
1

Selective Multi-Source Domain Adaptation Network
for Cross-Subject Motor Imagery Discrimination

Juho Lee*, Jin Woo Choi*, and Sungho Jo

Abstract—Discriminating motor imagery with electroen-
cephalogram (EEG)-based brain-computer interface (BCI) poses
a challenge as it involves an extensive data acquisition phase
that demands a substantial amount of effort from the user. To
address this issue, one approach is to use unsupervised domain
adaptation, where classification models are constructed using
data from multiple subjects, and only the unlabeled data from the
target user is used for model calibration. However, since brain
patterns from motor imagery vary between individuals, the relia-
bility of each subject must be considered when multiple subjects
are used to build the classification model. Thus in this paper,
we propose Selective-MDA that performs domain adaptation on
each source subject and selectively limits influences based on
their domain discrepancies. To evaluate our approach, we assess
our results with two public datasets, BCI Competition IV IIa
and the Autocalibration and Recurrent Adaptation datasets. We
further investigate the effect of source selection by comparing
the discrimination performance when different numbers of source
domains are selected based on discrepancy measures. Our results
demonstrate that Selective-MDA not only integrates multi-source
domain adaptation to cross-subject motor imagery discrimination
but also highlights the impact of source domain selection when
using data from multiple subjects for model training.

Index Terms—brain-computer interface, unsupervised domain
adaptation, motor imagery, electroencephalography, neural de-
coding.

I. INTRODUCTION

BRAIN-computer interfaces (BCIs) provide direct interac-
tion between the human brain and external devices by

decoding neural signals into control commands [1]–[5]. As
one of the non-invasive methods to acquire real-time signals,
electroencephalogram (EEG) is widely measured in BCIs by
placing a set of electrodes on the scalp [6]. In the case of
motor imagery-based BCI systems which map imagination of
different body movements to control modalities, discriminating
intentions are possible even without additional stimulus [7].
Unlike other paradigms, such as P300 [8], [9] or steady-
state visually evoked potentials (SSVEP) [10], [11], which
distinguish evoked responses from the brain caused by visual
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stimulants, motor imagery utilizes oscillatory neural signals
from the user’s imagination. As motor imagery of different
body movements exhibits a decrease in neural oscillation from
different regions within the sensorimotor cortex, spectral and
spatial features from brain signals play an important role in
motor imagery discrimination [12], [13].

Extraction of discriminant spectral and spatial features from
EEG signals has therefore been an essential component for
decoding motor imagery with machine learning methods [14]–
[16]. One of the representative methods is filter-bank common
spatial pattern (FBCSP) [17], which applies multiple common
spatial pattern (CSP) algorithms with varying frequency bands.
As an extension to the CSP algorithm, which acts as a
spatial filter that maximizes discrimination between features,
FBCSP uses multiple pre-defined frequency bands to further
consider spatial features within different spectral slices. To
overcome the usage of such hand-crafted features and to
extract more diverse spatial and spectral features, deep learning
methods were also explored [18]–[20]. Previous studies have
suggested motor imagery classification models by designing an
architecture that behaves similarly to machine learning models.
For instance, Schirrmeister et al. [21] proposed an end-to-
end Shallow convolutional neural network (Shallow ConvNet)
model composed of a sequence of convolutional layers indi-
cating spectral and spatial feature extractions inspired by the
FBCSP algorithm. Furthermore, Lawhern et al. [22] proposed
a convolutional neural network (CNN) model that extracts
frequency-specific spatial features and utilizes compact archi-
tecture to lessen the number of trainable parameters.

While the aforementioned studies contributed largely to the
enhancement of motor imagery discrimination, applying such
models alone to BCI applications still faces challenges as
they exhibit low accuracies in cross-subject performance [23],
[24]. Even though the models may be trained using data from
multiple other subjects, variations in brain signals between
individuals cause mismatch in data distributions between the
source and target domains, resulting in low classification
performance for the data from the target subject. Although
the ideal cross-subject scenario would involve the model not
utilizing any data from the target subject, it is still essential to
have a considerable amount of information regarding the target
domain in order to preserve the model’s performance. Thus
as an alternative way, prior studies have used transfer learning
and domain adaptation techniques to effectively utilize labeled
data from other subjects in combination with labeled data
from the target subject, in order to compensate for limited
availability of data from the target subject [25]–[27].

Taking a step further, unsupervised domain adaptation has
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recently gained attention for solving domain shifts, as it does
not require data labels from the target domain. This approach
has been successfully applied in various fields, such as seman-
tic segmentation and gesture recognitions using electromyog-
raphy (EMG) signals [28]–[30]. Similar to other fields where
obtaining labeled data poses significant challenges, collecting
labeled brain signals for different motor imagery also requires
a substantial amount of repetitive tasks to be performed by
the user. Such procedures can be time-consuming and labor-
intensive to both users and experts, as it involves following
or instructing specific tasks and carefully inspecting the brain
signals associated with each motor imagery label. Taking it
into account, previous studies have developed unsupervised
domain adaptation methods for BCIs and applied them to
session-to-session problems, showing its potential to address
cross-subject issues as well. These previous instances include
Conditional Adversarial Domain Adaptation Neural Network
(CDAN) [31] and Dynamic Joint Domain Adaptation Network
(DJDAN) [32], which uses a gradient reversal layer (GRL) to
learn commonly elicited features while reducing data discrep-
ancy. Such unsupervised methods were investigated with the
goal of making the signal acquisition procedure for new BCI
users a simple calibration process rather than data collection
that involves multiple repetitive tasks.

