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ALIS: Learning Affective Causality Behind Daily
Activities From a Wearable Life-Log System

Byung Hyung Kim , Sungho Jo , and Sunghee Choi

Abstract—Human emotions and behaviors are reciprocal com-
ponents that shape each other in everyday life. While the past
research on each element has made use of various physiologi-
cal sensors in many ways, their interactive relationship in the
context of daily life has not yet been explored. In this work, we
present a wearable affective life-log system (ALIS) that is robust
as well as easy to use in daily life to accurately detect emo-
tional changes and determine the cause-and-effect relationship
between emotions and emotional situations in users’ lives. The
proposed system records how a user feels in certain situations
during long-term activities using physiological sensors. Based on
the long-term monitoring, the system analyzes how the contexts
of the user’s life affect his/her emotional changes and builds
causal structures between emotions and observable behaviors in
daily situations. Furthermore, we demonstrate that the proposed
system enables us to build causal structures to find individual
sources of mental relief suited to negative situations in school
life.

Index Terms—Affective causality, daily activities, EEG, emo-
tion recognition, lifelog, physiological signals, wearable.

I. INTRODUCTION

PEOPLE experience various emotions from a single event
in different situations. For instance, today’s coffee is not

always the same as yesterday’s coffee. The cup of coffee we
drank today may not be as enjoyable as the cup of coffee
we drank yesterday. While drinking coffee generally helps to
reduce a person’s stress, the stress-relieving effects of coffee
may vary from day to day for many reasons. For a person
who likes calm and quiet surroundings, a cup of coffee drunk
today in a crowded coffee shop with distracting background
noise is likely to be less enjoyable than a cup of coffee drunk
yesterday in the quiet kitchen of one’s own home. The lesson
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was stored in memory along with some affective residue asso-
ciating the unhappy emotion with the regretted, less enjoyable
coffee experience. Later, the affective residue became acti-
vated in a similar situation and led to a change in subsequent
behavior. This instance shows that a person can have differ-
ent emotional responses to the same life events in different
circumstances.

Why and how does a person experience various emotions
from a single event in different situations? Answering this
question could improve human life in a variety of ways, such
as by improving physical health. People with depression are
more vulnerable to heart disease than are people with no his-
tory of depression [1]. Therefore, discovering life elements
such as drinking coffee related to depression and offering
guidance to avoid such elements could help individuals prone
to depression to experience fewer depression-related issues.
In response to this question, the recent research on recog-
nizing the human affect has used a variety of physiological
sensors in many ways [2], [3]. Using these sensors, features,
such as heart rate (HR) variability, pulse oximetry, and gal-
vanic skin response, have been used to capture emotional
changes and thereby, help elucidate the etiology of mental
health pathologies such as stress.

However, discovering the process of human affect and
action in different situations in daily life has not yet been
explored. In our study, understanding this process in daily
life primarily refers to analyzing how affective residue shapes
behavior in everyday life. The human affect may often be
sufficient to guide the current behavior. All daily activities
(habitual, familiar, or new) that involve emotional outcomes
leave affective residue within the individual. The individual
then anticipates possible emotional outcomes and behaves
accordingly. The affective residue provides the impetus to sup-
port future behavior change [4]. Hence, the affective residue
of prior emotional outcomes is likely to contribute to the pro-
cess of human affect and action in daily life. To understand
this process, it requires understanding the affect-elicitation
mechanisms and their effect on emotional responses.

There are two main challenging problems in real-world
environments as follows.

1) Limited and Unbalanced Labeling Problem in Emotion
Recognition (C.1): First, obtaining accurate affect recog-
nition is extremely challenging when physiological sig-
nals accompany unreliable labels. Most studies [5]
have been limited to laboratory environments assessed
by self-report tools [6] or specialized questionnaires.
However, these methods only provide evidence of
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the immediate affect from a single event and per-
mit only limited understanding of affective dynam-
ics. Furthermore, in real-world scenarios, only a few
labels are available when humans rate their emotions
in indoor environments using self-report tools such as
self-assessment manikin (SAM) [6]. The limited and
unbalanced class labels deteriorate the performance of
classifiers in a broad range of emotion classification
problems.

2) Sparsity Problem in Affective Causality Identification
(C.2): It is unclear whether affective causality exists in
real-world situations, during which a user encounters life
events and behaves over extended temporal sequences.
In general, it is challenging to identify causal direc-
tion and discover the influence of latent factors, as the
human affect is usually influenced by various complex
and subtle factors in daily life.

To solve these challenges, we introduce a wearable affec-
tive life-log system (ALIS), which helps to bridge the gap
between the low-level physiological sensor representation
and the high-level context-sensitive interpretation of affect.
Notably, ALIS aims to determine affective causality by analyz-
ing two-channel EEG and photoplethysmogram (PPG) signals
together with visual life-content encountered in various affec-
tive situations, such as hanging out with friends and reading
books.

Most EEG-based emotion recognition systems have
extracted and selected EEG-based features through elec-
trode selection based on neuroscientific assumptions [7]–[12].
Emotional states can be well differentiated by assessing frontal
EEG asymmetry, and a multidimensional directed-information
approach to causality between right and left hemispheres has
revealed emotional lateralization in the frontal and tempo-
ral lobes [13]. Despite the low-spatial resolution of EEG, its
very high temporal resolution, noninvasiveness, and mobility
are valuable in real-world environments [14]–[17]. EEG-based
emotion recognition systems have often shown improved
results when different modalities were used [13], [18]–[20].
Among the many peripheral physiological signals, PPG, which
measures blood volume, is widely used to compute HR.
Although its accuracy is considered lower than that of electro-
cardiogram (ECG), due to its simplicity, PPG has been used
to develop wearable biosensors for clinical applications, such
as detecting mental stress in daily life [21]. HR, as well as HR
variability (HRV), has been shown to be useful for emotion
assessment [22]–[24].

Without loss of generality, we treat the affective causal-
ity problem as a combination of two-stage problems. The
first stage is the affect recognition problem. Given physio-
logical signals, the proposed ALIS is built upon our previous
work on recognizing the human affect, namely, a deep phys-
iological affect network (DPAN), whose outputs are discrete
valence and arousal values on the affect dimension, underlying
emotional lateralization and HRV [13]. Although DPAN has
merit for discriminating physiological signals associated with
different valence and arousal labels, nontrivial and challeng-
ing issues exist when the model is applied to demonstrate its
efficacy in daily life (i.e., various noises, low signal-to-noise

ratio (SNR) of physiological signals, intersubject and intrasub-
ject variability, and usability). To alleviate these issues, ALIS
comprises a subnetwork, which learns to reduce label noise
and predict more accurate labels. The proposed physiolog-
ical affect network learns affective dynamics with minimal
supervision. Unlike previous works [5], [25] that focused on
a specific personalized assessment for every event, our model
captures affective states and continuously traces their changes,
exploiting unlabeled and unbalanced real-world data through
semisupervised learning.

