
2866 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

Bayesian Weight Decay on Bounded Approximation
for Deep Convolutional Neural Networks

Jung-Guk Park and Sungho Jo , Member, IEEE

Abstract— This paper determines the weight decay parameter
value of a deep convolutional neural network (CNN) that yields a
good generalization. To obtain such a CNN in practice, numerical
trials with different weight decay values are needed. However,
the larger the CNN architecture is, the higher is the compu-
tational cost of the trials. To address this problem, this paper
formulates an analytical solution for the decay parameter through
a proposed objective function in conjunction with Bayesian prob-
ability distributions. For computational efficiency, a novel method
to approximate this solution is suggested. This method uses a
small amount of information in the Hessian matrix. Theoretically,
the approximate solution is guaranteed by a provable bound and
is obtained by a proposed algorithm, where its time complexity
is linear in terms of both the depth and width of the CNN.
The bound provides a consistent result for the proposed learning
scheme. By reducing the computational cost of determining the
decay value, the approximation allows for the fast investigation
of a deep CNN (DCNN) which yields a small generalization
error. Experimental results show that our assumption verified
with different DCNNs is suitable for real-world image data sets.
In addition, the proposed method significantly reduces the time
cost of learning with setting the weight decay parameter while
achieving good classification performances.

Index Terms— Bayesian method, convolutional neural
networks (CNNs), inverse Hessian matrix, regularization, weight
decay.

I. INTRODUCTION

BASED on deep learning techniques [1]–[3] that have
gained considerable attention, convolutional neural net-

works (CNNs) get to include deep layers of a large number
of trainable weights. Due to their powerful representation
of deep layers, CNNs are an essential part of applications,
such as handwritten digit recognition [4], object classifica-
tion [5] and detection [6], and data analysis [7], including
intelligent systems [8]–[10]. This is because CNNs possess
the property of neural networks (NNs); the training capacity
is simply extended by stacking layers or adding more hid-
den nodes, resulting in a fitting to any input–output paired
data [11], [12]. This property provides the reason why

Manuscript received February 16, 2018; revised July 25, 2018 and
October 29, 2018; accepted December 2, 2018. Date of publication
January 16, 2019; date of current version August 21, 2019. This work
was supported by Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT)
(No. 2017-0-00432). (Corresponding author: Sungho Jo.)

The authors are with the School of Computing, Korea Advanced
Institute of Science and Technology, Daejeon 34141, South Korea (e-mail:
jgparknn@kaist.ac.kr; shjo@kaist.ac.kr).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2018.2886995

recent research [13]–[16] has widely employed NNs. How-
ever, this inevitably reduces the generalization ability of NN
(i.e., it yields a large generalization error [17]), which can
result from either a large number of model parameters [18]
or the size of the network weights [19]. In prior NN research,
Kroogh and Hertz [20], Hassibi and Stork [21], and
MacKay [22], [23] considered similar problems and sug-
gested efficient solutions in a shallow feedforward network.
However, their implementations become practically impossible
for an NN with a large number of weights. For example,
Hassibi and Stork [21] and MacKay [22] used the Hessian
matrix that requires O(W 2) computer memory, where W is the
number of trainable NN weights. This leads to a significant
problem: as the depth of NN increases, the Hessian matrix
cannot fit in the memory. Mackay [23] determined the weight
decay parameter with the evidence framework in a shallow
feedforward network. However, this work cannot be directly
applied to a large-scale NN because of the problem of com-
puting the Hessian matrix derived from the Gaussian approx-
imation in the evidence framework. Although the Hessian
matrix can provide the networks with good information during
learning, its computational problem is hard to solve and
should be properly addressed. Therefore, this paper proposes
an approximation to information of the giga-scale or tera-scale
Hessian matrix without computing all elements in the matrix.
This approximation can assist with training deep NNs in order
to yield a good performance.

In NNs, a practical way to improve the generalization is
to add a weight decay parameter to an objective function
(i.e., the regularization of the network weights). Generally,
a procedure of determining the decay parameter is based
on numerical trials, which requires a high computational
cost when the number of trials increases. Moreover, this
approach is inefficient for deep NNs that require a longer
time for learning. Hence, the cost of the numerical trials
cannot be ignored. However, we cannot skip this procedure,
since the network’s performance on a test data set depends
on a properly chosen value of the decay parameter. As an
application example, suppose that a deep CNN (DCNN) has
been designed and is expected to yield a good test error,
where an architecture (number of layers or number of hid-
den nodes) of the DCNN should be selected. The general
approach is a grid search method to determine both the
weight decay parameter and CNN architectural parameters.
The depth (number of layers) or width (number of hidden
nodes) of the CNN can be an architectural parameter of the

2162-237X © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 06,2022 at 06:15:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3216-7502
https://orcid.org/0000-0002-7618-362X

PARK AND JO: BAYESIAN WEIGHT DECAY ON BOUNDED APPROXIMATION FOR DCNNs 2867

network. Let a set of the architectural parameters be P =
{pi : pi is CNN architectural parameter(s) of interest}. For
example, p1 = 100 and p2 = 200 represent the depths 100 and
200 of a CNN; p1 = (100, 10) and p2 = (100, 20) denote
the widths 10 and 20 with the depth 100, respectively. The
time complexity of the grid search procedure for determining
values of the decay parameter and pi ∈ P can be considered
as O(

∑M
i=1 CWi), where Wi is the number of weights of the

CNN with respect to pi . C and M represent the number
of the decay parameter values and the number of settings
of the architectural parameters, M = |P|, respectively. This
procedure selects the CNN that produces the minimum test
error over M CNNs with different settings of architectural
parameters. Examples of an empirical study that requires this
procedure include recent articles [24], [25], which showed that
CNNs with many layers commonly achieve a small test error.

However, the problem of the above-mentioned procedure is
the time cost of training such a DCNN with determining a
good value of the weight decay parameter, because the cost of
feedforward and backpropagation computation is proportional
to the number of CNN weights. In addition, the time to select
the best one among M CNNs depends on two factors: M
and the time cost of determining the weight decay parameter.
Because the two combined factors result in a large computa-
tional cost, efficiently computing a good weight decay value of
the deep NN becomes more important. Thus, we aim to reduce
the computational cost of determining the decay parameter so
that the cost of the CNN selection problem is O(

∑M
i=1 Wi).

This complexity is valid for training M different CNNs
(e.g., M = 3 for LeNet [4], AlexNet [5] and residual network
(ResNet) [24]) to obtain the best test error among those of the
networks with a data set of interest.

As an alternative approach to addressing the generaliza-
tion problem in deep learning, Srivastava et al. [26] and
Wan et al. [27] reported that learning with randomly removing
nodes or connections successfully prevents overfitting and
reduces generalization errors in deep NNs. However, these
methods should determine their own parameter (i.e., drop
probability) in conjunction with selecting an NN layer on
which they operate, requiring a high computational cost.
Other recent works addressed new regularization methods for
the generalization ability of deep NNs [28], [29]. However,
the methods mentioned above employed the weight decay
whose value should be determined.