When dealing with unsupervised domain adaptation using
motor imagery data from multiple subjects, extracting infor-
mative features can become a much more complex issue [33].
This is due to the fact that subjects may not be equally reliable
and their data distributions may also differ, while data labels
for the target subject are not available [34], [35]. Hence,
adjusting the influences of each source domain may be a
fundamental component in multiple source domain adaptation
for cross-subject classification. Thus, in this paper, we propose
a selective multi-source domain adaptation network (Selective-
MDA) that can perform domain adaptation by considering
the domain from each source subject separately along with
their importance. Our Selective-MDA consists of two ma-
jor ideas: a multi-source domain adaptation approach and a
source-selective method. In order to utilize EEG signals from
multiple subjects, the proposed network considers multiple
sets of domain classifiers where each domain classifier treats
each individual source subject. Furthermore, we investigated
the effect of our source-selective method by comparing the
discrimination performance of selecting different numbers of
source domains along with their discrepancy measures on each
epoch. To validate our method, we compared the performance
with existing MI models and investigated the change in
accuracy for the number of selected source subjects.

II. RELATED WORKS

Domain adaptation techniques have recently been handled
with deep learning for BCIs in order to further extract features
that are relevant to motor imagery. In cases where domain
shifts are observed between source and target domains, domain
adaptations utilize informative features from source domains to
reduce time consumption for calibration. One of the frequently
used methods to apply domain adaptation to EEG signaling is

adversarial learning, which employs a domain discriminator
along with a feature extractor to learn both the features
from the domain and the features for classification. One
such example includes the bi-hemisphere domain adversarial
neural network (BiDANN) from Li et al., which applied
adversarial learning for EEG-based emotion recognition in
order to enhance the generality of the model and improve
subject-independent classification [36]. Previous studies have
also utilized adversarial learning for motor imagery classifi-
cation. Two of the representative works include CDAN and
DJDAN, an aforementioned model for domain adaptation
based motor imagery classification [31], [32]. To be specific,
the CDAN model utilizes a densely connected ConvNet model
to first extract high-level discriminative features from the EEG
signal, and uses a domain discriminator as an adversarial
with the motor imagery classifier to learn domain-invariant
EEG features. Within this phase, GRL is applied in the
discriminator to reverse the gradient during back-propagation
by multiplying with a negative value, thereby minimizing the
classifier model from learning EEG signals from domains.
DJDAN, on the other hand, utilizes a feature extractor similar
to Shallow ConvNet and uses two different discriminators:
a global discriminator that discriminates domain features by
classifying between source and target domains, and a local
discriminator that behaves similarly to the global discriminator
but uses an additional estimation of confidence levels from the
motor imagery classification results. The aforementioned ar-
chitectures are designed as a single-source domain adaptation
format, where a single discriminator is used to learn domains
from sources.

To consider data from multiple domains, recent studies in
various other fields have used multiple source domain adapta-
tion to learn features that are related to classification tasks and
invariant to multiple domain shifts. For instance, Zhao et al.
proposed multi-source domain adversarial networks (MDAN)
for sentiment analysis and image classification, which perform
domain adaptation by optimizing and learning task-adaptive
generalization bounds [37]. Unlike other previous domain
adaptation models that utilize gradient reversal with a domain
discriminator that manages all source domains, MDAN archi-
tecture employs multiple domain discriminators where each
discriminator represents a single domain label. As another
example, work from Guo et al. developed a DistanceNet
model for text classification, using distance measures that
differentiate samples between different domains and applying
the measure to the loss function [38].

In light of the effects of adversarial learning techniques
for EEG signals and multiple source domain adaptation from
various fields, the aim of our model is to apply multiple source
domain adaptation for cross-subject motor imagery classifica-
tion. Inspired by DJDAN and MDAN models, our Selective-
MDA uses multiple domain discriminators with high-end
EEG features from the ConvNet model. To select subjects
whose domains showed better adaptation to those of the target
subject, we further hypothesized that subjects with greater
loss from the domain discriminator, which may imply that
their domains are not distinguishable from the target domain,
would reflect such an aspect. To explore our hypothesis, we
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Fig. 1. The overall architecture of our Selective-MDA model. The model is composed of a feature extractor, a label classifier, and multi-domain discriminators.
The sizes for the convolutional and pooling parameters used for the feature extractor are indicated on each layer.

investigated such matters by comparing results when selecting
varying numbers of subjects as source domains based on the
loss from the domain discriminator of each subject.

III. METHODS

A. Definition and Notations

Suppose that the raw EEG data for training the model
is denoted as (xT

k,i, y
T
k,i), where x is EEG data from a

training session T , k indicates a specific subject, and i
represents a single EEG trial. A single EEG data from a
trial is represented as xT

k,i ∈ RNc×Nt , where Nc and Nt

indicate the number of channels and time sampling points
for EEG acquisition, respectively. The label from a trial is
represented as yTk,i ∈ RNl , where Nl indicates the number
of total labels. As for our domain adaptation, we denote a
source domain as Ds = {{(xT

k,i, y
T
k,i)}

nt
i=1}k∈Ss , where nt

is the number of EEG trials and Ss represents the set of
subjects within the source domain. A target domain, which
would be used for unsupervised adaptation, is denoted as
Dt = {{(xE

k,i}
nt
i=1}k∈St , where E is a symbol for the testing

session of the EEG data and St represents the group of target
subjects. Note that the target domain would only contain a
single subject per single accuracy measure, therefore St would
represent a group with a single subject value. Furthermore,
label information from the target domain is not used to train
the model.