The second stage is the affective causality learning problem.
The problem is formulated as a graph to derive causality by
analyzing affective changes and the user’s relevant situations.
The computation is based on conditional independence testing
to detect the relationship with latent confounders underlying
the two observational sequences. We present an asymmetric
measure by which the causal relationship is identified between
the affective content and human emotion in daily life. The
model for the first time allows users to understand when,
what, and how their surroundings affect them unconsciously
in their daily life. Understanding the causal direction is essen-
tial to predict the consequence of any intervention from a
group of observation samples, and is critical to many applica-
tions, including within biology and social science [26]–[29].
We note that causal learning is different from mainstream sta-
tistical learning methods in that the former aims to discover
the data-generation mechanism instead of characterizing the
joint distribution of the observed variables; this represents
the most significant difference between causality and corre-
lation. Discovering the emotional influence has been a focus
for testing whether the affective correlation exists in real-world
applications [27]–[30].

We examined the robustness of the proposed ALIS when
applied to two datasets: 1) a public dataset and 2) a synthetic
dataset, for the quantitative evaluation of affect recognition
(C.1) and causality identification (C.2). By applying our
proposed model to real-world scenarios, the results show that
our approach is able to find meaningful causal connections
between emotions and behaviors by tracking how affective
residue shapes behavior, even in the presence of confounder
variables that potentially affect human emotions and behaviors.

The remainder of this article is organized as follows.
Section II presents the problem formulation of modeling affec-
tive causality in daily life and covers the preliminaries of
our previous work and causal inference. In Section III, we
present our system, describing the system design and frame-
work. Sections IV and V evaluate our system on synthetic,
public, and real datasets. Finally, we conclude this article with
a discussion of future work in Section VI.

II. PRELIMINARIES

A. Problem Statements

Our goal is to determine affective causality in daily life
by analyzing emotional states and life contents encountered
in various situations. We present the problem formulation
of modeling the causal relation between life contents and
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emotional changes in the proposed ALIS. Without loss of gen-
erality, we treat the problem as a combination of two-stage
problems. The first stage is the emotion recognition problem.
Given physiological signals, the problem is the identification
of the correct emotional state as

ŷ = argmaxy∈YP(y|X1,X2, . . . ,Xt) (1)

where Xt is a segment of physiological signals at time t∈T and
Y is the set of emotional states, such as happiness, surprise,
anger, fear, and sadness.

The second stage is the affective causality learning problem.
The problem is formulated as a graph

G = (M, C, E) (2)

where M ∈ R
Ns×Ne×T is the emotion occurrence tensor, Ns is

the number of situations, and Ne is the number of emotional
states. C ∈ R

Ns×Nc×T is the life contents occurrence tensor,
where Nc is the number of contents and eij ∈ E indicates the
affective causal effect of sequence Ci on sequence Mj.

B. Deep Physiological Affect Network for Recognizing
Human Emotions

DPAN describes affect elicitation mechanisms used to detect
emotional changes reflected by physiological signals. It takes
two-channeled EEG signals underlying brain lateralization and
a PPG signal as inputs and outputs a 1-D vector represent-
ing emotional states scaled from 1 to 9. Suppose that DPAN
obtains the physiological signals at time N over a spectral-
temporal region represented by an M × N matrix with P
different modalities. From the two modalities of EEG and PPG
sensors, physiological features Bt and Ht are extracted from
the respective sensors as follows:

Bt = ξrl ◦ (ζl − ζr)

(ζl + ζr)
(3)

where “◦” denotes the Hadamard product. [(ζl − ζr)/(ζl + ζr)]
represents the spectral asymmetry and the matrix ξrl is the
causal asymmetry between the r and l EEG bipolar channels.
The brain asymmetry feature Bt describes the directionality
and magnitude of emotional lateralization between the two
hemispheres.

DPAN extracts the HR features Ht over the M×N spectral-
temporal domain, where frequencies with peaks in the PSD
of the PPG signal are regarded as candidates of the true HR
from the PPG signal Pt at each time frame t. These data form
a candidate set over time. The observation at a given time
can then be represented by a tensor X ∈ R

M×N×P, where
R denotes the domain of the observed physiological features.
Then, the learning problem is the identification of the correct
class based on the sequence of tensors X1,X2, . . . ,Xt

ŷ = arg max
y∈Y

P(y|X1,X2, . . . ,Xt) (4)

where Y is the set of valence-arousal classes. Fig. 1 shows
the entire overview of DPAN for the recognition of emotions.
To solve the learning problem, DPAN feeds spectral-temporal
tensor-based physiological features into ConvLSTMs to com-
pute affective scores of emotions via the proposed loss model,

temporal margin-based loss (TM-loss). The proposed TM-loss
aims to learn the progression patterns of the emotions in train-
ing for developing reliable affect models. The TM-loss is a
new formulation based on the temporal margin between the
correct and incorrect emotional states. The reasoning for using
the formulation is as follows.

When more of a particular emotion is observed, the
model should be more confident of the emotional elici-
tation as the recognition process progresses.

The function constrains the affective score of the correct
emotional state to discriminate its margin, which does not
monotonically decrease with all the others while the emotion
progresses

Lt = − log st(y)+ λ max

(
0, max

t′∈[t0,t−1]
mt′(y)− mt(y)

)
(5)

where − log st(y) is the conventional cross-entropy loss func-
tion commonly to train deep-learning models, y is the ground
truth of emotion rating, st(y) is the classified affective score
of the ground-truth label y for the time t, and mt(y) is the
discriminative margin of the emotion label y at time t

mt(y) = st(y)−max
{
st
(
y′

)∣∣y′ ∈ Y, y′ �= y
}
. (6)

λ ∈ Z
+ is a relative term to control the effects of the discrim-

inative margin. As described in (5) and (6), a model becomes
more confident in discriminating between the correct state and
the incorrect states over time. With this function, DPAN is
encouraged to maintain monotonicity in the affective score as
the emotion training progresses. As shown in Fig. 1(b), after
the time tc, the loss becomes nonzero due to the violation
of the monotonicity of the margin. Note that the margin mt(y)
of the emotion y spanning [t0, t] is computed as the difference
between the affective score st(y) for the ground truth y and the
maximum classification scores maxy′ �=y s(y′) for all incorrect
ratings at each time point in [t0, t].

