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Deep Full-Body Motion Network for a Soft
Wearable Motion Sensing Suit

Dooyoung Kim “, Junghan Kwon
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Abstract—Soft sensors are becoming more popular in
wearables as a means of tracking human body motions due
to their high stretchability and easy wearability. However,
previous research not only was limited to only certain body
parts, but also showed problems in both calibration and pro-
cessing of the sensor signals, which are caused by the high
nonlinearity and hysteresis of the soft materials and also by
the misplacement and displacement of the sensors during
motion. Although this problem can be alleviated through re-
dundancy by employing an increased number of sensors,
it will lay another burden of heavy processing and power
consumption. Moreover, complete full-body motion track-
ing has not been achieved yet. Therefore, we propose use
of deep learning for full-body motion sensing, which signif-
icantly increases efficiency in calibration of the soft sensor
and estimation of the body motions. The sensing suit is
made of stretchable fabric and contains 20 soft strain sen-
sors distributed on both the upper and the lower extremities.
Three athletic motions were tested with a human subject,
and the proposed learning-based calibration and mapping
method showed a higher accuracy than traditional methods
that are mainly based on mathematical estimation, such as
linear regression.

Index Terms—Body motion tracking, deep learning, soft
sensors, soft wearables.

|. INTRODUCTION

UMAN motion tracking has been widely used in various
research and commercial applications, such as biome-
chanics study, rehabilitation, three-dimensional (3-D) anima-
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tion for video games and movies, and virtual/augmented reality
(VR/AR) [1]-[4].

One of the main requirements for motion tracking is to accu-
rately estimate the position and orientation of the joints or the
segments of the human body based on the measurements from
the sensors. To meet this requirement, soft wearable sensors are
becoming popular due to their high stretchability and easy wear-
ability. Soft sensors can be either directly attached to the skin
of the wearer or sewn on a garment to be worn, and track the
motions of the specific body parts, such as ankles, knees, hips,
shoulders, and hands, without restricting the natural degrees of
freedom (DOF) of the wearer [5]-[9].

Although previous studies have shown feasibility of motion
sensing of the human body using soft sensors, they have been
mostly limited to certain areas, and full-body motion tracking
using soft sensors has not been reported yet, to the best of
our knowledge [5]-[7], [10]. In order to implement this, the
following challenges should be addressed.

First, the soft sensors typically show high nonlinearity and
hysteresis in response [11], [12]. Moreover, it is more difficult
to estimate body motions from the sensor signals if multiple
mechanical stimuli, such as strain and pressure are applied.
Although the pressure effect can be minimized by carefully
selecting the locations of the sensors [5], it makes the design
process complicated. It has recently been proposed to solve the
problem of nonlinearity and hysteresis of soft sensors using deep
learning [13], but it was limited only to a single sensor.

Another challenge is calibration of a large number soft sensors
integrated to the suit, which makes the calibration process time-
consuming and complex. A human body has many joints with a
single DOF or multiple DOFs and, the same as or more number
of sensors than the number of DOFs in each joint are required.
Although it has been proposed to calibrate the multiple sensors
using linear regression (LR) [6], it was limited to a single joint.

Therefore, we propose a deep full-body motion network
(DFM-Net) for tracking full-body motions using a soft wear-
able sensing suit (see Fig. 1) in this paper. The suit contains
20 soft microfluidic strain sensors distributed both on the upper
and the lower bodies, and they are simultaneously calibrated
and processed to estimate the 3-D body motions. A deep neural
network for temporal sequence modeling was implemented to
take care of nonlinearity and hysteretic responses of the soft sen-
sors. Moreover, it was constructed to adequately represent the
relationship between the motions from multi-DOF body joints
and the sensing data. In order to verify our learning-based cali-

1083-4435 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 06,2022 at 06:16:07 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0003-4361-3184
https://orcid.org/0000-0002-4315-235X
https://orcid.org/0000-0003-4012-4887
https://orcid.org/0000-0002-2491-2114
https://orcid.org/0000-0002-7618-362X
mailto:dykim07@kaist.ac.kr
mailto:shann@kaist.ac.kr
mailto:shjo@kaist.ac.kr
mailto:jhkwon@snu.ac.kr
mailto:ylpark@snu.ac.kr