B. Selective Multi-Source Domain Adaptation Architecture

The overall architecture of our Selective-MDA targeting
for multiple source domain adaptation for EEG is shown in
Figure 1. The architecture comprises three main components
designed with inspiration from domain-adversarial training: a
feature extractor, a label classifier, and multi-domain discrim-
inators [39]. Our model first takes EEG signals as inputs and
learns discriminant features with a feature extractor on both
source and target domain data. The classifier of the model
consecutively receives the extracted features and predicts the

motor imagery label. Multi-domain discriminators, a set of
domain discriminators assigned to each source-target pair, are
followed after the classifier to determine whether the features
belong to a source or target domain. Such a source-target pair
design is utilized not only to address multiple source domains,
but also to leverage their outcomes for our source selection
approach. A gradient reversal layer is applied to each domain
discriminator to prevent the extracted features from carrying
discriminant information about the source or target domain.
These overall components make the feature extractor extract
domain-invariant features, making it difficult for the domain
discriminators to determine whether the features are from the
source or target domain [40].

1) Feature Extractor: The feature extractor in our model
aims to learn class-discriminative features of each individual
subject composing the source domains, extracting domain-
invariant features for motor imagery. The feature extractor
used for our model learns both oscillatory and spatial neural
patterns by applying the Deep ConvNet structure, one of the
widely used models for motor imagery classification [21].
Deep ConvNet hires a dense and deep architecture to contain a
variety of features. Specifically, the input signal x ∈ RNc×Nt

for our model is first extracted into spatio-spectral features by
going through a sequence of one-dimensional temporal and
spatial convolutional layers. Followed by batch normalization,
exponential linear unit (ELU) activation, max pooling and
dropout, the features are further extracted while preventing
overfitting. As deep ConvNet employs dense and deep ar-
chitecture inspired by the field of computer vision, three
additional blocks containing a convolutional layer, a batch
normalization layer, an ELU activation, a max pooling layer,
and a dropout layer are utilized to extract features of EEG
data without overfitting. As we train both data from source and
target domains to the feature extractor, feature representations
from source and target domains noted as fT and fE are
obtained as a result from xT and xE , respectively.

2) Classifier: The classifier model takes the output from the
feature extractor as input. For both features from source and
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Fig. 2. The architecture of our multi-domain discriminators. Per a single
source domain, a conditional discriminator and a marginal discriminator are
employed to learn conditional and marginal domain-related classifiers that
determine whether the extracted feature belongs to either source or target
domain.

target domains fT and fE , a convolutional layer is applied for
motor imagery label prediction. To be specific, a convolutional
layer results in an output p ∈ RNl after softmax activation,
where each cell represents the probability of the corresponding
label. Thus, pT and pE are the output for source and target
domains in the classifier.

As label information is required to train the classifier, data
from target domains are not considered in calculating the loss
function regarding the classifier. Thus, the loss for the classifier
is measured with source domain information represented as
follows:

Lk
clf (θf , θclf ) = E(xT

k,i,y
T
k,i)∼Ds

L(pTk,i, y
T
k,i) (1)

where θf and θclf represent the model parameters for the
feature extractor and classifier, respectively, k represents a
specific subject, the function L indicates the cross-entropy loss
function, and the indication E stands for the expected value.
The number of calculated losses for classification is equal to
the number of subjects forming the source domain.

3) Multi-domain Discriminators: As considering only the
marginal distribution may still lead to discrepancies in the
class-conditioned distribution [41], our model employs multi-
domain discriminators that contain two different domain dis-
criminator types for each single source domain: a marginal
discriminator and a conditional discriminator, as shown in
Figure 2. To be specific, a marginal discriminator takes in
the extracted feature directly and the conditional discriminator
uses a weighted feature computed from the extracted feature
and the estimated label probability distribution. By considering
conditional distribution alongside marginal distribution in the
unsupervised domain adaptation, the model aims not only
to align overall source and target distributions but also to
align data from the same motor imagery class in the source
and target domains considering the predicted labels from

the classifier [32], [42]. Suppose that there is a total of k
number of source domains, where each domain represents a
single subject. There would thus be k number of the marginal
discriminator and k conditional discriminators in the multi-
domain discriminators.

The marginal discriminator accepts features from the fea-
ture extractor after going through a GRL, which makes the
feature extractor learn domain-invariant features by inverting
the gradient. The marginal discriminator is composed of a
convolutional layer with softmax activation, which outputs two
cells. The resulting two cells correspond to the probabilities
of the feature being from the source and target domains,
respectively. The loss of each marginal discriminator of a
source domain is calculated as below:

Lk
md(θf , θmd) = ExT

k ∼Ds
log[Mk(f

T
k )]

− ExE
k ∼Dt

log[1−Mk(f
E
k )] (2)

where Mk corresponds to the marginal discriminator for
the source domain k. Similar to the loss calculations from
the classifier, the loss of the marginal discriminator is also
measured for each source domain.