C. Conditional Independence Test

To discover the causality between affective dynamics and
life contents and answer (C.2), we test the conditional indepen-
dence with three sequences Ai, Aj, and Ak. Suppose the three
sequences have the same length T , the test is to verify the sta-
tistical significance of the statement Ai ⊥ Aj|Ak. Considering
each triplet (Ai(t), Aj(t), Ak(t)) for each 1 ≤ t ≤ T as a sam-
ple over three variables, a 3-D contingency table C records the
number of triplet samples o, p, and q on the three variables at
each entry such that

Copq =
∣∣{1 ≤ t ≤ T

∣∣Ai(t) = o, Aj(t) = p, Ak(t) = q
}∣∣. (7)

Note that the expectation of Copq under the null hypothesis
can be estimated by

E
(
Copq

) = (
C∗pqCo∗q

)
/
(
C∗∗q

)
(8)

where C∗pq, Co∗q, and Cop∗ are the marginals of the counts
with Ai, Aj, and Ak, respectively. For the test, we use the
standard G2 conditional independence test, which returns the
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Fig. 1. (a) Overview of DPAN. After every time interval N, the proposed
DPAN first extracts two physiological features (brain lateralized and heartbeat
features) and constructs a spectral-temporal tensor. These features are then fed
into ConvLSTM to compute affective scores of emotions via our proposed
loss model, TM-loss. The output at the final sequence is selected to repre-
sent an emotion over a 2-D valence-arousal model for the entire sequence.
(b) Discriminative margin mt(y) (red line) of an emotion y started at t0. The
margin mt(y) is computed as the difference between the ground-truth affective
score st(y) (blue line) and the maximum scores maxy′ �=y st(y′) (dashed blue
line) of all incorrect emotion states between t0 and t. The model becomes more
and more confident in classifying emotion states until the time tc. However,
after the time tc, Lt are nonzero due to the violation of the monotonicity of
the margin.

Kullback–Leibler divergence between the distributions of Copq
and E(Copq) over all three variables

G2 = 2
∑
o,p,q

Copqln
Copq

E
(
Copq

) (9)

which follows a χ2 distribution with degree of freedom (|Ai|−
1) ∗ (|Aj| − 1) ∗ |Ak|. For removing the sparsity in the table
C, the degree of freedom is penalized by the number of zero
cells as in [31].

III. WEARABLE AFFECTIVE LIFELOG SYSTEM

ALIS consists of three main parts: 1) affective contents col-
lector (ACC); 2) affective dynamics network (ADNet); and
3) affective causality network (ACNet). Fig. 2 shows the entire
framework of ALIS. First, ACC gathers contextual information
continuously surrounding the wearer in daily life. The logged
data are then transferred into ADNet, which aims to find
answers about under which situations and to what extent a
human feels the elicited affect. ACNet discovers the dynamic
causal relationship between the situation faced and the human
emotion explored by ADNet. It provides an intuitive under-
standing of affect dynamics for users. The following sections
describe the details of each component.

A. Affective Contents Collector for Logging Data

ACC is a simple device designed to be easily wearable for
users to act freely in everyday situations (See Fig. 3) as well

Fig. 2. Overview of ALIS, which consists of an ACC, ADNet, and ACNet.
ACC collects a user’s contextual information in situations with frontal images
and emotion measured by EEG and PPG signals. Given this information,
ADNet detects emotional changes, which are used as an input with frontal
images for ACNet to discover the causal relationship between emotions and
situations.

Fig. 3. ACC and its components; IMU, EEG, PPG sensors, and a tiny
frontal camera. The location of two EEG electrodes (F3 and F4) on the 10–20
international system.

as to collect the human affect correctly. Since the human affect
is sophisticated and subtle, it is vulnerable to personal, social,
and contextual attributes. The noticeability and visibility of
wearable devices could elicit unnecessary and irrelevant emo-
tions. Therefore, recording human affect should be unobtrusive
when measured in the natural environment. To design an unno-
ticeable device, we imitated the design of existing easy-to-use
wireless headsets. We note that the term “unobtrusive device”
in this article means that it is not easily noticed or does not
draw attention to itself. The term does not imply that our
device aims to be small or concealable. This easy-to-use device
provides comfort and performance to users during long-term
activities.

Everyday technology requires wearable systems to have the
unprecedented ability to perform the comfortable, long-term,
and in situ assessment of physiological activities. However, the
development of practical applications is challenging because
of the cumbersomeness of the equipment that requires multiple
channels to obtain reliable signals and the complexity of set-
ting up experiments. To use body sensors with a guarantee
of both reliability and simplicity, we designed the proposed
device with a tiny PPG sensor and a minimum configuration
of a two-channel EEG, the lowest number of channels nec-
essary to learn patterns of lateralized frontal cortex activity
involved in human affect.

While satisfying the two criteria, our device consists of
multimodal sensors to capture various emotions surrounding
daily life as follows.
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Fig. 4. Overview of ADNet. ADNet first uses DPAN to train physiologi-
cal signals associated with their labels y on the dataset Ds (red lines). The
model then uses the learned parameters on the dataset D for predicting noisy
pseudolabels ỹ (blue lines), which are fed into a subnetwork label cleaner
conditioned on physiological features χ from ConvLSTMs. Within the label
cleaner network, a residual architecture learns the difference between the noisy
ỹ and clean labels y (green lines). Finally, the model predicts cleaned labels
ŷ penalized by a joint loss function (LC-loss).

1) Frontal Camera for Collecting Visual Contents: Visual
information has been widely used to detect situations
faced by the user. The study of recognizing scenes
and activities by analyzing images from a camera has
provided an understanding of contextual information.
Hence, in our system, a small frontal viewing camera
with a 30 fps sampling rate (Raspberry Pi Zero Camera)
was used to record images.

2) Small Physiological Sensor to Capture Human Affect:
The analysis of patterns of physiological changes has
been increasingly studied in the context of affect
recognition. To capture this information, we used a
two-channel EEG sensor on OpenBCI on the left and
right hemispheres and a small ear-PPG sensor, with
sampling rates of 250 and 500 Hz, respectively.

Physiological signals from EEG and PPG sensors and frontal
images collected by ACC comprise a large real-world dataset
D. The dataset has a subset Ds where a small number of
ground-truth labels y by self-reporting are available. The real-
world dataset in our experiment is called the affective lifelog
dataset, which is further described in Section V. Given the
dataset D and its subset Ds, the proposed ADNet jointly learns
to reduce the label noise and predict more accurate labels ŷ
on the dataset D.

B. Affective Dynamics Network for Recognizing Emotions

ADNet aims to solve the problem in (1), addressing the
challenging questions (C.1) on a real-world large dataset. Our
network first learns the representations of the physiological
signals P according to the affective labels y on the subset Ds

by DPAN [13] and produces noisy pseudolabels ỹ = (Ṽ, Ã)

on the dataset D. Given the dataset D = {(Pi, ỹi), . . . , }
and its subset Ds = {(Pi, ỹi, yi), . . . , }, the proposed frame-
work jointly learns to reduce the label noise and predict more
accurate labels ŷ on the dataset D (see Fig. 4).