Therefore, having considered the importance of the decay
parameter, we establish an efficient determining process
of the decay parameter that is based on theoretical
foundations [22], [30]. Since estimating the parameter is
known to be a challenging problem [31], related works are
topics of interest in the NN community [32], [33]. To the
best of our knowledge, an analytical and practical solution of
the decay parameter of DCNN has not yet been introduced.
This paper suggests the solution, handling both a nonconvex
objective function and a large amount of NN weights which
make it difficult to obtain the solution for the decay parameter,
especially for deep networks. To overcome this nonconvex-
ity problem, we propose a method that iteratively operates
to determine the decay parameter via an analytic Bayesian

solution. To address the problem caused by a large amount of
NN weights, a novel approximation is presented.

The proposed approach is motivated by earlier works of
the structural risk minimization (SRM) principle [18], [34]
and is related to the evidence framework [23] in which we
propose the parameterized cross-entropy objective function.
Extreme learning machines [16], [35] are related to our work
because they reduce the computational complexity of learning
with a selection procedure. Bayesian NNs include our model.
However, in contrast to traditional Bayesian NNs that are
related to Gaussian processes [36]–[38], we derive a Bayesian
probability function to determine the weight decay value.

The contributions of this paper are as follows. First,
we establish a relationship between the decay parameter and a
novel Bayesian probability distribution to derive an objective
function called the intrinsic integer model (IIM) so that the
relationship results in a trained CNN which yields a small
generalization error. This automatically determines a proper
value of the weight decay parameter, which differs from other
recent deep learning techniques that require the procedure of
decay parameter setting [26]–[29]. Second, we introduce an
approximation for the IIM’s computational efficiency called
the method of the trace approximation (META) of the inverse
Hessian matrix with a provable bound, which guarantees that
the time complexity is linear in both the depth and width of
the CNN so that it overcomes the problem of the computing
the Hessian matrix [21]–[23]. In addition, an analysis of the
SRM principle can be conducted when a CNN trained by our
method has finite Vapnik–Chervonenkis (VC) dimension [39].

Because the computational cost of numerical trials for deter-
mining the decay parameter is expensive for DCNNs, the ana-
lytical solution by the proposed method significantly reduces
this cost and facilitates an extensive investigation of DCNNs.
This is a notable advantage of our work. In this paper,
the proposed method is applied to three different CNN models.
Their results are obtained using public benchmark image data
sets and show that our Bayesian assumption is suitable for real-
world image data. The remainder of this paper is organized
as follows. Section II briefly introduces the motivation of our
work. Section III presents in detail the proposed scheme and
algorithm. Section IV shows the experimental results. Finally,
Section V concludes this paper.

II. STRUCTURAL RISK MINIMIZATION

A. Theoretical Motivation

Statistical learning theory [18] addresses the problem of
function approximation with a class of functions F =
{ f (x, w), w ∈ R

W } that are parameterized by a weight
vector w of length W . The vector w is obtained by a training
set of samples D = {(x(i), t(i))}n

i=1, where x(i) and t(i) denote
the i th input data and its label, respectively. Assuming samples
of the training set are drawn from an unknown joint probability
distribution P(x, t), statistical learning seeks the best function
in F which fits well to the training set. The quantity of the
fitting is measured with a loss L(t, f (x, w)) and is defined by

R(w) =
∫

L(t, f (x, w))d P(x, t) (1)

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 06,2022 at 06:15:35 UTC from IEEE Xplore. Restrictions apply.

2868 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

which is called the generalization error. Because the joint
distribution is unknown, the training set is used to minimize (1)
with empirical risk Re = (1/n)

∑n
i=1 L(t(i), f (x(i), w)). How-

ever, one of the issues with the empirical risk minimization
is that it does not always guarantee the minimum of (1).
SRM [40, p. 94] is an alternative approach to minimizing (1)
by evaluating both an empirical risk and penalty function,
which ensures an upper bound of the risk. SRM introduces
a nested structure of subsets Sp of F , and we consider
Sp = { f (x, w), �w�2

2 ≤ Cp}. f is an NN and Cp is the
structural penalty of subset Sp , (1 ≤ p < ∞), which results
in S1 ⊂ S2 ⊂ . . . Sp . . . of the nested set. In this paper,
we briefly introduce a formula for SRM, which is the basis
for our learning method. Using the Lagrange multiplier for the
penalty function �w�2

2, SRM constrains the fitting capacity of
a function f in F

Rs(w) = 1

n

n∑
i=1

L(t(i), f (x(i), w)) + λp�w�2
2 (2)

where � · �2 denotes the L2-norm and λp is the weight
decay parameter of Sp . The goal is to select the best subset
S∗ ⊂ F which contains a function f that produces the
minimal penalized risk R∗

s = inf f ∈S∗ Rs(w). Since the SRM
principle applied to a learning model requires every hypothesis
of the nested sets to have a finite VC dimension [39, p. 421],
this paper uses the proof of [41, Th. 3] to support that a
CNN with a piecewise linear activation function has a finite
VC dimension. Consequently, our work can be analyzed using
the SRM principle. To select an appropriate CNN that yields
an approximation of R∗

s , an implementation and algorithmic
way for both determining λp and minimizing (2) are presented
in the following and described in Section III, respectively.

B. Implementation

For our implementation, a class of CNNs with a fixed
architecture (i.e., a fixed number of layers and hidden nodes)
is represented by a set of functions, F = { f (x, w), w ∈ R

W },
where f is a CNN, x is the input data, and w is a CNN weight
vector of length W . The CNN consists of cascade functions,
and its output is obtained by the feedforward step as

f (x, w) = (
f L
m ◦ f L−1

s ◦ . . . ◦ f (1)
s

)
(x) (3)

where f L
m is the final layer and f (l)

s = f (l)
p ◦ f (l)

a ◦ f (l)
v ,

where f (l)
v is the lth convolution layer, and f (l)

a denotes
an activation function of the network with finite VC dimen-
sion (e.g., the rectified linear unit activation function ReLU,
a(x) = max{0, x}). f (l)

p is the pooling layer and the output
activation in the final layer f L

m is a c-dimensional vector.
Thus, f (x, w) = (f1(x, w), f2(x, w), . . . , fc(x, w)) and each
element is obtained through the softmax function as follows:

fk(x, w) = exp
(
net(L)

k

)
∑c

z=1 exp
(
net(L)

z
) (4)

for 1 ≤ k ≤ c, where net(L)
k = w(L)T

k a(L−1). Let w(L)
k and

a(L−1) denote the column vector of CNN weights that are
connected to the kth output node in the Lth layer (final layer)

and the column vector of the hidden activation in the L − 1th
layer, respectively. The lth convolutional layer f (l)

v has the
weights w(l) = (w(l)T

1 , w(l)T
2 , . . . , w(l)T

k(l))T of k(l) CNN filters
of a column vector. Finally, the total CNN weights are repre-
sented by a column vector w = (w(1)T, w(2)T, . . . , w(L)T)T.