The conditional discriminator utilizes a refurbished feature
represented by the product of the extracted features and the
predicted probability. The conditional discriminator behaves
similarly to the marginal discriminator, except for different
inputs. The loss of each conditional discriminator of a subject
within each label is therefore measured as follows:

Lk,l
cd (θf , θcd) = ExT

k ∼Ds
log[Ck(p

T
k,l ⊗ fT

k )]

− ExE
k ∼Dt

log[1− Ck(p
E
k,l ⊗ fE

k )] (3)

where Ck corresponds to the conditional discriminator for a
source domain k, and pk,l is the probability predicted by the
classifier for label l from the source domain k. The refurbished
features p ⊗ f embed discriminant information along with
features by applying a product operation to the classifier
results.

Both marginal and conditional domain distributions are
considered using the above two types of discriminators. For
multiple source adaptation, we applied two discriminators per
source domain. Thus, the target domain was compared with
each source domain, forming discriminators on an individual
basis.

C. Source-Selective Method

Source subjects that are irrelevant or adversarial to the target
subject may cause degradation of classification performance
[43]. Recent studies in computer vision have addressed that
considering the discrepancy of source and target domains by
assigning weight or choosing source data that better align with
the target domain may improve the model’s performance [44],
[45]. Taking such factors into account, our approach utilized
a source-selective method that calculates the overall loss by
selecting the source domains considered important at each
epoch, as shown in Figure 3. The selection metric for our
method prioritizes subject domains with higher conditional
domain discriminator loss, which indicates that their learned
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Fig. 3. A brief description regarding the source-selective method on Selective-
MDA. The switches during backpropagation and gradient reversal backpropa-
gation indicated in blue and red, respectively, are closed only on the selected
subjects.

domain features are less distinguishable from the target do-
main, implying greater similarity between source and target
distributions. While both marginal and conditional discrimi-
nators were used to align the distributions after selecting the
source domains, the selection process was performed based
on the conditional discriminator loss. With this approach,
our model aims to select source domains that possess motor
imagery class-conditioned distributions more similar to the
target domain, which is in line with our primary objective
of enhancing motor imagery classification performance.

Assuming that the number of subjects for source domain
formation is Ns, then Ns number of subjects with the highest
conditional discriminator loss from the previous training epoch
are chosen to be considered as source domains. Thus, a set of
selected source domains is defined as below:

Ssub = argmax
S′⊂Ss,|S′|=Ns

∑
k∈S′

Nl∑
l=1

Lk,l
cd (4)

D. Optimization

Similar to the DJDAN model [32], we compute a dynamic
adversarial factor ω of each selected source domain by em-
ploying the H-distance for marginal and conditional distribu-
tion discrepancies with the following equations, respectively:

dk∈Ssub,H,md(Dk, Dt) = 2(1− 2ϵm)

dk∈Ssub,H,cd(Dk, Dt) =
1

Nl

Nl∑
l=1

2(1− 2ϵlc)
(5)

where ϵm represents the error rate from classification for the
marginal discriminator, Dk indicates samples from a specific
source domain k, and ϵlc is the error rate for the conditional
discriminator loss over the specific label l.

The ω of the selected source domains are therefore calcu-
lated with the following:

ωk∈Ssub
=

dk,H,md(Dk, Dt)

dk,H,md(Dk, Dt) + dk,H,cd(Dk, Dt)
(6)

As we have the loss values on each selected source domain
from the classifier, the marginal discriminator, and the condi-
tional discriminator, the final loss for a single source domain
is therefore determined with the formula below:

Lk∈Ssub

sub (θf , θclf , θmd, θcd) = ωkL
k
md+(1−ωk)

Nl∑
l=1

Lk,l
cd (7)

To further adapt the multiple numbers of domains selected
for our model, we compute the overall loss of the model by
using the following equation:

Loverall =
1

γ
log

∑
k∈Ssub

exp(γ(Lk
clf − αLk

sub)) (8)

where γ > 0 and α > 0 are constants. Thus, the final
loss for the model is measured by restraining losses from
subjects neglected from domain selection. As our source
selection method determines subjects with loss measures of
the conditional discriminator from the previous epoch, source
selection was not applied on the very first training epoch and
all source subjects were used to formulate the source domains.

In order to learn domain-invariant features, the parameters
of the feature extractor must be updated to predict the source
subject’s motor imagery label and not to distinguish domains.
Thus, θf and θclf are trained to minimize the overall loss,
and θmd and θcd are trained to maximize the overall loss.
Each parameter of the model is updated as below:

(θ̂f , ˆθclf ) = argmin
θf ,θclf

L(θf , θclf , ˆθmd, θ̂cd)

( ˆθmd, θ̂cd) = argmax
θmd,θcd

L(θ̂f , ˆθclf , θmd, θcd)
(9)

Thus, the aim of the model is to train the feature extractor in
such a way that the discriminators would be unable to classify
whether the output feature is from the source or target domain.

IV. EXPERIMENTS

A. Dataset

To evaluate our Selective-MDA, we used two public datasets
widely used for motor imagery classification: Dataset IIa of
BCI Competition IV [46] and Autocalibration and Recurrent
Adaptation dataset [47].