While DPAN has shown its superiority in classifying emo-
tions, its predicted labels have contained noise. To overcome

this issue, ADNet comprises a subnetwork, which learns to
map noisy labels ỹ to clean labels y, conditioned on physio-
logical features from ConvLSTMs in DPAN. We denote this
subnetwork as the label cleaner. The subnetwork is supervised
by the human-reported labels y and follows a residual archi-
tecture so that it only needs to learn the difference between
the noisy and clean labels. In particular, to handle the sparsity
in noisy labels, the label cleaner encodes the emotional occur-
rence ỹ of each of the d classes in valence Ṽ and arousal Ã
ratings into a pair of d-dimensional vector [0, 1]d. Similarly,
the model projects the physiological features X into a low-
dimensional embedding, and then all embedding vectors from
the two modalities are concatenated and transformed with a
hidden linear layer followed by a projection back into the
high-dimensional label space.

Simultaneously, the primary network ADNet shares the
physiological features extracted by ConvLSTMs (the last unit
before TM-Loss) in DPAN and learns to directly predict labels
ŷ following a sigmoid function. The predicted labels ŷ are
supervised by either the output of DPAN or a human from
label cleaner. To train the ADNet, we formulate a joint loss
function as follows:

Lc =
∑
i∈Ds

|ȳi − yi| −
∑
j∈D

[
uj log

(
ŷj

)+ (
1− uj

)
log

(
1− ŷj

)]

(10)

where uj is yj when the SAM-ratings are available, otherwise,
ȳj. The LC-loss Lc is the combination of: 1) the difference
between the cleaned labels and the corresponding ground-truth
verified labels and 2) the cross-entropy to capture the differ-
ence between the predicted labels and the target labels. The
cross-entropy term is only propagated to ŷj. The cleaned labels
ȳ are treated as constants with respect to the classification and
only incur gradients from the LC-loss. We note that DPAN
is the pretrained model from the dataset Ds prior to ADNet.
The shared parameters of ConvLSTM are updated with the
LC-loss function, not with the TM-loss function in DPAN.

C. Affective Causality Network

ACNet aims to solve the problem in (2). The goal is
to derive the affective causality by analyzing emotional
changes and the user’s relevant situations. Suppose the emo-
tion sequence M(1 : T) is a binary stochastic process during a
discrete time interval [1, T], where T is the maximal length of
the interval. Then, an element Mj in the sequence M(1 : T)

is a binary indicator of the occurrence of a certain emotion
j detected by ADNet at time t. With this notation, Mη

j is
generated with each concatenated element Mη

j (t) = (Mj(t −
η), . . . ,Mj(t)) at each timestamp t ≤ T . In the same way, an
element Ci in a situation sequence C(1 : T) is a binary indica-
tor of the occurrence of certain situation i observed by ACC
at time t. Based on these notations, the time-varying affec-
tive network and the affective causality are defined with the
formulation of the related learning task.

Definition 1: The time-varying affective network is denoted
as G = (M, C, E), where Ci and Mj are the situation i and the
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emotional state j sequences, and eij ∈ E indicates the affective
causal effect of the sequence Ci on the sequence Mj.

Definition 2: Given n situation and emotion sequences
{C1, . . . , Ci,M1, . . . ,Mj} from a user, the directed graph G is
constructed in the underlying affective causality model while
addressing confounding factors.

By representing each of the emotion and situation variables
as a node, ACNet could be formulated as a directed graph G
over the variable Ci ∪Mj such that each edge Ci →Mj indi-
cates the affective causal effect of sequence Ci on sequence
Mj. In the network, there is a parameter associated with a
node or an edge between Ci and Mj. Based on the descriptions
above, a network generally consists of two components: 1) a
directed graph G used to model the causal structure among the
sequences and 2) association parameters on the edges used to
model the causal phenomena. These two components charac-
terize the global and local properties of the interaction between
emotions and life contents, respectively, the combination of
which provides a general guideline ruling the events happening
on the two sequences.

Affective causality is a computational asymmetric measure
to determine the causal relationship between affective dynam-
ics and situations. The computation is based on conditional
independence testing to detect the relationship with latent con-
founders underneath the observational two sequences. The
causal structure learning method is inspired by Cai et al.’s
work [26], but differs in that the ACNet has two differ-
ent variables M and C as input nodes, considering sparse
relations. The proposed model analyzes this causal problem,
considering: 1) with and 2) without confounding factors.

1) Learning Without Confounding Factors: The interaction
without any latent factors can observe that the state Ci at times-
tamp t − 1 affects the state of Mj at timestamp t, while the
reverse does not hold. This observation can be formalized in
the language of statistical testing with Lemma 1.

Lemma 1: Given two dependent sequences Ci →Mj with-
out a connected latent variable, the following asymmetric
dependence relations hold: 1) there exists a delay ηc satis-
fying Ci ⊥ M1

j |Cηc
i and 2) there does not exist a delay ηm

satisfying Mj ⊥ C1
i |Mηm

j .
2) Learning With Confounding Factors: Sequences under

the existence of confounding factors: 1) behave similarly
because of common characteristics or 2) interact indepen-
dently over the timeline. Both the situation Ci and emotion Mj

sequences are affected by a constant latent variable. In such a
case, Ci(t) is thus dependent on Mj(t− 1) given any previous
states of Ci. Similarly, Mj(t) also depends on Ci(t− 1) given
any previous states of Mj. The confounding factor, which is
itself an independent variable over time, is underneath the two
sequences under test. When this case occurs, a positive statis-
tical dependence between C and M is observed. But the states
of Ci(t) could be completely independent of Mj(t − 1) given
its previous states Ci(t− ηc− 1 : t− 1), and Mj(t) could also
be independent of Ci(t − 1) given its previous states Mj(t −
ηm − 1 : t − 1). The following lemma could be recognized
using the same group of conditional independence tests.

Lemma 2: If there is a latent factor between Ci and Mj,
the following symmetric relations hold: 1) there does not exist

Algorithm 1 Affective Causality Direction Learning
Input: Ci : situation i sequence

Mj: emotion state j sequence
α : confidence threshold
T : maximal timestamp
F : affective pair set {Ci,Mj}

Output: The directed graph G
Initialization : set G as empty set;

1: for each i and j in a pair F in a situation do
2: if �F ′ ∈ F − {Ci,Mj}, Ci ⊥Mj|F ′ then
3: Test S1 on Ci and Mj;
4: Test S2 on Mj and Ci;
5: if S1 ∧ ¬S2 then
6: Add i→ j into G;
7: else if ¬S1 ∧ S2 then
8: Add j→ i into G;
9: else

10: Add i← H→ j into G;
11: end if
12: end if
13: end for
14: return G

any delay η satisfying Ci ⊥M1
j |Cηc

i nor Mj ⊥ C1
i |Mηm

j and
2) there exists delay ηm and ηc satisfying Ci ⊥ M1

j |Cηc
i and

Mj ⊥ C1
i |Mηm

j , respectively.
3) Affective Causality Direction Learning Algorithm:

Algorithm 1 describes the asymmetric relations on all depen-
dent sequence pairs of situation C and emotional state M and
detects the directions of causal edges on the underlying affec-
tive model G by applying the following theorem based on the
two lemmas.