A set of samples for training the CNN is denoted by D =
{(x(i), t(i))}n

i=1, where x(i) and t(i) are an input image data in
the i th sample and its target label, respectively. In this paper,
t(i) = (t(i)1 , t(i)2 , . . . , t(i)c) is represented by one-hot encoding
for a class label that an input image x(i) belongs to.

III. METHOD

This section follows (2) and begins with a Bayesian frame-
work. The CNN (3) is generally trained by minimizing the
objective function

Rc(w) = −
n∑

i=1

c∑
k=1

1
(
t(i)k = 1

)
log fk(x(i), w) + λ�w�2

2 (5)

where 1(·) and fk denote the indicator function and the
kth CNN output in (4), respectively. λ is the parameter that
controls the fitting ability of the CNN and constrains the size
of CNN weights, where we should choose its appropriate value
to minimize (5).

A. Proposed Objective Function

For training the CNN (3) with determining the parameter λ
value in (5) simultaneously, we propose a multiclass classifica-
tion method with two parameters, η and ζ , that are associated
with probability distributions. They are related to the evidence
framework which is successfully applied to NNs [23] and sup-
port vector machines [42], [43]. We model the two parameters
in order that one gains weighted learning information from
an objective function and the other obtains information about
the CNN weights. We assume that CNN weights follow the
probability function parameterized by η ∈ R+ as follows:

p(w|η) = exp
(− η

∑
j w2

j

)
Iw(η)

(6)

where Iw(η) = ∫
exp(−η

∑
j w2

j)dw and w j is an element
of w. The probability function for the first term on the right-
hand side in (5) is the likelihood that is detailed in the
following. For the multiclass classification problem, a gen-
eralized Bernoulli distribution [44] (i.e., categorical distribu-
tion) is commonly assumed in probabilistic machine learning.
Considering the intrinsic relationship of the decay parameter,
we propose the likelihood of generalized Bernoulli distribution
by the CNN output that is parameterized by ζ ∈ Z+ as follows:

p(tk = 1|x, w, ζ) =
c∏

k=1

uk(x, w, ζ)1(tk=1) (7)

where tk ∈ {0, 1}, (1 ≤ k ≤ c), and uk(x, w, ζ) = fk(x, w)ζ .
Thus, the likelihood term as a function of the training set
D = {(x(i), t(i))}n

i=1 is evaluated as follows:

p(D|w, ζ) =
n∏

i=1

{
c∏

k=1

uk(x(i), w, ζ)1(t (i)k =1)

}
. (8)

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 06,2022 at 06:15:35 UTC from IEEE Xplore. Restrictions apply.

PARK AND JO: BAYESIAN WEIGHT DECAY ON BOUNDED APPROXIMATION FOR DCNNs 2869

For training the CNN, the posterior distribution of w given
both the set D and parameters η, ζ follows the Bayesian
formula as:

p(w|D, ζ, η) = p(D|w, ζ)p(w|η)∫
p(D|w, ζ)p(w|η)dw

. (9)

In (9), the joint probability function p(D|w, ζ)p(w|η) is
evaluated as(η

π

) W
2

exp

(
n∑

i=1

(
ζ

c∑
k=1

Qi,k (w)

)
− η�w�2

2

)
(10)

where Qi,k (w) = 1(t(i)k = 1) log fk(x(i), w), W denotes the
number of CNN weights, and the negative logarithm of (10)
is

−
n∑

i=1

(
ζ

c∑
k=1

Qi,k (w)

)
+ η�w�2

2 − W

2
log

(η

π

)
. (11)

Note that minimizing (11) with respect to w is equivalent to
minimizing (5). It is assumed that the posterior on w is very
sharp at its maximum ηp and ζp, as in [23]. The probability
function is then marginalized as

p(w|D) =
∫ ∑

ζ

p(w, η, ζ |D)dη

≈ p(w|D, ηp, ζp)

∫ ∑
ζ

p(η, ζ |D)dη (12)

where the probability function p(w|D) is almost governed
by ηp and ζp. Using the Bayes rule, the posterior distribution
of parameters is derived as

p(η, ζ |D) = p(D|η, ζ)p(η, ζ)∫ ∑
ζ p(D|η, ζ)p(η, ζ)dη

(13)

where maximizing the posterior p(η, ζ |D) depends on
p(D|η, ζ) which is marginalized by

p(D|η, ζ) =
∫

p(D|w, ζ)p(w|η)dw. (14)

The probability function p(D|η, ζ) is evaluated using the
Gaussian approximation with Taylor expansion around a local
point w∗, which derives p(D|η, ζ) as follows:

2W/2 exp
(
ζ

∑n
i=1

∑c
k=1 Qi,k (w∗) − η�w∗�2

2

)
η−W/2 det(H)

1
2

(15)

where H is the Hessian matrix of (11) and det(.) denotes the
matrix determinant. This approximation becomes exact as the
gradient of (11) is small. The detailed derivation of (15) is
shown in the Appendix.

A value of the parameter η with respect to the extremum
of (15) is obtained from

∂ log p(D|η, ζ)

∂η
= 0 (16)

which provides the analytical solution for η as follows:

η = γ

2�w∗�2
2

(17)

with γ = ∑W
j=1(λ j (H) − 2η)/λ j (H) where λ j (H) and W

denote the eigenvalue of the Hessian matrix of (11) and the
number of CNN weights, respectively. That is, γ = W −
2η tr(H−1) where tr(.) is the matrix trace. For an analytical
solution of ζ , the density function parameterized by ζv ∈ R+
which takes a value of ζ is introduced, resulting in
p(D|η, ζv) = p(D|η, ζ). A value of the parameter ζv is
obtained by

∂ log p(D|η, ζv)

∂ζv
= ζ0 (18)

where ζ0 has a value of −(n/2ζ), and a value of the
parameter ζ is chosen by

ζ =
⌈

γv − n

2
∑n

i=1
∑c

k=1 Qi,k (w∗)

⌉
(19)

where
·� is the ceiling operator, γv = ∑W
j=1(λ j (Hv) −

2η)/λ j (Hv) and γv = W − 2η tr(H−1
v), and λ j (Hv) denotes

the eigenvalue of the Hessian matrix of

−
n∑

i=1

(
ζv

c∑
k=1

Qi,k (w)

)
+ η�w�2

2. (20)

Note that a value of γv is equal to that of γ . Each derivation
of (17) and (19) is straightforward using the partial derivative
of the log determinant presented in [45].

With the two solutions of η and ζ , the proposed objective
function IIM, the negative log-likelihood of (10), is formulated
as

Rc(w) = −
n∑

i=1

c∑
k=1

ζ1
(
t(i)k = 1

)
log fk(x(i), w) + η�w�2

2

(21)

where (W/2) log(η/π) in (10) is omitted, because it is irrel-
evant to w. Because the CNN with a deep layer has a
larger number of trainable weights, computing the trace of
the Hessian matrix in (17) and (19) is practically infeasible.
Thus, we devise a method to address the problem presented
in the following.