1) Dataset IIa of BCI Competition IV: The dataset, which
we will refer to as BCICIV, is acquired using 22 electrode EEG
positions from a total of nine healthy participants. Each par-
ticipant underwent two different experiment sessions held on
different days. For each experiment session, participants were
to perform one of the four motor imagery tasks depending on
the visual cue, where the four motor imagery tasks included
left hand, right hand, tongue, and feet movements. The signals
were sampled at a 250 Hz frequency rate. Each motor imagery
task was performed for 72 trials per experiment session. Of
the two sessions from each participant, former session data
from source subjects was used as training data representing
the source domain, while the latter session data from the target
subject was used as test data representing the target domain.
Specifically for the four motor imagery classification, a total

This article has been accepted for publication in IEEE Transactions on Cognitive and Developmental Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCDS.2023.3314351

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on September 15,2023 at 00:57:26 UTC from IEEE Xplore.  Restrictions apply. 



6

of 576 trials per motor imagery from 8 source domains were
used as a training dataset and 72 trials per motor imagery from
a single target domain were used as a test dataset.

2) Autocalibration and Recurrent Adaptation Dataset:
This dataset, which we will refer to as ARA, is retrieved
using 13 electrode EEG positions from a total of 12 able-
bodied, BCI-novice volunteers. At least two sessions were
conducted for each participant, and one additional session was
recorded for participants who did not reach the criterion level
from the previous two sessions. We only used the first two
sessions for our experiments. For each experimental session,
participants were to perform one of the two motor imagery
tasks, right hand and both feet movements, based on visual
cues. The signals were sampled at a 512 Hz frequency rate.
Each motor imagery task was performed for 100 trials per
experiment session. We decided to use the first session of each
participant as training data representing the source domain and
the second session as test data representing the target domain.
The third session was ignored. Thus with two motor imagery
classification, 11 source domains from a total of 1100 trials per
motor imagery were used as a training dataset, while a single
target domain composed of 100 trials per motor imagery was
used as a test dataset.

B. Signal Pre-processing

The datasets used were band-pass filtered from 4 to 38 Hz
to include frequency band ranges relevant to motor imagery,
taking into account previous studies [21], [32]. For each motor
imagery trial, 0.5 seconds prior to the motor imagery cue to
4 seconds after the cue, corresponding to a 4.5-second EEG
data per trial, was used for motor imagery data. In order to
increase the data used for training and evaluation, each motor
imagery trial was cropped with a 4-second sliding window
with a stride of 0.5 seconds.

C. Experimental Models

In order to investigate the performance of our multi-source
domain adaptation approach and our Selective-MDA, we com-
pared the model performances with five different state-of-the-
art deep learning models, where two of which include domain
adaptation approaches on the architecture. Brief descriptions
regarding the five models are noted as follows:

• Shallow ConvNet [21]: Inspired by the FBCSP algorithm,
this model aims to strengthen discrimination by extracting
features regarding oscillatory signals. The architecture
of the model is comprised of temporal and spatial con-
volutional layers followed by a squaring non-linearity

activation, an average pooling layer, and a logarithmic
activation to formulate log-variance measurements from
FBCSP.

• Deep ConvNet [21]: This model focuses on the depth
of the model to extract a wider range of features. The
architecture starts with oscillatory feature extraction with
a convolutional layer. The architecture further consists of
four blocks in a sequence composed of a convolutional
layer and a max pooling layer, with batch normalization
and exponential linear unit activation (ELU) in between.
A dropout is applied lastly on all four blocks.

• EEGNet [22]: This model focuses on the compactness
of the model to lessen the number of parameters to
be trained. The model utilizes depth-wise and separa-
ble convolutional layers after temporal convolution to
achieve compactness, and the ELU activation and average
poolings are used to learn and merge spatial features
corresponding to the spectral features.

• CDAN [31]: The model utilizes a domain adaptation
method that aims to match conditional distribution be-
tween the source and target domains. The model consists
of a feature extractor composed of a Dense ConvNet
architecture followed by a classifier and a domain dis-
criminator.

• DJDAN [32]: The model employs domain adaptation
to adjust conditional and marginal distributions between
the source and target domains. The model contains a
Shallow ConvNet-based feature extractor, a classifier, and
a domain discriminator that considers conditional and
marginal features.

D. Evaluation

To first evaluate whether our multiple source domain adapta-
tion architecture may enhance performance on motor imagery
discrimination, we compared the accuracy of our Selective-
MDA with the aforementioned state-of-the-art models. When
measuring the accuracy, source and target domains were
composed only with the dataset from training and testing
sessions, respectively. The evaluation accuracy was measured
with a leave-one-out cross-validation, where a single subject
was used as a target domain while the remainders were used
as source domains. Since there are 8 and 11 subjects for the
source domain for the BCICIV and ARA datasets, respectively,
we applied 8 and 11 different domain discriminators for
comparison throughout epochs. Thus, source selection was
not applied for comparison in the evaluation to explore the
performance of the architecture itself.