KIM et al.: DEEP FULL-BODY MOTION NETWORK FOR A SOFT WEARABLE MOTION SENSING SUIT 57

(b) —— :Ground Truth
—— : Prediction

Fig. 1. (a) Prototype of the soft wearable sensing suit for full-body
motion tracking. (b) Corresponding 3-D skeleton reconstructed using
DFM-Net.

bration and mapping approach, three different athletic motions
were tested with a human subject, and the test result showed a
higher accuracy than traditional methods that were mainly based
on mathematical estimation, such as LR.

The remainder of this paper is organized as follows. A brief
survey of existing motion tracking and soft sensors is presented
in Section II. Section III shows our soft wearable sensing suit
and its signal characteristics. Section IV discusses the struc-
ture of our learning-based calibration process, followed by the
experimental results that evaluates the performance of the pro-
posed method in Section V. Finally, we conclude our research
in Section VI.

II. RELATED WORK

Body motion tracking has been a long-standing question in
biomechanics and rehabilitation, and various approaches have
been proposed using different types of devices, such as elec-
trogoniometers [14], [15], camera-based optical systems [16],
[17], and inertial measurement units (IMUs) [18]—[20]. In spite
of their success in some level, they still have limitations. For
example, electrogoniometers have difficulty in detecting multi-
DOF joint motions. Although optical systems are highly useful
for full-body motions with high accuracy, they are limited to
only indoor use due to the multiple cameras fixed around the
subject. IMU systems are able to overcome this space limita-
tion, but they show errors with high-speed motions and position
drifts for a long-term measurement. Furthermore, rigid elec-
tronics needed to be attached to different locations of the body,
which may cause discomfort to the wearers.

To address the above-mentioned issues, a lower-limb soft
wearable sensing suit for gait measurement has been developed
using microfluidic soft strain sensors [5]. Although it showed
feasibility of using soft wearable sensors, the tracking motions
were limited in a sagittal plane, and the calibration was based
on simple linear fitting that does not fully represent the complex
body motions and the nonlinear characteristic of the soft sensors.
Another approach has been made to detect 3-D motions of the
ankle joint using multiple capacitive soft sensors [6]. In this
case, LR was used for calibration of joint angles from multiple
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Fig. 2.

sensor signals. Although the device was easy to wear and able
to detect the 3-D ankle motions, it showed installation issues on
alignment, anchoring, and slippage of the soft sensors caused
by deformations of the human body [10]. Soft sensors have also
been used for upper body tracking [7]. Two piezoresistive soft
sensors were attached to the shoulder for detecting two-DOF
shoulder motions. Although it showed capability of detecting
multi-DOF joint motions, the method of direct attachment to
the skin may significantly reduce the practicality of the system
as the number of sensors increases.

Therefore, to be practical for applications, such as rehabilita-
tion, gaming, VR/AR, etc., the soft sensing suits need to fulfill
the following conditions:

1) to cover the full range of body motion;

2) to be easy to wear and use;

3) to provide a higher accuracy than that of commercial
home-entertainment products, such as Kinect [4] that has
an root-mean-square error (RMSE) of 0.12 m [21].

[ll. SOFT WEARABLE SENSING SUIT
A. Design and Fabrication of the Soft Strain Sensor

The design of the soft sensors was based on our previous
work [5], [22], and a simplified fabrication process was devel-
oped, as shown in Fig. 2.

A silicone (Ecoflex 50, Smooth-On Inc.) layer was cast using
a 3-D printed mold and bonded to a spin-coated bottom silicone
layer. Then, a liquid metal compound (eutectic gallium—indium;
eGaln) was injected into the microchannel, and signal wires
were plugged into the microchannel directly. Next, both the ends
of the sensor were reinforced with mesh fabric using silicone
adhesive. Finally, hook-and-loop fasteners were directly sewn
to the mesh fabric for attachment of the sensor to the full-body
suit. The sewing process holds the signal wires tight and helps
to prevent the signal wires from being pulled out of the sensor.
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Fig. 3. Prototype of the soft strain sensor. (a) In original length. (b) In
fully stretched.