B. Approximation to the Trace of the Inverse Hessian Matrix
Computing the trace of the inverse Hessian matrix in (17)

and (19) requires a cost in terms of memory that is propor-
tional to the number of CNN weights squared. For instance,
if the CNN has 100 000 weights (W = 100 000), then the
implementation requires large amounts of memory O(1010).
Thus, this section introduces a method to approximate the
trace of the inverse Hessian matrix. Suppose that a matrix
Ĥ is an approximation1 of the exact Hessian in (17) and (19)
defined by

Ĥ = 1

2
(H̃ + H̃T) + δ̃ + 2λI (22)

with λ = η/ζ . H̃ is the W -dimensional Hessian matrix with
element H̃(m, n) = − ∑n

i=1(∇m Qi (w∗ +	n)−∇m Qi (w∗))/	,
∇m denotes the mth element of the gradient with respect to

1This form of the matrix can be applied to any objective function that is
twice differentiable.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 06,2022 at 06:15:35 UTC from IEEE Xplore. Restrictions apply.

2870 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

w and Qi (w∗ + 	n) = ∑c
k=1 1(t(i)k = 1) log f (x(i), w∗ + 	n)

where f is the CNN output obtained from (4) and w∗ is the
CNN weights. 	n is a W -dimensional point that consists of all
zeros except for the nth element such as [0, . . . 0, 	, 0, . . . 0]T,
and the value of 	 is set to the constant 10−5. m and n are
the indices of CNN weights and I is the identity matrix. The
symmetric matrix (H̃+H̃T)/2 has a small approximation error,
because the error between the exact Hessian matrix and its
finite-difference approximation is O() [46]. Since the Hessian
(H̃ + H̃T)/2 may not be positive definite, a diagonal matrix δ̃
is employed to make the matrix positive definite.

Defining an s-weight set sw, we suggest the trace approx-
imation META. This method is fast and feasible while
having a provable bound of the trace of (22). We first
construct the block-diagonal matrix principle for the trace
approximation.

Proposition 1: Let the parameter λ ∈ (0, 1] and Ĥd be any
block-diagonal matrix composed of L ×L blocks of Ĥ defined
in (22). Let δ̃ be any diagonal matrix which makes [Ĥd −2λI]
positive definite. Then, tr(Ĥ−1) > tr([Ĥd]−1).

Proof: Let ĤN = (1/2)(H̃ + H̃T)+ δ̃ composed of L × L
blocks and ĤN be partitioned into four (L − 1) × (L − 1),
(L − 1) × 1, 1 × (L − 1), and 1 × 1 blocks. Let Ĥd

N be the
block-diagonal matrix of ĤN corresponding to the partition
and Ĥoff

N be the matrix of off-diagonal blocks of ĤN such that
ĤN = Ĥd

N + Ĥoff
N . With the inverse of Schur’s complement,

tr(Ĥ−1
N) > tr([Ĥd

N]−1) holds. More generally, this inequality is
valid when the partitioning applied to the largest block among
four blocks is repeated L − 1 times so that Ĥd

N is the block-
diagonal matrix composed of L × L blocks. Since ĤN, Ĥd

N,
and 2λI are symmertic positive definite, tr([ĤN + 2λI]−1) >
tr([Ĥd

N + 2λI]−1). By defining Ĥ = ĤN + 2λI and Ĥd =
Ĥd

N + 2λI, tr(Ĥ−1) > tr([Ĥd]−1). �
To apply Proposition 1 to the DCNN, we define s-weight

set sw as follows.
Definition 2: An s-weight set sw is a subset of indices

which are assigned to CNN weights, where each element of
sw is the row or column index of a block-diagonal matrix of
the Hessian matrix Ĥ in (22).

Proposition 3: Let s(l)
w be an s-weight set that contains

its elements assigned to weights in the lth layer of CNN
and sw = {s(l)

w : l ∈ {1, 2, . . . , L}}. Let ĤN be defined in
Proposition 1 and Ĥd

s be the block-diagonal matrix of ĤN,
where Ĥd

s is evaluated with both sw and some δ̃ that makes
Ĥd

s positive definite. Let Ĥs = Ĥd
s + 2λI, λ ∈ (0, 1], and

Ĥ be the Hessian matrix in (22) obtained with the same values
of δ̃ and λ in Ĥs. Then, tr(Ĥ−1) > tr([Ĥs]−1).

The proof of Proposition 3 immediately follows
Proposition 1 with the definition of s-weight set which
contributes to the block-diagonal matrix of (22). Proposition 1
shows that the approximate trace is always smaller than its
true value, provided that (22) is a reliable approximation of
the exact Hessian. Proposition 3 shows that the trace bound
holds with the s-weight set sw which reflects a layerwise
structure of the block-diagonal matrix. These guarantee a
consistent learning result, despite using a small number of
partial elements in the Hessian matrix. In addition, the META

Fig. 1. Decomposed Hessian matrix. Block-diagonal matrix Ĥd
N and off-

diagonal matrix Ĥoff
N in Proposition 1 (top and middle). k(l) and h(l)

u,v denote
the number of filters and a block of the Hessian matrix with respect to the
uth and vth CNN filters in the lth layer (1 ≤ l ≤ L), respectively (bottom).
The META generalizes to the width of the CNN by decomposing Hll in a
filterwise indexing manner.

generalizes to the width of CNN, which is shown in Fig. 1
(bottom).

C. Learning Algorithm

Once the parameter λ is obtained by the IIM&META,
the proposed objective function (21) can be minimized by
a backpropagation process or its variants. As general learn-
ing methods iteratively optimize a CNN objective function,
the proposed method is capable of iteratively minimizing (21)
with simultaneously obtaining solutions of the parameters ζ
and η. The implementation of our learning method is straight-
forward via a family of stochastic gradient descent (SGD)
algorithms. Based on the bound (inequality) on the trace,
we design the practical learning algorithm IIM&META with
minibatch SGD, which is detailed in Algorithm 1. The approx-
imation of the trace and determining process of λ include
lines 16 and 19, respectively. On account of Propositions 1
and 3, the compensation is employed for the approximate trace
with the minibatch SGD method, which is presented in line 18
and lines 21–24. The momentum or other methods with the
SGD can be applied to Algorithm 1. The time complexity of
line 16 is linear in terms of the depth and width. The complex-
ity of other lines is equivalent to that of the standard SGD.

IV. EXPERIMENTAL RESULTS

The experimental section shows classification results of
benchmark image data sets evaluated by the most widely
known LeNet [4], the popular DCNN [5] (a.k.a. AlexNet),
and the cutting-edge ResNet [24]. These networks verify the
extensibility of our method using public benchmark data sets,
MNIST [47], NORB [48], and CIFAR-10/100 [49]. These
CNNs are learned by four minibatch SGD-based methods: no
weight decay (NWD), grid-λ (grid search for determining the

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 06,2022 at 06:15:35 UTC from IEEE Xplore. Restrictions apply.