Theorem 1: Given two sequences Ci and Mj, the following
propositions on the causal structure between the two sequences
hold: 1) Ci → Mj in G, if S1 ∧ ¬S2; 2) Ci ← Mj in G, if
¬S1 ∧ S2; and 3) there is a latent factor between Ci and Mj,
if S1 ∧ S2 or ¬S1 ∧ ¬S2.

S1 and S2 in the theorem are used for hypothesis tests on
any pair of the two sequences.

S1: ∃ηc satisfying Ci ⊥M1
j |Cηc

i .
S2: ∃ηm satisfying Mj ⊥ C1

i |Mηm
j .

In this algorithm, the affective sequence set F = {C,M}
along with the maximal timestamp T , the number of sequence
N, and the confidence threshold α is used as inputs for
the test. Given the inputs, each affective pair is tested
by applying Theorem 1 to see whether each is indepen-
dent of the other conditioned on other variables. The out-
put G is a set of pairwise relations. The complexity of
Algorithm 1 is determined by the dependent pair detection
and the test of S1 and S2. All proofs are provided in the
Appendices.

IV. EVALUATION ON SYNTHETIC DATASET

In the following two sections, we examine the robustness
of the proposed ALIS on the two datasets: 1) a public dataset
and 2) a synthetic dataset, for the quantitative evaluation
of ADNet in emotion recognition and ACNet in causality
identification.
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A. Affective Dynamics Network Performance

For quantitative evaluation of ADNet in emotion classifica-
tion (C.1), we performed realistic experiments by deliberately
manipulating labels on a public dataset called DEAP [19].

1) DEAP Dataset: DEAP is a public dataset of physiolog-
ical signals to analyze emotions quantitatively on a 2-D plane
along with valence and arousal as the horizontal and vertical
axes. Its physiological signals are recorded from 32-channel
EEGs at a sampling rate of 512Hz using active AgCl elec-
trodes placed according to the international 10–20 system and
13 other peripheral physiological signals from 32 participants
while they watched 40 1-min-long excerpts of music videos.
The dataset rates emotions with respect to continuous valence,
arousal, liking, and dominance scaled from 1 to 9 and discrete
familiarity on scales from 1 to 5 using SAMs [19].

2) Dataset Configuration: Since ACC gathers EEG signals
from a pair of electrodes and a PPG signal, we retrieved data
from the eight selected pairs of electrodes and a plethys-
mograph on the DEAP dataset. The 64 combinations of
physiological signals per video generate 81 920 physiological
data points. The data were high-pass filtered with a 2-Hz cutoff
frequency using EEGlab and the same blind source separation
technique as in [13] for removing eye artifacts in EEG signals.
A constrained independent component analysis (cICA) algo-
rithm was applied to remove motion artifacts in PPG signals.
We built a subject-independent dataset in which physiologi-
cal signals were retrieved from all participants to evaluate the
proposed model as a subject-independent classifier directly
applied to any users without personalized optimization. To
make the evaluation independent from the effect of person-
alization, we split the dataset into fifths: one-fifth for testing
and the remaining. Then, the remaining (= four-fifths) was
split into fifths again: four-fifths for training and one-fifth for
validation. The validation data were randomly chosen from the
remaining while keeping the distribution of the label ratings
balanced (= 1/d2) for fair evaluation per label.

We used the balanced datasets to evaluate our models’
performance and other methods for solving the limited amount
of clean-label problems. To evaluate the unbalanced labeling
problem, we stochastically changed the number of physi-
ological signals associated with a label while varying the
distribution of labels in the training dataset. The unbal-
anced dataset comprised p percentage of physiological signals
according to a pair of random labels in valence and arousal,
with the others distributed equally. The test data remained
unperturbed to allow us to validate and compare our model
to other methods. The highlighted 1-min EEG and plethys-
mography signals were split into six frames of 10 s each.
They were downsampled to 256 Hz, and their power spectral
features were extracted.

3) Evaluated Methods and Metrics: We evaluated the
performance of our ADNet, comparing the results with
state-of-the-art methods that have shown their performance on
the DEAP dataset in terms of loss functions and the num-
ber of layers. We would first note that our previous work,
TM-Loss in DPAN [13], had improved emotion recognition
performance, constraining the affective score of the correct
emotional state to discriminate its margin, which does not

monotonically decrease with all others while the emotion
progresses. Second, ADNe, in this work, consists of three com-
ponents: 1) ConvLSTM, which learns physiological signals in
a supervised way; 2) DPAN, which produces pseudolabels;
and 3) label cleaner, which cleans label noises.

Given the configuration, to evaluate ADNet, it is neces-
sary to investigate how each part contributes to differentiate
multiple emotions, handling the limited and unbalanced label
issues. Three models, called Model A, B, and C, are designed
for the comparative study as follows.

1) Model A: It is a 1-layered ConvLSTMs with a softmax
layer as a baseline classifier. The results from the model
represents a performance of simplified version of deep
neural networks (DNNs).

2) Model B: It is a 1-layered ConvLSTMs with the TM-loss
function as in [13]. The model has shown its supe-
riority in recognizing human emotions, increasing the
distinctiveness of physiological characteristics between
correct and incorrect labels. Pseudolabels ỹ are essential
to produce the cleaned labels ȳ, which cover all samples
in the dataset D. We chose the above simplified ver-
sion to focus on studying the effectiveness of TM-loss,
excepting other potential factors.

3) Model C: It is a 4-layered ConvLSTMs with a softmax
layer. The model was implemented based on [32].

Our proposed system and the three comparative models consist
of 256 hidden states and 5×5 kernel sizes for the input-to-state
and state-to-state transition. They were trained by learning
batches of 32 sequences and backpropagation through time
for ten time steps. The momentum and weight decay were
set to 0.7 and 0.0005, respectively. The learning rate starts
at 0.01 and is divided by 10 after every 20 000 iterations. We
also performed early stopping on the validation set. All models
learn physiological signals to classify d2(d = 2, 3, 4) affective
states. For instance, when d = 4, 16 affective states are com-
bined of two to four valence and arousal states rated from 1
to 3, 3 to 5, 5 to 7, and 7 to 9. We choose the mean average
precision (MAP) as a metric to evaluate the performance of our
system with additional Precision, Sensitivity, and Specificity to
report how commonly occurring classes in a training set affect
the model performance.