TABLE I
ACCURACY COMPARISON WITH STATE-OF-THE-ART MODELS

Datasets Models

Shallow Deep EEGNet CDAN DJDAN Ours W/O Selection

BCICIV 43.33±11.34 44.08±14.19 41.96±13.44 44.91±9.96 46.39±13.07 50.10±17.62

ARA 61.85±8.89 64.02±8.97 64.44±9.64 63.54±7.60 64.92±9.80 66.85±11.31
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Fig. 4. Bar plots showing the classification accuracy of each model for all subjects. The left plot is the result for the BCICIV dataset, and the right plot is
for the ARA dataset. The accuracy of our model refers to our multi-domain adaptation network without source selection. The error-bars refer to the standard
deviation of the accuracies.

To further investigate our hypothesis that source selections
based on domain similarity may improve cross-subject classi-
fication, we further evaluated the accuracy by taking a subset
of source domains during loss measure via source selection.
For each target domain, comparisons were made based on the
selected number of source domains.

E. Experiment Settings

The proposed experiments were held within the Python
framework, and the models were implemented with PyTorch.
The models were trained on NVIDIA GeForce GTX 1080 Ti
GPU with 11 GB Memory. An adaptive moment estimation
(ADAM) optimizer was used to learn the model with a
learning rate of 5e-4. In the case of CDAN, a stochastic
gradient descent (SGD) optimizer was used as mentioned in
the corresponding work. The used batch size varied between
datasets, which were set to 64 and 32 for BCICIV and ARA,
respectively. We also applied early stopping for our model
after 3000 epochs, where the training stopped when the loss
did not converge for over 20 consecutive epochs [48].

V. RESULTS

A. Accuracy Comparison without Source Selection

The accuracy results of our multiple source domain adap-
tation model without our source selection method and the
results of the state-of-the-art deep learning models are shown
in Figure 4 and Table I for both BCICIV and ARA datasets.
As shown in the figure and the table, the average accuracy was

the highest when using our multiple source domain adaptation
compared to the other five state-of-the-art models for the
two datasets, despite the source selection method not being
applied to the model. To be specific, our multi-domain adap-
tation network outperformed Shallow ConvNet, Deep Con-
vNet, EEGNet, CDAN and DJDAN with 50.10±17.62 for the
BCICIV dataset (43.33±11.34, 44.08±14.19, 41.96±13.44,
44.91±9.96 and 46.39±13.07 for Shallow ConvNet, Deep
ConvNet, EEGNet, CDAN and DJDAN respectively). As
for the ARA dataset, our model also showed greater aver-
age accuracy with 66.85±11.31, whereas Shallow ConvNet,
Deep ConvNet, EEGNet, CDAN and DJDAN exhibited the
average accuracy of 61.85±8.89, 64.02±8.97, 64.44±9.64,
63.54±7.60 and 64.92±9.80 respectively. Furthermore, the
accuracy results of each individual participant showed that
our domain adaptation model without source selection outper-
formed the rest of the models on five out of nine subjects for
the BCICIV dataset and five out of twelve for the ARA dataset.
CDAN and DJDAN had the greatest accuracy on two subjects
for BCICIV and four subjects for ARA, respectively, which
were the next models after our architecture without source
selection.

B. Accuracy Comparison with Source Selection

Table II and Table III show the accuracy results of subjects
when different numbers of source domains were considered for
the loss measure of each epoch for BCICIV and ARA datasets,
respectively, with values in bold indicating the maximum
accuracy exhibited from each subject. As for the BCICIV

TABLE II
MOTOR IMAGERY CLASSIFICATION ACCURACY RESULTS WITH SOURCE SELECTION FOR BCICIV DATASET

# Sources Subjects AVG
S1 S2 S3 S4 S5 S6 S7 S8 S9 Accuracy

1 59.20 28.65 61.81 36.81 24.65 26.39 46.53 62.85 40.45 43.04±14.48
2 66.84 27.26 66.84 42.36 26.39 30.21 60.07 66.15 48.61 48.30±16.43
3 63.54 26.22 63.89 39.58 33.33 38.02 59.38 70.49 55.21 49.96±14.93
4 68.75 25.35 68.06 47.74 30.38 35.94 59.20 75.35 56.25 51.89±17.02
5 69.97 27.78 66.67 49.83 25.00 38.37 53.65 72.22 60.93 51.60±16.78
6 74.65 27.60 62.67 45.31 27.08 36.11 44.27 70.31 58.68 49.63±16.77
7 70.66 30.03 66.32 43.23 25.00 36.81 53.65 70.14 58.68 50.50±16.43
8 67.71 27.60 74.48 41.15 25.00 36.63 50.17 71.18 56.94 50.10±17.62
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Fig. 5. Representative plots on the difference in accuracy when different numbers of sources were considered on each epoch for our Selective-MDA.

dataset, the results indicate that limiting the number of source
domains to be used for loss calculation further improved the
performance of the model, with eight out of nine subjects
showing further improvement compared to when all subjects
were continuously used to measure the loss on each epoch.
Also for the ARA dataset, nine out of twelve subjects exhibited
further improvement in their accuracy when source selection
was used to limit the number of source domains to be
considered for the loss calculation on each epoch.

