and the 
other with geometric characteristics. 

The first feature set ࡲ௖ is a LAB color histogram derived from the color compo-
nents in a supervoxel. ࡲ௖ is produced by discretizing the colors in the supervoxel 
into a number of bins, and counting the number of points in each bin. Let ܨ௕௖ be a 
color histogram value of b index in a supervoxel cluster, it is computed as: ܨ௕௖ ൌ  ଵே ∑ Iሺࢌ௜௖ א binሺܾሻሻ                              ே௜ୀଵ         (6) 

where ࢌ௜௖ is a LAB color value of ith point, N is the number of points in a cluster and 
I is the indicator function. The color histogram ࡲ௖ represents the probability mass 
function of the point color feature. 

The second feature set ࡲ௦ is a shape histogram of a supervoxel, which is derived 
from the point shape feature ࢙ࢌ ൌ ሾߠ෠௏, ,෠ுߠ ,ො௏ߪ  ௕௦ be a shape histogramܨ ොுሿ. Letߪ
value defined as: ܨ௕௦ ൌ  ଵே ∑ Iሺࢌ௜௦ א binሺܾሻሻே௜ୀଵ                                    (7) 

Similar to ࡲ௖, the shape histogram ࡲ௦ represents the probability mass function of 
the point shape feature. As mentioned earlier, the performance of saliency features [3] 
[5] or other shape histogram features [7] [8] derived from surface normals are strong-
ly influenced by the density of local points. However, our shape histogram feature is 
derived from CPI and works well in any environment. Furthermore, it can be com-
puted relatively fast. We empirically obtained good results by dividing the feature 
values into three bins for angle means and two bins for angle standard deviations. 
Therefore, the number of shape histogram bins is 3ଶ ൈ 2ଶ ൌ 36. 

3 Traversability Classification 

In order to train the classification model, we clustered all of the supervoxels in the 
training dataset using k-means clustering, and modeled each cluster ܯ௞ by its mean 
value ࡲெೖ . Separate sets of cluster models were maintained for positive and negative 
examples.  We adopted the χଶ distance function as a similarity measure of clusters, 
defined as: 
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,ࡲሺܦ ᇱሻࡲ ൌ ௩௢௫௘௟ݓ  ∑ ൫ிᇱ೔ೞିி೔ೞ൯మிᇱ೔ೞାி೔ೞ஻ೞ௜ୀଵ ൅ ሺ1 െ ௩௢௫௘௟ሻݓ ∑ ቀிᇲೕ೎ିிೕ೎ቁమிᇲೕ೎ାிೕ೎஻೎௝ୀଵ            (8) 

where ܤ௦ and ܤ௖  represent the number of histogram bins, and ݓ௩௢௫௘௟  is a weight 
factor. The weight factor  ݓ௩௢௫௘௟  allows us to control the relative contributions of 
the two components. 

In order to find the traversable regions, the learned positive and negative models 
are compared to new input regions. If the similarity ratio of a new region is greater 
than a threshold λ, the region is classified as a traversable region. The classifier is 
defined as:  ܪሺࡲ௞ሻ ൌ  I ൤ ஽ሺࡲೖ,ࡲಾtሻ஽ሺࡲೖ,ࡲಾntሻ ൒  ൨                              (9)ߣ

where ܯ௡௧ is the non-traversable model closest to ࡲ௞, and ܯ௧ is the closest tra-
versable model [10] . 

4 Experimental Results 

In order to classify drivable regions, we obtained the point cloud data from a HDK-
32E LiDAR sensor and 640x480 pixel images from a forward-facing camera. The 
environmental data captured was unstructured terrain which included foliage and 
dense vegetation over 40cm high. A relatively dense data frame was constructed by 
combining six consecutive overlapping data frames, and we extracted twenty con-
secutive dense data frames. We then manually labeled the dense frames for traversa-
bility classification. The last ten dense frames were used as a testing dataset and the 
preceding ten frames were used as the training dataset. For the supervoxel segmenta-
tion, we set the supervoxel parameters ܴ௦௘௔௥௖௛  and ݓ௣௢௜௡௧  to 0.5 ൈ ܴ௦௘௘ௗ  and 0.5 
respectively. Two hundred traversable and non-traversable models were trained for 
the classification task. 