4) Evaluation Results: Fig. 5 shows that our proposed
system performed better than the alternatives on the balanced
dataset over all dimensions (d = 2, 3, 4) unless the amount
of clean labels was very large (> 0.7). Model C increased
its performance rapidly as the number of SAM-rated labels
increased. When the fraction was greater than 0.7, the model
achieved the next best classification results. Model A con-
sistently reported the lowest precision consistently over all
configurations. This consistency could imply that Model A was
overfit and overconfident to some labels. Concerning overfit-
ting, although having a specialized loss function (Model B)
and increasing the number of layers in DNNs (Model C)
improved the discriminative power to classify different emo-
tions, the limited number of clean labels seems to lead to
overfitting for many classes.

Fig. 6 provides a closer look at how different label
frequencies affect the performance in emotion recognition
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Fig. 5. Test classification performance on the DEAP dataset with varying the fractions of SAM rated labels over different number of classes (valence and
arousal). (a) d = 2. (b) d = 3. (c) d = 4.

Fig. 6. Test classification performance on the DEAP dataset with varying label frequencies over different classes. (a) d = 2. (b) d = 3. (c) d = 4.

when the label balances were collapsed by p. Our method’s
three scores converged around −0.03 except sensitivity,
whereas other methods decreased specificity, predicting incor-
rectly negative samples. Furthermore, the proposed model
recovered the worsen performance in sensitivity up to −0.03
(d = 4) from −0.13 (d = 2). Increasing the number of
labels deteriorated the classification performance, including
our model [d > 2, Fig. 6(b) and (c)]. All models became over-
fit to common labels and reduced overall accuracies. Despite
alleviated overfitting, our model yielded the best results. In
contrast, the other methods lost their ability down to approx-
imately 15% (Model A) and 18% (Model C, Specificity) for
the balanced and unbalanced datasets, respectively. The ver-
tically stacked layers in Model C led it to misunderstand the
physiological characteristics associated with a major number
of labels. Along with the same line from the above results,
these results imply that our method effectively learns invariant
features for classifying multiple classes.

B. Affective Causality Network Performance

1) Experimental Setup: To evaluate the affective causality
identification (C.2) on the proposed ACNet, a synthetic dataset
was generated. In the dataset, pairs of affective sequences
F are generated by simulating a Poisson point process with
10 min per timestamp and ε as occurrence frequency for situa-
tions C and emotions M per day. Each sequence is influenced
by its causal nodes as the time-dependence influence function
with exponential probability p(�t, η) = ηe(−�tη), where 	t

is the time interval between t and the causal sequence’s most
recent state, and η is the average influence lag.

2) Evaluated Methods and Metrics: We evaluated the
performance of ACNet, comparing it against the transfer
entropy (TR) method [33] and Granger’s causality (GC)
method [34]. Two groups of causal structures were designed
for experiments. The first group has the causal structures
of directed graphs without latent variables, and the second
group consists of directed graphs with latent factors. Given n
sequences and the average in-degree dg of the graph, a pair of
two emotion and situation nodes and a directed edge between
the pairs into the graph are selected until there are dg ·n edges
in the graph. For the second group, confounding factors are
selected by nc independent pair of nodes and an additional
latent factor H underlying two edges is added into the causal
graph. We choose Precision, Recall, and F1-score as metrics
to evaluate each type of causality.

3) Results: Fig. 7 shows the performance of ACNet and
the two other methods on different causal structures and data
generation parameters with varying occurrence frequencies ε

and average influence lag η. Overall, ACNet consistently out-
performed the other methods. As shown in Fig. 7(a), the
occurrence frequency reflects the sparsity of the sequences
such as the number of timestamps with recorded situations.
The performance of TR and GC declines with increasing spar-
sity. On the other hand, ACNet maintained its performance at
around 0.7 even when there was only one occurrence in 3 h.
This result implies that our model is effective in solving the
causal discovery problems on the sparse affective situation
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Fig. 7. Affective identification performance on the synthetic dataset varying occurrence frequency, average influence lag, and numbers of confounder
parameters. (a) Occurrence frequency. (b) Averaged influence lag. (c) Number of confounders.

sequences. Fig. 7(b) shows the sensitivity with different
influence lags. The recall of our model decreased with the
increasing average influence lags because larger influence lags
mean longer dependence on the previous states. The precision
of our model was not sensitive to the influence lag, keeping a
performance between 0.65 and 0.8, while the precision of other
methods decreased as the influence lag increased. These results
imply our model is capable of catching long-term dependence
for learning causal direction.

V. EVALUATION ON REAL-WORLD DATASET

Underlying the quantitative analysis of our model on the
public and synthetic datasets, we further demonstrated the
capability of this model via a long-term series of life log-
ging over several days in real-world scenarios. We first built
a real-world dataset called the affective lifelog dataset, where
participants used our ACC in their daily life. We then eval-
uated the performance of the proposed ALIS with respect to
physiological discrimination in emotion recognition and user
agreement in causal identification.

A. Affective Lifelog Dataset

1) Data Acquisition: The dataset consists of two modali-
ties of physiological signals, accelerometer signals, and frontal
images obtained by ACC from 16 male and 5 female univer-
sity students aged from 21 to 35 (26.4 ± 4.87) years. Our
requirement for participation was to perform at least one com-
mon task of a university student, such as conducting research,
taking classes, or having a discussion with colleagues. We
required them to wear the device over 6 h per day for up to
45 days with $10 compensation per day. This experiment was
approved by the institutional review board (IRB) in Human
Subjects Research.

To identify individual specific affective contents and assign
the SAM ratings to them as ground-truth labels, we asked the
participants if they had any affective contents that had elicited
a specific feeling, and how the contents changed their emotion
before and after the elicitation. The life contents were per-
ceived as breakthroughs to change their mentality. The changes
were rated by the SAM scaled from 0 to 6 and −3 to 3 for
arousal and valence ratings. Furthermore, we retrieved the fol-
lowing affective contents manually, which are considered to
potentially affect mental status stress: 1) watching movies;

TABLE I
AFFECTIVE LIFELOG DATASET CONTENTS

Fig. 8. Overview of the affective lifelog dataset. (a) Affective lifelog dataset
D and its subset Ds which contains SAM-rated situations. (b) Example images
in the dataset D. (c) Proportion of the subset Ds and the dataset D. Ns = 378
for the subject 1.(d) Distribution of the SAM-rated situations in valence and
arousal labels on the subset Ds.