The average accuracy of subjects was also analyzed to ex-
plore limiting the number of source domains of our Selective-
MDA to which extent may provide the best model perfor-
mance on the two used datasets. As can be seen from both
Table II and Table III, the change in the average accuracy
with respect to the number of source domains used for the
loss measure of each epoch exhibited similar patterns on

the two datasets. In the case of the BCICIV dataset from
Table II, the average accuracy improved when more source
domains were considered until it peaked at around half of
the total source subjects (when 4 sources were considered on
each epoch, average accuracy of 51.89±17.02), and showed a
slight decrease thereafter with average accuracy not exceeding
the former peak accuracy. Similarly for the ARA dataset
from Table III, the average accuracy showed its improvement
until half of the total source subjects (when 6 sources were
considered on each epoch, average accuracy of 67.04±11.29),
and did not further improve when more source domains were
considered. Using the source selective method while limiting
the number of considered sources to half of the total number of
source domains on each epoch had the best average accuracy
on both datasets, additionally improving the performance of
our multi-source domain adaptation with 1.79 and 0.19 average

TABLE III
MOTOR IMAGERY CLASSIFICATION ACCURACY RESULTS WITH SOURCE SELECTION FOR ARA DATASET

# Sources Subjects AVG
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 Accuracy

1 62.25 58.25 51.25 79.5 51.75 54.25 56.25 56.50 54.00 61.00 49.25 51.50 57.15±7.74
2 88.50 79.50 54.00 82.75 60.25 57.75 72.00 54.50 64.75 49.00 50.00 52.00 63.75±13.12
3 74.00 86.00 57.00 79.25 59.25 55.50 72.00 56.50 60.50 54.25 57.50 55.00 63.90±10.45
4 73.75 88.50 62.75 84.00 61.25 58.25 68.00 55.25 55.75 61.50 50.00 52.50 64.29±11.66
5 78.50 85.00 57.50 84.00 64.50 61.25 69.25 58.00 57.50 57.00 50.50 53.75 64.73±11.32
6 80.25 83.50 66.00 88.50 63.75 65.25 71.75 58.00 58.50 63.50 50.50 55.00 67.04±11.29
7 78.00 84.50 65.00 87.75 61.75 65.00 72.00 55.00 54.75 63.25 50.50 54.00 65.96±11.74
8 77.50 85.50 69.25 85.25 59.50 63.75 70.25 55.00 57.25 55.00 51.50 52.75 65.21±11.75
9 74.50 85.25 65.75 84.00 58.75 61.00 70.50 55.75 59.75 59.50 50.75 52.00 64.79±11.04

10 76.00 85.50 64.75 85.00 62.50 61.75 71.25 55.00 60.75 59.00 50.25 53.25 65.42±11.20
11 79.25 86.00 64.25 85.75 62.50 59.00 72.25 57.50 69.75 59.50 50.00 56.50 66.85±11.31
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accuracy increase for BCICIV and ARA datasets, respectively.
Moreover, when considering only the best accuracy from
each subject, which represents the case where an optimized
number for source selection was set individually on each
subject, the average accuracy enhanced up to 55.23±17.12
and 70.17±11.58 for BCICIV and ARA datasets, respectively,
showing 5.13 and 3.32 accuracy improvements compared to
when no source selection was used.

VI. DISCUSSION

The aim of our Selective-MDA is to extract domain-
invariant motor imagery-related features with the data from
multiple subjects. To prevent the feature extractor from learn-
ing domain-related features, we applied a multi-source domain
adaptation technique where two different domain discrimina-
tors were applied per each source subject. With two major
components of our study being 1) utilization of multi-source
domain adaptation where each individual source domain is
separately matched with the target domain and 2) application
of our source selection method that further limits the influence
of the data from the source domain which our model consid-
ered unreliable, we analyzed and compared our model with
other state-of-the-art models in a two-step manner. The results
from our experiment showed that even without our source
selective method, our multiple-source domain adaptation ap-
proach was able to outperform other existing models both from
average accuracy and from individual accuracy analysis. The
performance was further improved by additionally applying
our source selective method, which limits the number of source
domains for measuring loss on each epoch. Specifically, the
accuracy of subjects showed its greatest when the number of
source domains selected was nearly half the number of total
subjects, as can be seen in both used datasets (Figure 5). With
the improved accuracy when limiting the number of source
domains for loss calculation, our source selective domain
adaptation approach was able to further enhance our multi-
source domain adaptation architecture.

To explore whether the feature extractors were able to ex-
tract more discriminant motor imagery features when using our
Selective-MDA network, we investigated the effect of source
selection with visualization using t-SNE [49]. As seen in Fig-
ure 6 with the feature data of S8 and S6 as a representative plot
for BCICIV and ARA datasets, respectively, the distribution
of features was more discriminant within each motor imagery
task when the multi-source domain adaptations were used
without our selection method, compared to when no domain
adaptation was used. The feature distribution showed further
improvement when the selection method was further applied,
resulting in better discriminant feature distribution compared
to using the multi-source domain adaptation without our
selective method. Such results indicate that the multi-domain
discriminator of our model not only has supported feature
extractors to better extract discriminant features using domain
adaptation with gradient reversals, but also has prevented
itself from over-trusting the source domains by utilizing our
selective source method. Especially for classifying intentions
with bio-signals such as EEG, our results indicate that using

Fig. 6. Examples of t-SNE visualization from feature extractor on subject S8
(BCICIV) and subject S6 (ARA). Original represents feature distribution from
Deep ConvNet, which can be referred to as our model without any domain
discriminators.

all source domains may not always be beneficial as seen in
our study.