PARK AND JO: BAYESIAN WEIGHT DECAY ON BOUNDED APPROXIMATION FOR DCNNs 2871

TABLE I

TIME COMPLEXITY OF EACH LEARNING METHOD FOR CNN WITH DETERMINING λ. C : THE NUMBER OF TRIALS WITH
DIFFERENT SETTINGS OF λ. M : THE NUMBER OF SETTINGS OF ARCHITECTURAL PARAMETERS (M = |P|)

WHERE P = {pi : pi IS CNN ARCHITECTURAL PARAMETER(S) OF INTEREST}, E.G., p1 = 164 AND p2 = 227
DENOTE THE DEPTHS 164 AND 227, RESPECTIVELY. Wi : THE NUMBER OF CNN WEIGHTS

WITH RESPECT TO pi (WHEN M = 1, i IS OMITTED)

Algorithm 1: IIM&META With Minibatch SGD
Input : training set D, maximum training epoch T ,

minibatch size nb, learning rate α,
CNN f (x, w) with initial weights w(0),
compensation factor v,
small constant 	, s-weight set sw

Output: CNN weights w∗
1 ζ = 1, η = 0, t = 0, w∗ = w(0);
2 randomly choose index d0 among 1, 2, . . . , |D|

nb
;

3 while t < T do
4 Dd = {(x(i), t(i))}i∈Id with Id ⊂ {1, 2, ..., |D|};
5 |Id | = nb, d is minibatch index, 1 ≤ d ≤ |D|

nb
;

6 Rc(w, D) = −ζ
∑|D|

i=1

∑c
k=1 Qi,k (w) + η�w�2

2;
7 proposed objective function (21);
8 Rc(w, D) ∝ − ∑|D|

i=1

∑c
k=1 Qi,k (w) + λ�w�2

2;
9 equivalently minimizing (5);

10 where Qi,k (w) is defined in (10) and λ = η
ζ ;

11 for 1 ≤ d ≤ |D|
nb

do

12 g(d) = ∂ Rc(w,Dd)
∂w ;

13 w(t) = w(t) − α
nbζ g(d);

14 end
15 w∗ = w(t);
16 compute Ĥs in Proposition 3 with Dd0 and sw;
17 compute γ in (17) and (19) with ζ Ĥs;
18 γ = vγ ;
19 update η and ζ by (17) and (19) with Dd0 and nb;
20 q = ∑nb

i=1

∑c
k=1 Qi,k (w∗) with Dd0 ;

21 if γ
γ−nb

< 	
�w∗�2

2
q then

22 γ = min{2γ, nb − 1};
23 go to line 19;
24 end
25 t = t + 1;
26 end

weight decay parameter), dropout [26], and the IIM&META.
NWD shows the importance of the weight decay parameter.
Grid-λ determines a value of the decay parameter among its
candidates using the time cost which is linear in terms of
the number of the candidates. Dropout is a popular method
for deep learning. Table I summarizes the time complexity
of NWD, grid-λ, dropout, and the IIM&META. The time
complexity considers that dropout operates on an arbitrary
layer, where the value of the dropout parameter is set to 0.5
(as suggested in [26]) and a value of the weight decay on

Fig. 2. Examples of the benchmark data sets (top row: MNIST, middle:
NORB, and bottom: CIFAR-10/100).

dropout is found using the grid search method. The setting of
IIM&META is as follows. 	 in Algorithm 1 is set to 10−4

that may depend on arithmetic precision, and a subset of the
s-weight set sw contains three CNN weight indices for each
weight layer of interest. The indices are randomly chosen
during CNN weight initialization. v is set to the constant 0.05.
The elements of δ̃, in (22) and Proposition 3, with respect to
indices in sw are set by a small value 1/(107W) multiplied
by the factor 10 in ascending order at every epoch until
Ĥd

s is positive definite (Ĥd
s is defined in Proposition 3). The

remaining elements of δ̃ with respect to sc
w , the complement of

sw, are set in order that
∑

j∈sc
w
(λ j (Ĥ) − 2η)/λ j (Ĥ) is equal

to the constant 10−10|sc
w|/v. We employ the validation data

set that selects an epoch corresponding to the lowest esti-
mated generalization error of a CNN during learning (called
holdout). Furthermore, grid-λ and dropout use the validation
data set to determine a weight decay value which produces
the lowest one of validation errors with different settings
of λ. All experiments are conducted using Matconvnet [50]
on Intel processor-based GPU workstations. LeNet and DCNN
(AlexNet) are learned by minibatch SGD of 100 samples. For
ResNet, the size of the minibatch is 128. Each learning method
runs five times with random CNN weight initialization.

A. MNIST Data Set

MNIST, handwritten digit images for classification [47],
is composed of gray-scale 28×28 pixel images of digits (0∼9).
The data set is split into 54 000 training samples (5400 for
each digit), 6000 validation samples (600 for each digit) for
the holdout, and 10 000 test samples (1000 for each digit).
For the four learning methods (NWD, grid-λ, dropout, and
IIM&META), the learning rate and the momentum parameter
are set to 0.01 and 0.9, respectively. The maximum learning
epoch is 20. Grid-λ and dropout select a value of the weight
decay from {10−5, 10−4, 10−3, 10−2, 10−1} by choosing the
minimum validation error corresponding to one of the values.
Dropout works on the final layer with a probability of 0.5.
Since texture information in this data set is simple (shown
in Fig. 2), LeNet [4] is thoroughly sufficient for use. In this
experiment, the network denoted by MNISTL consists of

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 06,2022 at 06:15:35 UTC from IEEE Xplore. Restrictions apply.

2872 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

TABLE II

TRAINING CLASSIFICATION ERROR (%) OF THE CNNS ON BENCHMARK IMAGE DATA SETS.
A FIXED SETTING OF ARCHITECTURAL PARAMETERS (I.E., FIXED ARCHITECTURE)

TABLE III

TEST CLASSIFICATION ERROR (%) OF THE CNNS ON BENCHMARK IMAGE DATA SETS.
A FIXED SETTING OF ARCHITECTURAL PARAMETERS (I.E., FIXED ARCHITECTURE)

Fig. 3. Time of CNN learning with determining λ. The total elapsed time is
proportional to the number of CNN weights. The difference in time between
the IIM&META and other methods significantly increases as the size of the
CNN grows.

the two layers of 16–256 filters and one fully connected
layer of 256 hidden nodes. The average and standard devi-
ation of errors trained by the four methods are compared
in Tables II and III. In Table II, the CNNs converge to almost
zero of training error except for NWD, explaining that the
weight decay is related to a better training error. In Table III,
it is also shown that the standard deviation of the test error by
IIM&META is less than that of grid-λ. Fig. 3 illustrates the
total elapsed time of each learning method with determining
the decay parameter. The proposed method yields a good test
error compared to other learning methods while demonstrating
the low time cost. The weight decay parameter determined by
the IIM&META is shown in Fig. 4(a).

B. NORB Data Set

This experiment uses the publicly available NORB data
set [48] which consists of gray-scale images of 50 different
miniatures of the five categories: airplanes, trucks, four-legged
animals, cars, and human figures. The NORB data set is
useful for the classification of object shape. These images
were captured by a stereo camera with 162 different views
from 30◦-70◦ at every 5◦. The 50 miniatures are split into
a training set, validation set, and test set. We use the small
NORB data set with images of a single object, where they
are sized at the center of images with uniform backgrounds.