2) drinking coffee; 3) drinking green tea; 4) hanging out with
friends; 5) playing games; 6) drawing a picture; 7) taking
a walk; 8) reading a book; 9) eating food; 10) studying at
a desk; 11) reading research papers on a computer monitor;
12) conducting researches in a laboratory; and 13) playing with
media devices. In such situations, the participants performed
the SAM ratings every five days.

2) Affective Lifelog Dataset: Fig. 8 and Table I summarize
the affective lifelog dataset D. The situations rated by the SAM
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consist of a subset Ds with pairs of emotion labeling y = (V ,
A) scaled from −3 to 3 and from 0 to 6 for valence V and
arousal A ratings, respectively. The labeling y = (V , A) is used
as ground truth to evaluate the performance of our proposed
system. As shown in Fig. 8(c), the dataset has a limited amount
of labeling data. The ratios of the dataset D and the subset Ds

are 0.418 from all participants. Furthermore, the distribution
of labels is unbalanced. These challenge issues are consistent
with our understanding describe in (C.1) and (C.2). Fig. 8(b)
shows some situations in the dataset D from our real-world
experiments. Participants have experienced various situations
in daily life, such as driving a car, reading a research paper,
playing games, and taking a walk.

B. Experimental Setup

1) Train/Test/Evaluation on the Dataset D: From the real-
world dataset D, we grouped affective labels (V , A) in valence
and arousal into seven discrete affective states: 1) NVHA;
2) NVMA; 3) NVLA; 4) UVLA; 5) PVLA; 6) PVMA; and
7) PVHA, comprising low (LA), mid (MA), and high (HA)
arousal and negative (NV), neutral (UV), and positive (PV)
valence ratings. The three classes were determined by divid-
ing the 6-point rating scale of the participants’ valence and
arousal ratings into three classes (low, mid, and high), with
each class containing two points [Fig. 8(d)]. We should note
that two states (UVMA and UVHA) were omitted since their
occurrence was extremely low. We retrieved 10 000 pieces of
physiological data per affective state, which is 70 000 pieces
of physiological data on total of seven states for every partic-
ipant on the dataset D. The test data remained unperturbed to
validate and compare our model to other methods.

Since physiological signals, in particular, EEG signals, are
vulnerable to motion artifacts [35], we developed a strategy
to improve the quality of EEG signals by abandoning EEG
signals highly correlated with motion artifacts rather than sepa-
rating and removing motion artifacts in EEG signals occurring
due to body movement [36], [37]. To pursue this strategy,
we subdivided the EEG signals into two groups separated by
varying the accelerometer data. From each of the two groups,
we extracted the following EEG features: 1) mean power;
2) maximum amplitude; 3) standard deviation of the ampli-
tude; 4) kurtosis of the amplitude; and 5) skewness of the
amplitude. The features have been widely used to measure
the quality of clean EEG signals [38]. After representing the
features into 2-D space using the principal component analy-
sis (PCA), we consider the average of the data points of the
features in the two groups as a differentiator point. That is,
PCA maximizes the Bhattacharyya distance of the projected
points on the best fit line from the differentiator point. Then,
we only used EEG signals when their features are belonging
to the fitted line between cleaned group and the differentiator.

2) Network Settings: ADNet is composed of two-layered
networks with 512 and 256 hidden states and has 5×5 size of
kernels for the input-to-state and state-to-state transitions. To
train the network, we used learning batches of 32 sequences,
set the learning rate as 0.01 initially, and divided the rate by ten

Fig. 9. Illustration of the affective causal effect of sequence Ci on sequence
Mj. Testing the affective causal effect of the affective sequence NVLA (may
be occurred by the behavior “Studying on a desk”) on the behavior sequence
“Playing Games” indexed as E3 with a delay η.

TABLE II
PERFORMANCE OF ADNET FOR CLASSIFYING THE SEVEN EMOTIONAL

STATES AND ACNET FOR IDENTIFYING THE AFFECTIVE

CAUSALITIES ON THE DATASET D

after every 20 000 iterations. The weight decay and momen-
tum were set to 0.0005 and 0.6, respectively. Backpropagation
through time was performed for ten time steps. We also
performed early stopping on the validation set. For ACNet,
we only selected pairs of the affective sequence F , which
were associated with clean physiological signals from all
participants with every 10 min as a timestamp (see Fig. 9).

C. Evaluation Results

1) Performance of ALIS on Recognizing Emotions and
Identifying Affective Causalities: Table II reports the aver-
age precision in recognizing emotions and identifying affec-
tive causalities over all participants on the dataset D. The
performance on the UVLA state showed the highest results
over all participants. This implies that when participants are in
a UVLA state, such as calm and relaxed feelings, their phys-
iological signals fluctuate in common patterns, which helps
ALIS to learn their characteristics. It can be also attributed
that the percentages of affective situations rated with the labels
UV and LA were higher than others on the dataset D. On
the other hand, the performance in classifying valence rat-
ings associated with low arousal ratings besides LAUV, such
as NVLA and PVLA states, was relatively lower than other
arousal ratings. In particular, PVLA had the lowest accu-
racy. This observation may imply that classifying emotions
by valence can be improved by considering their associations
with arousal. Affective causalities in the 13 situations were
identified with a precision of 0.74. Although ACNet iden-
tified affective causalities by regarding the prior results of
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Fig. 10. Performance in emotion recognition and affective causality identi-
fication on the real-world dataset D increasing the dataset size over different
emotional states and affective situations.

Fig. 11. (a) Clustering of the UVLA states from the participants using t-SNE
applied to physiological features X . (b) Shared physiological representation
visualized by the grand average of the feature X over frequency bands in the
seven affective states.

ADNet recognizing affective states, the performance was con-
sistently higher than on detecting emotional states. This can be
attributed to ACNet working well on eliminating false causal
relationships built on wrong emotions.

Unlike the DEAP dataset, our real-world dataset D records
everyday activities with physiological signals. Hence, the
interday and intraday variability in physiological signals can
determine the performance of ALIS in understanding affec-
tive dynamics. Fig. 10 shows the performance in emotion
recognition and causality identification on different amounts of
physiological data in days. The accuracy generally improved
when sufficient data were available. ADNet classified HA
states better when more of their associated signals were pro-
vided. On the other hand, classifying negative states, such as
NVLA and PVLA, showed the smallest improvement with
increased data sizes. These results could imply that the affec-
tive dynamics in valence requires the development of elaborate
deep learning architectures more than the provision of suffi-
cient physiological data. Since causal identification depends
on the prior emotion recognition, the performance in emotion
recognition is another key in causality. However, this exper-
iment shows that our system does not face this problem. It
consistently achieved high scores with small increments.