TABLE |
LOCATIONS AND TARGET JOINTS OF THE ATTACHED SENSORS

Sensor ID  Location Target joint
01, 02  Elbows Forearms
03, 04  Top of trapezius Upper arms and Shoulders
05, 06  Pectoralis major Upper arms and Shoulders
07, 08  Back of deltoideus Shoulders and spine
09, 10 Upper side of latissimus dorsi ~ Spine
11, 12 Lower side of latissimus dorsi ~ Spine
13, 14  Flanks Spine
15,16  Hip Thighs
17, 18  Side of hip Thighs
19, 20  Fore side of knee Shins

The sensor is made of only soft material that makes itself
easily wearable and lightweight. It can operate up to over
130% strain due to its high stretchability (see Fig. 3). When
stretched, the embedded microchannel increases electrical re-
sistance based on the increase and the decrease of its length
and the cross-section, respectively. We assume that the effect of
temperature change of the human body are negligible based on
the result of our previous work [23].

The resistance changes of the soft sensors are measured by a
simple voltage-divider circuit [13] and a 16-bit analog-to-digital
converter data acquisition module (NI USB-6259, National In-
struments) [24]. The measured data is transferred to the pro-
cessing computer through universal serial bus (USB) interface.

B. Sensor Placement

The location of the soft sensors were carefully selected in
consideration of the position of the body joints as well as the
position of the joint muscles, as shown in Table  and Fig. 4(a). A
total of 20 soft strain sensors were attached on the sensing suit:
6 and 14 sensors on the lower and the upper bodies, respectively.
The soft sensors were attached directly to the elbow (ID: 01, 02)
and the knee (ID: 19, 20) joints that have a single DOF [5]. To
measure both bending and twisting of the hip joint simultane-
ously, four sensors were attached to the back (ID: 15, 16) and
the side (ID: 17, 18) of the hip.

In contrast to single-DOF joints, the upper body joints, espe-
cially the spine and the shoulder, make complex motions using
multiple joints and muscles. Therefore, we attached multiple
sensors to the upper body and predicted the motion of the spine,
shoulder, and upper arms by weighted composition of the sensor

= sensor

(b)

Fig. 4. (a) Locations and IDs of the sensors on the sensing suit.
(b) Front and back of the prototype.

outputs. Since the movements of the spine are generated by the
muscles around them, we attached a total of eight sensors on
these muscles. Four sensors (ID: 11, 12, 13, 14) were attached to
the lower part of the upper body along the muscles at the spine,
and the other four sensors (ID: 07, 08, 09, 10) were attached to
the upper part of the back. In addition, the motion of the shoul-
der and the upper arm are more complex than the other parts due
to the shoulder joints that have five DOFs: roll, pitch, yaw, and
two-DOF translations in the sagittal plane. We considered the
directions of the muscle fibers of the three muscles that move
the shoulder: trapezius (ID: 03, 04), pectoralis major (ID: 05,
06), and back of deltoideus (ID: 07, 08).

Fig. 4(b) shows the complete prototype of the soft wearable
sensing suit. As a garment base, we used a flexible spandex suit
with a Velcro-friendly surface for easy attachment and detach-
ment of the soft sensors as well as the optical tracking markers
for calibration.

C. Limitations of the Sensing Suit

In order to understand the nonlinear characteristic of the soft
sensor in motion, we attached a soft sensor to the knee joint
[see Fig. 5(a)] and measured the sensor signals. Reference joint
angle values were also collected from a motion capture system
simultaneously.