Fig. 4. Plot of λ determined by the IIM&META. Line and shaded area: aver-
age and standard deviation, respectively. That is adaptively fitted to each CNN
trained with the different data sets. (a) LeNet (MNIST). (b) LeNet (NORB).
(c) DCNN (NORB). (d) DCNN (CIFAR-10). (e) ResNet (CIFAR-10).
(f) ResNet (CIFAR-100).

A total of 46 600 images in the data set are composed as
follows. 26 600 stereo image pairs belong to the training set,
10 000 stereo images comprise the validation set, and the
remaining 10 000 images are used for the test set. Grid-λ
and dropout take a value of λ in the same manner as in the
MNIST experiment. All data presented in the network are of
size 96 × 96 pixels. Because each image has a clean back-
ground and simple foreground texture (see Fig. 2), LeNet [4]
is used, where the network consists of the 256-16-256
layered convolutional filters and 64 hidden nodes in the fully
connected layer. Dropout is applied to the middle CNN filter
layer with a probability of 0.5. The learning rate and the
momentum parameter are set to 0.001 and 0.9, respectively.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 06,2022 at 06:15:35 UTC from IEEE Xplore. Restrictions apply.

PARK AND JO: BAYESIAN WEIGHT DECAY ON BOUNDED APPROXIMATION FOR DCNNs 2873

Fig. 5. Mean elapsed time of the IIM&META applied to ResNet. The time
axis is normalized for intuitive illustration. The time increases almost linearly
with the depth (number of layers).

This CNN, denoted by NORBL, learns during 150 epochs.
Next, the DCNN (a.k.a. AlexNet), denoted by NORBD, is used
where the settings including its architecture and the learning
rate follow the implementation detailed in [50]. Fig. 3 shows
the elapsed time of each learning method. The determined
weight decay parameter by the IIM&META with respect to
LeNet and AlexNet is shown in Fig. 4(b) and (c), respectively.
The average and standard deviation of training and test errors
of each learning method are summarized in Tables II and III.
In those, NWD yields both the worst training and test errors,
demonstrating that the weight decay affects both the test error
and the training error. In contrast to grid-λ and dropout,
the proposed method reduces the total elapsed time while
preserving the proper decay setting and yielding a small test
error shown in Table III.

C. CIFAR-10/100 Data Set

This data set is composed of 32 × 32-pixel RGB-colored
image used in [5]. Cropped from nature scenes, each image
belongs to one of 10 classes in CIFAR-10 and is classified
as one of 100 labels in CIFAR-100. The data set consists
of 50 000 training images and 10 000 test images. Because
each image in this data set contains a colored object with
a messy background, which leads the network requiring a
deep layer to obtain a good classification accuracy for such
a data set (see Fig. 2), two different large-scale networks
are employed. The network architecture in the first setting is
DCNN (AlexNet) [5] denoted by CIFAR-10D.

The architecture and learning rate follow the implementation
detailed in [5]. The momentum value is set to 0.9. The
images that are input to AlexNet are preprocessed via the
whitening method [51] after the pixels are subtracted with each
mean and normalized by each standard deviation. Dropout
operates on the final layer. In this experiment, 10 000 sam-
ples in a training set are used for both holdout purposes
and the grid search to determine λ. The statistics of errors
of each learning method are given in Tables II and III.
On the second network setting, ResNet with 164 layers
is employed for CIFAR-10 and CIFAR-100 denoted by
CIFAR-10R and CIFAR-100R, respectively. The establishment
of the learning rate, momentum, and experimental condition
is similar to those of the original work [24]. In addition,
the number of training and test data sets follows the original
work. Hence, the validation data set is identical to the test data
set. The dropout method operates in the final layer of ResNet.

TABLE IV

CLASSIFICATION ERROR (%) OF RESNET TRAINED BY IIM&META WITH
DIFFERENT DEPTHS ON CIFAR-100. (VARIED SETTINGS

OF ARCHITECTURAL PARAMETERS)

Fig. 5 shows the mean elapsed time of IIM&META applied
to ResNet trained five times. The time scale is normalized
for intuitive illustration. The elapsed time increases almost
linearly as the depth increases. The classification accuracies
of ResNet trained by the four learning methods are presented
in Tables II and III. In Table II, all training errors of ResNet on
CIFAR-10 and CIFAR-100 data sets are almost zero, showing
that ResNet is thoroughly capable of learning the data set. In
Table III, the test error of ResNet is lower than that of AlexNet,
showing that the deeper CNN architecture affects the better
error. Without the tuning the weight decay value as in dropout
and grid-λ, our test errors are comparable to those of dropout
and grid-λ. Fig. 4(e) and (f) shows the weight decay parameter
determined by the IIM&META applied to DCNN (AlexNet)
and ResNet. The elapsed times of learning with determining
the decay parameter with respect to grid-λ, dropout, and the
IIM&META are summarized in Fig. 3, demonstrating that the
proposed method requires the shortest time.

D. Deep Layer With IIM&META

Using the cost-effective setting of λ by the IIM&META,
a ResNet architecture can be studied to obtain a better clas-
sification result on CIFAR-100 which is the most challenging
data set in this paper. The depth of ResNet is adjusted rather
than the width since this paper considers that the depth of CNN
affects the good classification performance. The experimental
condition is identical to the original work [24]. The depth
of the network is set between 164 and 227. The 227-layered
ResNet yields the minimum test error. Its training and test
errors are summarized in Table IV, which shows a better test
error than those of the 164-layered ResNets trained by grid-λ,
dropout, and the IIM&META.

E. Learning Multiple NNs With IIM&META

In applications, there is an experiment that is usually
conducted with different CNN models to obtain the best one
among the test errors of those models (e.g., LeNet, AlexNet,
and ResNet) for a specific image data set of interest. For such
an experiment, the time complexity of CNN learning with
determining the weight decay can be considered as follows.
Given M different CNN models, the best test error is obtained
with O(C

∑M
i=1 Wi) using grid-λ or dropout, where C and Wi

denote the number of weight decay values and the number
of the i th CNN weights, respectively. By using the proposed
method, the best error can be obtained with O(

∑M
i=1 Wi).

In the NORB experiment with LeNet and AlexNet (M = 2),
our method reduces the total elapsed time by nearly 70%–80%,
resulting in the test error that is slightly better than those of

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 06,2022 at 06:15:35 UTC from IEEE Xplore. Restrictions apply.

2874 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 9, SEPTEMBER 2019

grid-λ and dropout. The best test error on NORB is obtained
by AlexNet trained with the IIM&META. In contrast, our
method has a tradeoff between the computational efficiency
and exactness in terms of setting λ. In the CIFAR-100 results
of ResNet with a fixed architectural parameter, the test error
of our method is slightly worse than that of dropout, as shown
in CIFAR-100R in Table III. Nevertheless, the discrepancy in
those test errors is quite small, and the computational effi-
ciency of our method is considered high, especially for training
large-scale NNs. In addition, this drawback could be overcome
by the deep layer search, which is shown in Table IV.