D. Discussion

1) Analysis of Emotion Recognition: Fig. 11(a) shows
the multimodal physiological features X in a 2-D space
obtained using t-distributed stochastic neighbor embedding
(t-SNE) [39], a popular technique for unsupervised dimen-
sional reduction and visualization. The features of different

participants in an affective state cluster in the projected
space, revealing their high variety. Despite their heterogene-
ity, ADNet is capable of capturing some shared physiological
characteristics. To investigate the physiological phenomena
observed when emotions are classified using ADNet, we visu-
alize the grand average of brain lateralization features in (3)
across participants in valence and arousal ratings. We should
note that heart-related features have served as essential ele-
ments reflecting the function of ANS. However, in this section,
we focus more on brain lateralization, as it has relatively large
intersubject and intrasubject variability.

Fig. 11(b) shows the commonly shared frequencies over
all participants in the seven emotional states. We found that
alpha (7–15 Hz) and beta (15–30 Hz) bands were activated
when most emotional states except UVLA and PVLA were
elicited. Strong negative-related feelings, such as NVHA and
NVMA, led to an increase in physiological changes in alpha
and beta. The other two states were characterized by either the
theta or gamma band. This indicates that emotional reactions
in real-world situations lead to the activation of physiologi-
cal signals in alpha and beta while the stability in emotion
maintains physiological signals in the theta or gamma bands.
Although several alternatives have been suggested in reports
on the neurophysiological correlates of affective states, this
result is in line with our previous work [13].

Our findings may also be justified by the fact that when
some negative but approach-related emotions, such as “anger”
that would be lateralized to the left hemisphere, are induced,
they lead to increase in the alpha band activity in the left
anterior and the left temporal regions in the beta bands. We
also found that emotional lateralization has also affects on
reacting emotions in cases of arousal correlated with valence.
When increasing arousal from low to high within the same
level of valence states, there are slight increments in the
theta band. This observation may reflect the intercorrelations
between valence and arousal, as reported in [19].

2) Causality Discovery: To better understand the overall
causal pairs in daily life, we report three types of causal
networks of the four frequent stress relievers on the dataset D.
We choose the four most frequent situations (approximately
67% of all situations): 1) “studying at a desk,” 2) “play-
ing games,” 3) “drinking coffee/green tea in a cafeteria,” and
4) “watching movies.” From the 13 situations, the four frequent
events were manually browsed in the results of our system by
three annotators (interclass correlation = 0.79). Given the four
situations, we reported the affective causality graph G resulted
from ALIS. Fig. 12 shows the causality structure over all
participants and individual causality structures. The top three
participants who had the largest data in the real-world dataset
have been selected. These results show every one has differ-
ent causality between emotions and behaviors. For instance,
15 participants (= 15/21) had an asymmetric causality from
the situation “studying on a desk” to NVLA. Note that the
graph does not include cascade flows; namely, in the case of
1→ 2→ 3, it has only a causal relation between node 1→ 2
and 2→ 3, but the causality does not propagate 1→ 3.

Participants change their behaviors when they feel specific
emotions. First, we found that while studying at a desk, most
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Fig. 12. Causal Structures for (a) all and (b), (c), and (d) the top 3 participants between the four situations and the seven emotional states on the real-world
dataset D. Nodes from 1 to 7 represent affective states NVHA, NVMA, NVLA, UVLA, PVLA, PVMA, and PVHA. Situation nodes are denoted as S, G,
C, M, and L for studying on a desk, playing games, drinking coffee/green tea in a cafeteria, watching movies, and a latent factor. Red lines indicate the
asymmetric causality from the situation to the emotion states. Blue lines indicate the opposite causalities. Green lines show the latent factors between the
situation and emotional states.

users felt the emotional states NVLA and UVLA, which are
close to calm and stress, but any feeling did not affect stu-
dents’ desire to study. This phenomenon indicates that the
activity can be a major emotional cause regulating their feel-
ings of being stressed in repeated school routines. In other
words, the participants have studied either habitually or for no
particular emotional reason, but they were stressed by study-
ing. Interestingly, these types of stressed feelings led them to
change their behaviors. Some people had coffee when their
feelings rated as having negative valence and low arousal.
Furthermore, in line with the affective causality, drinking
coffee had a causal effect on overcoming emotional negativ-
ity, increasing valence. While most activities cause a given
emotion to a particular feeling, “watching a movie” affected
multiple emotional states. This can be attributed to individual
emotional acceptance of a movie or characteristics of dif-
ferent movie genres. Similarly, when users play games, they
feel either NVMA or PVMA emotional states. The polarity in
valence from the two emotional states implies playing games is
accompanied by emotional elements of fatigue, while it helps
to lead positive feeling. From a few users, we found there exist
two hidden factors between emotions and situations. When
users had the latent factor L2, they played the game while
feeling excited. Similarly, the latent factor L1 bridged users to
drink coffee/green tea with a happy feeling. Neither connection
had been established without the two factors.

VI. CONCLUSION

We presented a new wearable system to detect emotional
changes and find casual relationships in daily life, based on
the new affective model of interaction behavior. By apply-
ing our proposed model to a real-world dataset, our approach
can find meaningful causal connections between emotions
and behaviors, even when confounder variables potentially
affect human emotions and behaviors. In the future, we will
explore the possibilities of social interaction behavior caused
by personal emotional changes. It is also interesting and even
more challenging to effectively implement causality iden-
tification in the complex human behaviors, such as facial
microexpressions [40] and situational analysis of daily life.

APPENDIX
PROOF OF LEMMA 1

Proof: Suppose ηm and ηc are the influence lags of M
and C, respectively. In the case of 1), the state of Ci at t
time is determined only by its previous states Cηc

i . Hence,

Ci ⊥ M1
j |Cηc

i naturally holds. In the case of 2), there is
no variable ηm to Mj ⊥ C1

i |Mηm
j because the state of Mj

at t time is directly influenced by the previous state of Ci

at t − 1.

PROOF OF LEMMA 2

Proof: For 1), they are dependent on each other in the given
condition set without the latent factor because Ci and Mj are
dependent on the latent factor. For 2), suppose ηc and ηm be
the self-influence lag of Ci and Mj, respectively, the latent
factor at time t is independent of the latent factor at time
t − 1. Therefore, Ci ⊥M1

j |Cηc
i and Mj ⊥ C1

i |Mηm
j hold.

PROOF OF THEOREM 1

Proof: Assuming there are only three directions between
two sequences Ci and Mj: 1) Ci → Mj; 2) Mj → Ci; and
3) Ci ← H → Mj. H is a latent factor. For the first case,
S1 ∧ ¬S2 ⇒ Ci → Mj, and the causal structure of S1 ∧
¬S2 based on Lemma 1 cannot be Ci ← Mj. There is no
confounding factor between the two sequences. Therefore, the
causal structure must be Ci →Mj.
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