The average confusion matrix results in Figure 7 show
that our multiple-source domain adaptation techniques adjust
feature extractors to learn features more evenly through each
label. From the results of the BCICIV dataset seen in Figure 7,
the overall accuracy of classifying all four motor imagery
improved when using all source domains compared to when
the domain adaptation was not applied, with the accuracy
on each task being more evenly distributed. Such results
indicate that while using no domain adaptation techniques may
produce more biased features towards certain motor imagery
tasks, using multiple source adaptations may lessen such bias
occurrences. Furthermore from the results of applying our
source selective domain adaptations, the accuracy results for
all motor imagery tasks were enhanced compared to when
using both cases of when all source domains were utilized or
no domain adaptations were performed throughout learning.
As shown in the results of our study, source-selective domain
adaptation may lessen bias by preventing domain-wise features
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Fig. 7. A confusion matrix indicating grand average accuracy results for having each subject evaluated as a target domain. The results of when no source
subject was used for domain adaptation, using all subjects for loss measure of our domain adaptation, and using the optimal number of source subjects on
each epoch for loss measure are presented. The upper plots represent the results from the BCICIV dataset, and the lower plots represent the results from the
ARA dataset.

to be learned from the feature extractor.

Our study of EEG signals also showed a positive impact
of domain adaptation using deep learning, in accordance with
previous studies in computer vision. Work from Ganin et al.
[39] showed that decreasing both the risk from the source
domain and the H-divergence between the source and target
domains may possibly reduce the target risk in terms of
domain adversarial learning [50]. The feature extractor for
domain adversarial learning is thus trained in a way that label
classification performance on the source domain improves
while the discrimination between source and target domains
become more confused, leading to the extraction of domain-
invariant features. Additionally, recent studies suggest that
using the information from domain discriminators to prioritize
source data that is more aligned with the target domain can
further enhance the performance of tasks involving recognition
of digits, images, and objects [44], [45]. As the loss from
the domain discriminator provides information regarding the
discrepancy between the source and target domains’ feature
distributions [40], [51], [52], our approach for EEG data
selects source domains that show higher conditional domain
discriminator loss when paired with the target domain at each
epoch. By selecting source domains that are more difficult
for the domain discriminators to distinguish, Selective-MDA
aims to consider the similarity in distribution between source
and target domains. The effects of this approach can be
observed in our results. Our multi-source domain adaptation
improved cross-subject motor imagery classification accuracy
on two EEG datasets, even without source selection, showing

that utilizing the domain discriminator for each source-target
pair enhances model performance. By limiting the number of
source domains considered at each epoch, our source selection
approach could further improve the classification accuracy
of the model. The comparison of t-SNE visualizations also
provided instances that Selective-MDA were able to have
positive influence on the feature extractor by enhancing feature
distributions. Despite the inconsistent nature of EEG signals
between and within individuals due to various reasons such
as participants’ motor imagery performance or their ability to
elicit discriminant brain signals, our Selective-MDA results
show that the approach had a positive impact on the feature
extractor by considering relevant source domains for the target
domain.

There are existing limitations and future works to be held
on our study. While our Selective-MDA shows that limiting
the number of sources to be used on each epoch may enhance
domain adaptation, the number of subjects to be limited for
source domains vary depending on the target domain. Along
with the aforementioned limitation found in our study, further
improvements regarding the determination of the optimal
number of source subjects on each target domain may be
performed to strengthen the applicability of our proposed
method. Our selective method can also be improved with
other criteria rather than considering the relevancy of each
subject. In contrast to our model where a source domain
represents its corresponding subject, other unit measures such
as per trial or per task basis may be more suitable for source
domain composition. As motor imagery performances may
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even vary within individuals, additional studies investigating
various compositions regarding source domains for our selec-
tion method may be held. Optimization of the network volume
from the domain discriminators may also serve as one of
the future works to be considered. The domain discriminator
of our model is only used during model training aiming for
the feature extractor to learn domain-invariant features, and
the discriminators would not be used during its actual usage
meaning that the corresponding volume would not be used
during the testing phase. However, further attempts to lessen
the volume while preserving its effect may be helpful, as it
may lessen computation cost for model training. Lastly, future
attempts on improving our model architecture may be carried
out in advance. While our method determines the relevance
of a source domain mainly with the loss of the domain
discriminator, further consideration of other parameters or
additionally learning the correlations between the domains
may possibly improve the performance of the model.

VII. CONCLUSION

In this paper, we propose a selective multi-source domain
adaptation network that performs unsupervised domain adap-
tation on each and every source subjects, and selectively limits
their influences by restraining source domains with higher
discrepancies from loss measure on each epoch. The results
show that our proposed method of applying multiple domain
discriminators, where each domain discriminator learns the
domain features of each individual, improves classification
accuracy as well as the extraction of discriminant motor
imagery features. The source selection mechanism showed
further improvements when applied to our multi-source do-
main adaptation in the aforementioned aspects, presenting its
effectiveness for cross-subject motor imagery discrimination
when multiple subjects were used as source domains. With the
selective multi-source domain adaptation method in our study,
we believe that EEG data from other subjects may also be
harmoniously learned to extract motor imagery discriminant
features, increasing the amount of training data that can be
learned for the motor imagery classification model.
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