Fig. 5(b) shows the measured data when the knee joint was
repeatedly in flexion and extension, and (c) shows the relation-
ship between the knee joint angles and the measured signals
from the soft sensor. The result shows nonlinearity in response
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Fig. 5. Measured data from a soft sensor during eight repetitions of
knee joint’s flexion and extension motions. (a) lllustration of the sen-
sor attachment on a knee joint. (b) Measured sensing data over time.
(c) Relation between the knee joint angle and the measured sensor
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Fig. 6. Sensor outputs during a windmill motion. (a) Back of deltoideus

(ID: 07, 08). (b) Lower side of latissimus dorsi (ID: 11, 12).

and hysteretic loops during flexion and extension. It was already
observed that the nonlinearity was caused by the unwanted pres-
sure when the sensor was directly placed on a bony surface [5],
as well as by the hysteresis of the sensor itself [22].

Fig. 6 shows the output signals from the spine and the shoulder
sensors during a windmill (WM) motion. Although the two
sensors in each joint were symmetrically positioned, the signals
showed difference in magnitude, noise, and pattern. This is due
to the aforementioned issues of soft sensors when combined with
a suit, such as alignment, anchoring, slippage of the sensors, and
deformation of the human body [10], which consequently lead
us to think about implementing a deep neural network to deal
with the issues more effectively.

V. CALIBRATION USING DFM-NET

The aim of the sensor calibration is to find a calibration model
Fin
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Fig. 7. Schematic representation of data acquisition setup (triangle:
local coordinate center, circle: tracking points).

where (2 is the calibration parameters. The model F' predicts
the state y from the sensor output z. In this paper, we define a
new calibration model, DFM-Net, and learn €2 through machine
learning. In the training step, our model learns €2 using a training
data set consisting of a pair of sensor output x and optical
motion capture data y. After training, our model should be able
to predict the current motion of the wearer y from x using the
trained model.

A. Measurement Setup for Calibration

The environment for acquiring calibration data sets is shown
in Fig. 7. To acquire training data sets, the user wore the sensing
suit and stood in a 4 m x 4 m calibration space, and then
made calibration motions. The resistance changes of the 20 soft
sensors were then measured by the acquisition circuit and DAQ.
At the same time, the reference motions were measured by
an optical motion capture system (Prim13, OptiTrack), which
included five optical cameras and dedicated software [16]. We
selected 13 tracking points (an atlas, both scapulars, shoulders,
elbows, wrists, knees, and ankles) from the reference motions to
reconstruct the predicted pose skeleton [see Fig. 7(b)]. The hip
center was defined as the local coordinate center of the proposed
model. The data acquisition rate was set at 120 Hz for both the
soft sensors and the optical motion capture system.

B. Data Preprocessing

At each time step ¢, data sets from the soft sensors and the
motion capture system were collected as a signal vector z(!) €
RS and a position vector y*) € R3M |, respectively,

I(t) — {z(lt)’x(zt), C. ,I’g”} @)
v ="yl Ly € R Q)

where S denotes the number of sensors, M denotes the number
of tracking points, and m denotes the index of tracking points.
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Fig. 8. Architecture of DFM-Net: z(!~"*) is a sequence of the sensor output. () is a temporal feature vector, and (") is a predicted position of
the tracking points.
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is used so that the sequential phenomenon of the human motion - ~
.. t-1) clt)
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where n denotes the time window. No preprocessing procedures, it it alt ol o
such as a low-pass or band-pass filter, were used in this process. (o ) o ])(teh] [ o ]
s S Sl S hto
C. DFM-Net: Deep Full-Body Motion Network ~ J
x(t)
The architecture of DFM-Net for the soft wearable sensing (@)
suit is shown in Fig. 8. The model is comprised of two com-
ponents: a sequence encoder network (SEN) and a kinematic
decoder network (KDN). The network flow in our model is as
follows. First, a feature vector 7“(‘), which represents the se-
quential phenomenon of the sensor outputs is extracted from
the input data z(*~"**) using the SEN. Then, the KDN receives
(!) and predicts the current position of tracking points ¢(*). In
the training step, the pair of collected data sets, z('~"*) and
y(”, are used to train the DFM-Net model. After training, the
model only observes (! ~"*) to predict §(*). Finally, the motion
skeleton is created from the predicted position at tracking points
gt
. b
1) Sequence Encoder Network: The SEN is based on long ®)
short-term memory networks (LSTMs), which are commonly Fig. 9. (a) LSTM cell in the network model, where o (-) is the sigmoid