 
                       (a)                                       (b) 

Fig. 3. ROC curves showing the results of (a) the supervoxel and voxel methods respect to 
different ܴ௦௘௘ௗ and (b) supervoxel method under different feature sets. 
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     (a) Voxel: color & shape (ACC = 0.8914)       (b) Supervoxel: color & shape (ACC = 0.9418) 

   
   (c) Supervoxel: color feature (ACC = 0.9181)     (d) Supervoxel: shape feature (ACC = 0.7976) 

Fig. 4. Traversability classification results under different settings. The green and red points are 
correctly classified traversable and non-traversable regions respectively, and the blue points are 
incorrectly classified regions. (ܴ௦௘௘ௗ ൌ ௩௢௫௘௟ݓ ,500 ൌ 0.5, and λ ൌ 1). 

To evaluate the performance of our proposed method, we divided the experiment 
into two subsections. First, the performance of the supervoxel method was compared 
to a general voxel method. Second, we compared the proposed shape feature against 
other state-of-the-art features. 

The ROC curves of the voxel and supervoxel methods with respect to different 
voxel resolution ܴ௦௘௘ௗ  are shown in Fig. 3(a). For general voxel classification, we 
used the same feature and classifier as that of the supervoxels ሺݓ௩௢௫௘௟ ൌ 0.5ሻ. As can 
be seen in Fig. 3(a), the supervoxel method always shows better performance than the 
voxel method for each value of ܴ௦௘௘ௗ . In particular, the supervoxel method improves 
approximately 5% at ܴ௦௘௘ௗ ൌ 300. For the voxel method, the classification accuracy 
rapidly drops as the resolution ܴ௦௘௘ௗ  decreases while in the case of the supervoxel 
method, the accuracy drop is modest. Since the voxel does not incorporate geometric-
al properties, it is a reasonable result that voxel under-performed with respect to the 
supervoxel. 

In order to measure the performance of the proposed shape feature, it is compared 
to the color feature, saliency feature [3] and both color and shape features with respect 
to different weight factors ݓ௩௢௫௘௟. Fig. 3(b) shows the ROC curves of the supervoxel 
method ሺܴ௦௘௘ௗ ൌ 500ሻ with respect to different features. In this figure, accuracy of 
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the proposed shape feature is lower than that of the color feature. It indicates that the 
color is the most powerful feature for traversability classification. However, the major 
outcome of the experiment is that the performance of the color feature can be im-
proved by more than 6% with the help of the shape feature. Since ݓ௩௢௫௘௟  represents 
degree of contribution of shape feature, the best performance at ݓ௩௢௫௘௟ ൌ 0.7 indi-
cates that the shape feature contributes more to the classification task than color fea-
ture. Furthermore, the shape feature performs better than the saliency feature. The 
saliency feature is unusable in sparse unstructured environments since it is influenced 
by the local point density, while our proposed feature works well in sparse environ-
ments.  

Fig. 4 shows examples of traversability classification under different settings. As 
mentioned above, the performance of the voxelization method (Fig. 4(a)) is lower 
than the supervoxel method (Fig. 4(b)). Furthermore, we can verify that the combina-
tion of the shape feature (Fig. 4(d)) and color feature (Fig. 4(c)) offers excellent per-
formance improvements. The results clearly indicate that the supervoxel method  
and its histogram-type features could improve both the performance and accuracy of 
traversability classification in unstructured terrains. 

5 Conclusion  

In this paper, the performance and accuracy of traversability classification in unstruc-
tured terrains is improved in a number of ways. The supervoxel method, a new, fine-
grained voxelization method in sparse point clouds, is proposed for efficiently 
processing large amounts of point cloud data. Unlike traditional voxelization me-
thods, it has geometrical properties and is usable for sparse point clouds. This paper 
proposes a new histogram-type shape feature that incorporates consecutive point in-
formation. The experimental results show that both the supervoxel method and the 
shape histogram features are successful and show better performance in most cases 
than other state-of-art methods.  
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