V. CONCLUSION

A method to efficiently determine the weight decay para-
meter value was established through the proposed analytic
solutions with the novel objective function IIM for multiclass
classification, derived by the Bayesian method. Based on the
concerns regarding the computational cost due to a CNN of
several hundreds of layers, the approximation method META
was suggested for its efficient computation. The IIM&META
is suitable for the real-world data sets, verified with different
CNNs. It has a provable bound that guarantees the consistent
result. In experiments, the proposed method IIM&META
significantly reduced the time of CNN learning with the decay
parameter setting while achieving classification accuracies that
were comparable with or better than those of the grid search
approach and dropout. It is worthy of consideration that there
exists a tradeoff between the time efficiency and exactness
in terms of determining λ. Our approach may be worse than
the grid search approach with a large amount of compu-
tations, especially for a specified architecture (e.g., a fixed
depth and width) of CNN. In contrast, our method allows
researchers or practitioners to rapidly explore or investigate a
variety of deeper CNNs that produce a small generalization
error. This is a notable advantage of our work for deep
networks.

For future work, an interesting direction is to generalize
our approach to other deep learning models with a rigorous
analysis, since our method can be applied to an NN trained
by the cross-entropy loss which requires the weight decay
parameter setting. Because dropout and its variants use the
weight decay, our method would be applied to those, where
some improvement may be required.

We believe that our result of the use of partial Hessian
information will provide better insight into research on large-
scale NNs.

APPENDIX

DERIVATION OF (15)

All notations of this derivation follow Section III-A. We use
the Gaussian approximation (i.e., Laplace method) to evaluate
the following marginal:

p(D|η, ζ) =
∫

p(D|w, ζ)p(w|η)dw. (23)

Let Qi,k (w) = 1(t(i)k = 1) log fk(x(i), w) as defined in (10),
A(w) = −ζ

∑n
i=1

∑c
k=1 Qi,k (w) + η�w�2

2, and w∗ be

a local optimum point. Then, the Taylor expansion
approximates A(w) to

Ā(w) = A(w∗) + 1

2
(w − w∗)TH(w − w∗) (24)

where H is the Hessian matrix of A(w) and the approximation
of the high-order term is omitted. Therefore, the marginal
is given by p(D|η, ζ) = ∫

p(D|w, ζ)p(w|η)dw, where
p(D|w, ζ)p(w|η) ≈ exp(− Ā)/(π/η)(W/2). With the integral
term

∫
exp(− Ā)dw = (2π)(W/2) det(H)(−1/2)A(w∗), (15) is

evaluated as follows:

p(D|η, ζ)=
2W/2 exp

(
ζ

∑n
i=1

∑c
k=1 Qi,k (w∗) − η�w∗�2

2

)
η−W/2 det(H)

1
2

.

(25)

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their constructive comments and insightful suggestions.

REFERENCES

[1] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, pp. 1798–1828, Aug. 2013, doi: 10.1109/TPAMI.2013.50.

[2] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy
layer-wise training of deep networks,” in Proc. 19th Int. Conf.
Neural Inf. Process. Syst. (NIPS). Cambridge, MA, USA:
MIT Press, 2006, pp. 153–160. [Online]. Available: http://dl.acm.org/
citation.cfm?id=2976456.2976476

[3] C. Zhang, K. C. Tan, H. Li, and G. S. Hong, “A cost-sensitive deep
belief network for imbalanced classification,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 30, no. 1, pp. 109–122, Jan. 2019.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., Lake Tahoe, NV, USA, 2012, pp. 1106–1114.

[6] G. Li and Y. Yu, “Contrast-oriented deep neural networks for salient
object detection,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29,
no. 12, pp. 6038–6051, Dec. 2018.

[7] M. Mahmud, M. S. Kaiser, A. Hussain, and S. Vassanelli, “Applications
of deep learning and reinforcement learning to biological data,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2063–2079,
Jun. 2018.

[8] C. Yan, H. Xie, D. Yang, J. Yin, Y. Zhang, and Q. Dai, “Supervised
hash coding with deep neural network for environment perception of
intelligent vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 19, no. 1,
pp. 284–295, Jan. 2018.

[9] J. Li, X. Mei, D. Prokhorov, and D. Tao, “Deep neural network
for structural prediction and lane detection in traffic scene,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 690–703,
Mar. 2017.

[10] B. H. Kim and S. Jo, “Deep physiological affect network for the
recognition of human emotions,” IEEE Trans. Affective Comput., to be
published, doi: 10.1109/TAFFC.2018.2790939.

[11] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp. 359–366, 1989.

[12] J. Park and I. W. Sandberg, “Universal approximation using radial-
basis-function networks,” Neural Comput., vol. 3, no. 2, pp. 246–257,
Mar. 1991.

[13] H. Gao, W. He, C. Zhou, and C. Sun, “Neural network control of a two-
link flexible robotic manipulator using assumed mode method,” IEEE
Trans. Ind. Informat., to be published, doi: 10.1109/TII.2018.2818120.

[14] W. He, Z. Yan, C. Sun, and Y. Chen, “Adaptive neural network control
of a flapping wing micro aerial vehicle with disturbance observer,” IEEE
Trans. Cybern., vol. 47, no. 10, pp. 3452–3465, Oct. 2017.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 06,2022 at 06:15:35 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1109/TAFFC.2018.2790939
http://dx.doi.org/10.1109/TII.2018.2818120

PARK AND JO: BAYESIAN WEIGHT DECAY ON BOUNDED APPROXIMATION FOR DCNNs 2875

[15] J. Tang, C. Deng, and G.-B. Huang, “Extreme learning machine for
multilayer perceptron,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27,
no. 4, pp. 809–821, Apr. 2016.

[16] H. Li, H. Zhao, and H. Li, “Neural-response-based extreme learning
machine for image classification,” IEEE Trans. Neural Netw. Learn.
Syst., doi: 10.1109/TNNLS.2018.2845857.

[17] C. Nadeau and Y. Bengio, “Inference for the generalization error,”
Mach. Learn., vol. 52, no. 3, pp. 239–281, Sep. 2003, doi: 10.1023/A:
1024068626366.

[18] V. N. Vapnik, Statistical Learning Theory. Hoboken, NJ, USA: Wiley,
1998.

[19] P. L. Bartlett, “For valid generalization the size of the weights is more
important than the size of the network,” in Proc. Adv. Neural Inf.
Process. Syst. (NIPS), Denver, CO, USA, Dec. 1996, pp. 134–140.

[20] A. Krogh and J. A. Hertz, “A simple weight decay can improve
generalization,” in Advances in Neural Information Processing Systems.
Cambridge, MA, USA: MIT Press, 1993, pp. 164–171.

[21] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Advances in Neural Informa-
tion Processing Systems. Cambridge, MA, USA: MIT Press, 1993,
pp. 164–171.

[22] D. J. C. MacKay, “Bayesian interpolation,” Neural Comput., vol. 4,
no. 3, pp. 415–447, 1992.

[23] D. J. C. MacKay, “The evidence framework applied to classification
networks,” Neural Comput., vol. 4, no. 5, pp. 720–736, Sep. 1992.