used as deep learning techniques for temporal sequence analy-
sis [25]. The LSTMs can memorize previous inputs and use the
memory to predict sequential outputs by recurrent connections
in hidden units, which store temporal information. Fig. 9(a)
shows an operation flow of each LSTM cell. We denote the sig-
moid activation function by o(+), the hyperbolic tangent func-
tion by tanh(-), and the element-wise multiplication operation
by ©. At the beginning, each LSTM cell takes information as
follows: the input of the LSTM cell z(*), the previous hidden
state by, € R¥, and the previous cell state ¢(!~1) € R¥, where
k is the dimension of the hidden and cell states. The cell first
chooses what information is accepted from the previous cell
state c{'~1) by the forget gate unit

79 = (Upe® + Weh D 4 by )

where U € R¥*6 W e R¥*S, and b€ R* are the input
weights, recurrent weights, and biases, respectively. The next
step decides what information is taken from the input vector

activation function, tanh(-) is the hyperbolic tangent function, and ©®
is the element-wise multiplication operation. (b) Unfolded n sequential
structure of the sequence encoder network.

(") by the input gate unit i(*) and activation unit a(*)

i) = ¢ (UL-M +WiRED 4 b,i) ©6)
a) = tanh (Uaxm L W,AED 4 ba> . %)

Then, the cell state c(!) at the current time step ¢ is derived from
the above-mentioned equations as follows:
ot — f(t) ® =1 + i ® a®. (8)

After that, the new hidden state h(?) is obtained from the current
cell state c(*) and output gate unit as follows:

o) =g (on“) L WA 4 bo) 9)

hY) = o) @ tanh(cM). (10)
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Fig. 10.  Kinematic decoder network: The model predicts the location
of each tracking points 7 € R3 from the input feature vector r(*).

Fig. 9(b) illustrates the unfolded n sequential structure of the
SEN. In each time step ¢, the sequential sensor outputs z('~":*)
pass through the two LSTM layers to extract the temporal in-
formation A(*) from z(*~"!) . Finally, the last sensor output z(*)
and hidden state form the SEN (") are concatenated into a fea-
ture vector (") € R**¥ to represent both current and temporal
features at once.

2) Kinematic Decoder Network: Now, we present a model-
free approach based on a deep feedforward network to predict
the position of the tracking points %) from the feature vector
() (see Fig. 10). Our network had six fully connected neu-
ral network (FCNN) layers. Each layer is modeled as in the
following equation:

Y

where 7; is an input vector of the ¢th layer, w; and b; are weights
and biases, respectively. As an activation function, a rectified
linear unit (ReLLU) is used at each layer except the last one [26]

ReLU(r) = max{0,r}. (12)

Sy (rizwi, by) = vl w; + b;

From the above-mentioned two equations, we derive the ¢th
layer output for the next layer as follows:

ri+1 = max{0, riTw,' +b;}. (13)

The output vector § € R¥, from the last layer f(oy, represents
the 3-D coordinates of M tracking points.

3) Implementation Details: We built our model using the
PyTorch deep learning framework [27]. The number of sensors
S was 20, and the number of tracking points M was 13. At each
time step ¢, we observed the past 1 s, thus the input window
size n was 120 frames. The dimension of the hidden state in the
SEN, k, was 128. Dropout [28] was only used in the first LSTM
layer in SEN to prevent overfitting, and the dropout rate was
0.5. In KDN, the first-layer’s input dimension was 148, the last-
layer’s output dimension was 3 x 13, and the others were 128

TABLE Il
NETWORK MODELS AND PARAMETERS OF DFM-NET

Component  Layer index ~ Model  Parameters

SEN 1 LSTM  Hidden: 128, Dropout: 0.5
2 LSTM  Hidden: 128

KDN 1 FCNN  In: 148, Out: 128, ReLU
2 FCNN  In: 128, Out: 128, ReLU
3 FCNN  In: 128, Out: 128, ReLU
4 FCNN  In: 128, Out: 128, ReLU
5 FCNN  In: 128, Out: 128, ReLU
6 FCNN  In: 128, Out: 39

(see Table II). The Glorot initialization algorithm [29] was used
to initialize the parameters in the DFM-Net model. Adam [30]
was used as our optimization algorithm, and the learning rate
was 0.001. As the cost function, we used a mean square error
(MSE) loss defined as follows:

1 N M 3
MSE(Q, y) - W Z Z Z(g]i,m,d - yi,m,d)z
d

i m

where N is the number of samples in the test data set and d is the
dimension index of the tracking points. In training, the number
of epochs was 30, and the minibatch size was 500.

V. EXPERIMENTAL RESULTS

For evaluation, we captured three types of activity data sets:
squat (SQ), bend and reach (BR), and WM. In each data set, the
training set size was 7560 frames (63 s), and the test set size
was 1560 frames (13 s). In training, the model learned a data
set in which these three training sets are combined to represent
various motions using one trained model.

A healthy male, 1.79 m in height, was recruited as a subject.
The action space was a virtual box of .31 m x 1.61 m x 2.09 m
(height).

We compared our method with LRs [31], which have been
used for tracking 3-D ankle motions [6]. The objective of LRs
is finding the coefficients W € R(S*+1)>3M o minimize the
residual sum of squares between the coordinates of the tracking
points Y € RY>3M and the predictions X W from the sensor
outputs X € RV *(54+1) a5 follows:

min | XW - |}

where A is the polynomial order of the LR model. In the ex-
perimental results, we only showed a first- (LR1) and a second-
(LR2) order polynomial LRs, since the calibration accuracies
after third-order were lower than the second-order using the
given training data sets [31]. We used the scikit-learn machine
learning library to implement these comparison methods [32].
To measure the performance of the proposed method, we used
a RMSE as follows:

. 1 N M 3,
RMSE(g,y) = \/3N]\/[ Zi Zm Zd(yqﬁ,m,d = Yim.d)*

In our experiment, our model required relatively short time
to train the model and predict the position of body parts. The
training process took no more than 75 s using a graphics pro-
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were captured every 60th frame (0.5 s).

TABLE Il
EXPERIMENTAL RESULTS OF FULL-BODY MOTION TRACKING AND
COMPARISON WITH THE OTHER CALIBRATION METHODS

RMSE (mm)  Overall  SQ BR WM
DFM-Net(ours) 29.5 219 252 387
LR1 54.6 409 450 724

LR2 40.0 214 268 60.3

cessing unit (GeForce GTX 1080, NVIDIA). Furthermore, the
prediction took 0.21ms on an average, which is faster than the
sensor data acquisition rate (120 Hz), thus enabling our method
to predict the full-body motion in real time.

A. Result of Full-Body Motion Tracking

Table III demonstrates the performance of our method and
the comparison with the other calibration models. The length
of each training motion was 63 s, and the method was tested
using four test sets: SQ, WM, BR, and a merger of all test
data sets. As can be seen in the table, the overall error is only
29.5 mm, while the worst-case (WM) is just 38.7 mm. From
this result, we confirm that our sensing suit and DFM-Net cal-
ibration model are accurate enough to track full-body motions,
considering the action space of the human body. In compari-
son with the other calibration methods, DFM-Net showed the
best performance in all tests except for the SQ motion. How-
ever, the difference between DFM-Net and LR2 (the second
best) is negligible (0.5 mm) in the SQ. It can be inferred from
this performance gap that the linear combination models have a
limitation to represent the complexity of human motions.