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2016, pp. 630–645.

[25] R. K. Srivastava, K. Greff, and J. Schmidhuber. (2015). “Highway
networks.” [Online]. Available: http://arxiv.org/abs/1505.00387

[26] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 1, pp. 1929–1958, Jan. 2014.

[27] L. Wan, M. Zeiler, S. Zhang, Y. L. Cun, and R. Fergus, “Regularization
of neural networks using dropconnect,” in Proc. 30th Int. Conf. Mach.
Learn. (ICML), vol. 28, May 2013, pp. 1058–1066.

[28] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini, “Group
sparse regularization for deep neural networks,” Neurocomputing,
vol. 241, pp. 81–89, Jun. 2017.

[29] G. Kang, J. Li, and D. Tao, “Shakeout: A new approach to regularized
deep neural network training,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 40, no. 5, pp. 1245–1258, May 2018.

[30] Z. Chen and S. Haykin, “On different facets of regularization theory,”
Neural Comput., vol. 14, no. 12, pp. 2791–2846, 2002.

[31] O. Bousquet, S. Boucheron, and G. Lugosi, “Introduction to statis-
tical learning theory,” in Advanced Lectures on Machine Learning,
O. Bousquet, Ed. Berlin, Germany: Springer, 2003, pp. 169–207.

[32] P. Guo, M. R. Lyu, and C. L. P. Chen, “Regularization parameter
estimation for feedforward neural networks,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 33, no. 1, pp. 35–44, Feb. 2003.

[33] F. Girosi, M. Jones, and T. Poggio, “Regularization theory and neural
networks architectures,” Neural Comput., vol. 7, no. 2, pp. 219–269,
Mar. 1995.

[34] V. Vapnik, “Principles of risk minimization for learning
theory,” in Advances in Neural Information Processing Systems,
J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo,
CA, USA: Morgan Kaufmann, 1992, pp. 831–838. [Online]. Available:
http://papers.nips.cc/paper/506-principles-of-risk-minimization-for-
learning-theory.pdf

[35] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: Theory and applications,” Neurocomputing, vol. 70, nos. 1–3,
pp. 489–501, 2006.

[36] R. M. Neal, Bayesian Learning for Neural Networks. Secaucus, NJ,
USA: Springer-Verlag, 1996.

[37] D. Wu and J. Ma, “A two-layer mixture model of Gaussian process
functional regressions and its MCMC EM algorithm,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 10, pp. 4894–4904, Oct. 2018.

[38] Z. Ghahramani, “Probabilistic machine learning and artificial intel-
ligence,” Nature, vol. 521, no. 7553, pp. 452–459, May 2015,
doi: 10.1038/nature14541.

[39] V. Vapnik, Estimation of Dependences Based on Empirical Data:
Springer Series in Statistics (Springer Series in Statistics). Secaucus,
NJ, USA: Springer-Verlag, 1982.

[40] V. Vapnik, The Nature of Statistical Learning Theory. New York, NY,
USA: Springer-Verlag, 1995.

[41] N. Harvey, C. Liaw, and A. Mehrabian, “Nearly-tight
VC-dimension bounds for piecewise linear neural networks,” in Proc.
Conf. Learn. Theory (Proceedings of Machine Learning Research),
vol. 65, S. Kale and O. Shamir, Eds. Amsterdam, The Netherlands:
PMLR, Jul. 2017, pp. 1064–1068. [Online]. Available: http://
proceedings.mlr.press/v65/harvey17a.html

[42] T. V. Gestel et al., “Financial time series prediction using least squares
support vector machines within the evidence framework,” IEEE Trans.
Neural Netw., vol. 12, no. 4, pp. 809–821, Jul. 2001. [Online]. Available:
http://dx.doi.org/10.1109/72.935093

[43] J. T.-Y. Kwok, “The evidence framework applied to support vector
machines,” IEEE Trans. Neural Netw., vol. 11, no. 5, pp. 1162–1173,
Sep. 2000.

[44] K. P. Murphy and F. Bach, Machine Learning—A Probabilistic Perspec-
tive. Cambridge, MA, USA: MIT Press, 2012.

[45] C. M. Bishop and G. Hinton, Neural Networks for Pattern Recognition.
New York, NY, USA: Oxford Univ. Press, 1995, pp. 409–411.

[46] A. J. Shepherd, Second-Order Methods for Neural Networks, 1st ed.
Berlin, Germany: Springer-Verlag, 1997, pp. 60–62.

[47] Y. LeCun, C. Cortes, and C. J. Burges, “MNIST handwritten digit
database,” AT&T Labs, Florham Park, NJ, USA, Tech. Rep., 2010,
vol. 2.

[48] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic
object recognition with invariance to pose and lighting,” in Proc. IEEE
Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR). Washington,
DC, USA: IEEE Computer Society, 2004, pp. 97–104.

[49] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” M.S. thesis, 2009. [Online]. Available: http://www.cs.toronto.
edu/~kriz/learning-features-2009-TR.pdf

[50] A. Vedaldi and K. Lenc, “Matconvnet: Convolutional neural networks
for matlab,” in Proc. 23rd ACM Int. Conf. Multimedia, New York, NY,
USA, 2015, pp. 689–692.

[51] A. Coates, A. Y. Ng, and H. Lee, “An analysis of single-layer net-
works in unsupervised feature learning,” in Proc. AISTATS, 2011,
pp. 215–223.

Jung-Guk Park received the B.S. and M.S. degrees
in computer science and engineering from Sejong
University, Seoul, South Korea, in 2009 and 2012,
respectively. He is currently pursuing the Ph.D.
degree with the School of Computing, Korea
Advanced Institute of Science and Technology, Dae-
jeon, South Korea.

His current research interests include complex-
ity and generalization of computational learning
models, and learning algorithms for neural net-
works, based on statistical learning theory, empirical

processes, and approximation theory.

Sungho Jo (M’09) received the B.S. degree from
the School of Mechanical and Aerospace Engineer-
ing, Seoul National University, Seoul, South Korea,
in 1999, and the M.S. degree in mechanical engi-
neering and the Ph.D. degree in electrical engineer-
ing and computer science from the Massachusetts
Institute of Technology (MIT), Cambridge, MA,
USA, in 2001 and 2006, respectively.

He was with the Computer Science and Arti-
ficial Intelligence Laboratory and the Laboratory
for Information Decision and Systems, MIT. From

2006 to 2007, he was a Post-Doctoral Researcher with the MIT Media Lab,
Cambridge, MA, USA. Since 2007, he has been with the School of Com-
puting, Korea Advanced Institute of Science and Technology, Daejeon, South
Korea, where he is currently an Associate Professor. His current research
interests include neuromachine learning systems, neuro-inspired intelligence,
and machine-augmented intelligence.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on December 06,2022 at 06:15:35 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNNLS.2018.2845857
http://dx.doi.org/10.1038/nature14541
http://dx.doi.org/10.1023/A:1024068626366
http://dx.doi.org/10.1023/A:1024068626366

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