Notably, the DFM-Net shows outstanding performance in
WM (21.6 mm) compared with the other methods. The ma-
jor difference between the WM and the other motions is the
complexity of the spine movement. The WM has both twisting
and bending of the spine, but the other motions do not have

3.0 3.5 4.0 4.5 5.5 5.5

Motion flow of reconstructed skeleton using the soft wearable sensing suit and the proposed calibration method, DFM-Net. The motions

twisting. This result supports that the DFM-Net better represent
the rotation of the upper body.

To evaluate the tracking quality of sequential body motions,
the full-body skeletons were reconstructed from the predicted
tracking points §(*) every 60th frame (0.5 s). From Fig. 11, we
can observe that the reconstructed skeleton follows in prox-
imity to the ground truth from the optical motion tracking
system.

In practice, the size of the calibration data set is an important
factor of wearable sensors. Collecting the calibration data set
is hard and time-consuming. To test how many data sets are
needed to calibrate our sensing suit, we cropped each training
motion data set with a certain set size and merged into one set.
Fig. 12 presents the RMSE of the test result according to the
size of each training motion. As seen in Fig. 12, the proposed
method requires a fewer data set for the same calibration qual-
ities compared with the other methods. Moreover, the overall
RMSE of the proposed method rapidly decreased and become
as small as almost 50 mm only within the first [see Fig. 12(a)].
Especially from 10 to 30 s, LR2, which showed the next best
performance in overall motions, shows the worst performance
due to overfitting of the noise in the model with the calibration
data set [33].

The drift effect is another issue in sensor calibrations. Fig. 13
shows the changes in RMSE of the prediction results over time
and their linear fitting lines. If the calibration result has a drift,
the gradients of the linear fitting lines must be positive. However,
they are almost zero as we can see in Fig. 13. Therefore, we can
say that the drifts in the sensor signals from the suit are negligible
atleast for the three test motions.

B. Detailed Observation of the Tracking Results

To present a detailed analysis of full-body motion tracking
results, we categorized the tracking points into target segment
sets: atlas, shoulder, elbow, wrist, knee, and ankle. Fig. 14
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Fig. 13.  The changes in RMSEs of the prediction results over the

time (dashed) and their linear fitting lines (solid). SQ: 0.13¢ + 20, BR:
0.30¢ + 22, WM: —0.29¢ + 38.

illustrates the test results and Table IV summarizes the results.
In Fig. 14, the cumulative distribution (y-axis) represents how
many tracking points are accurately predicted within the given
RMSEs (z-axis).

Fig. 14(a)—(d) illustrate the calibration quality of the complex
spine motions, such as bending and twisting. The accuracy of
the atlas represents the calibration quality of the spine’s bending
motion. In the SQ motion, the position of the atlas is just up
and down. In the BR, it moves in both the upper and forward

directions because the spine is bent forwards. In the WM, the
side direction is added. As we can see in Fig. 14(a), only a
quarter of the predictions are over the 40 mm.

The prediction quality of the twisting motions of the spine
can be inferred from the RMSE of the shoulders that is shown
in Fig. 14(b). The WM, other than the SQ and the BR, has the
spine’s twisting motion. The twisting is more complicated to
measure than the bending because the sensor stretches along
multiple axes. The maximum gap between the WM and the
others is less than 15.2 mm, and the cumulative distribution
is 0.75, as shown in Fig. 14(b). This result supports that our
method can predict the spine’s twisting with almost the same
accuracy as that of bending.

Fig. 14(c) and (d) present the prediction result of the arm
positions. In the SQ, the upper arms move from the bottom to
a forward-up position. In the BR, the upper arms move up and
down and the elbows are bending. In the WM, the shoulders and
elbow joints are fixed. As can be seen in Fig. 14(c), which repre-
sent the prediction accuracy of the shoulder joint motion, only a
quarter of the elbow predictions gave RMSEs over 40.4 mm, the
worst-case motion (WM). In addition, the RMSE of the wrist is
less than 29 mm except the WM motion (see Table I'V).
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TABLE IV
EXPERIMENTAL RESULT OF THE SELECTED SEGMENT’S POSITIONS
RMSE (mm) Atlas Shoulder Elbow  Wrist Knee  Ankle
SQ 11.6 30.9 13.5 27.3 28.2 13.1
BR 232 31.5 24.3 29.0 30.2 10.8
WM 33.8 47.1 34.7 43.5 534 17.1

Fig. 14(e) and (f) show the motions of the thighs (position of
knee) and shins (position of ankle). In Fig. 14(e), the calibration
quality of the twisting motion (WM) was slightly lower than the
others, but only a quarter of the predictions gave RMSEs over

62.6 mm.

C. Model Analysis

In order to understand the internal process of the DFM-Net,
we compared the input feature vector x, which is the output
of the suit, and the internal feature vector r, which is the out-
put of the SEN. We projected these two feature vectors from
high-dimensional space to a two-dimensional (2-D) plane by
t-distributed stochastic neighbor embedding [34] to visualize
and compare the characteristics of the two feature vectors. A
distance between two points in the 2-D plane represents the

similarity of the features at these points (less distance means
high similarity).

Fig. 15 illustrates the temporal flow of the x (a), and r (b) for
each motion: SQ (red), BR (blue), and WM (green). The feature
flow of all motions in both = and 7 is in a cyclic pattern, which
represents the repetition of the activity.

The feature flows in the feature vector z is highly disordered,
which is likely due to the nonlinear property of the multiple soft
sensors. For example, feature flows of similar SQ motions in the
shaded area are highly different although they were expected to
be constantly alike. On the other hand, most feature points from
the motions in the shaded area are located very close to one
another although they are from different sequential poses. The

other two motions also show similar results.

Fig. 15(b) demonstrates that the SEN is able to extract the
feature that best represents the temporal sequence and the cur-
rent motion from the output signals of the soft wearable motion
sensing suit. Although all three features are similar, the feature
flows in feature vector r are more distinguishable than the other
two. Thus, it implies that our model is more robust even with
the presence of the anomalies, such as noise.

In conclusion, Fig. 15 indicates that our deep learning model
successfully learned how to generalize the characteristics of the
sensor data because its representational capacity was sufficient
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Fig. 15.

Temporal flows of the features and their reference motions from the optical motion tracking system. (a) Soft sensor output features of soft

wearable sensing suit . (b) Extracted features using the SEN r from the z.

to capture the nonlinear and the hysteretic characteristics of the
soft sensing suit for full-body motion tracking. Although LRs
are able to calibrate the multiple sensors in our experiment, their
hypothesis space were unsuitable for modeling the intractable
properties due to the imperfection of its modeling capability.
Thus, it was weak in the untrained anomalies, making clear the
reason that our deep learning model showed better performance
than the others.

VI. CONCLUSION

In this study, we developed a calibration method, DFM-Net,
for a soft wearable sensing suit for full-body motion tracking.
While previous research has mostly focused on the motion of a
single joint, we measured full-body motions using multiple soft
sensors. Furthermore, we defined a calibration method, DFM-
Net, using deep neural networks to overcome the obstacles of
the soft sensor calibration and challenges in human kinematic
modeling.

To evaluate our method, three types of athletic motions were
tested, and the RMSE of overall motions was 29.5 mm, while
that of the worst-case motion (WM) was only 38.7 mm. The
experimental results showed that the proposed method provided
a higher accuracy even with a small-sized calibration data set
than the other methods.

In addition, the proposed model was able to extract the fea-
tures that well represent the body poses in a motion from the
nonlinear raw outputs from the multiple sensors as described in
the model analysis.

Our method showed the high accuracy in pose prediction,
but there is a remaining challenge of a need for calibration
every time when a user wears the sensing suit. One area of the
future work will be development of an improved calibration

model that can reuse pretrained model parameters to simplify
the calibration procedure.

To the best of our knowledge, this is the first study to track the
full-body motion using soft strain sensors and deep neural net-
works. We believe that this research will provide a new research
directions in soft robotics.

Details of our implementation and source codes are available
at https://github.com/KAIST-NMAIL/DFMNET.
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