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View Path Planning via Online Multiview Stereo for
3-D Modeling of Large-Scale Structures

Soohwan Song , Daekyum Kim , and Sunghee Choi

Abstract—This study addresses a view-path-planning problem
during 3-D scanning of a large-scale structure based on multiview
stereo (MVS) for unmanned aerial platforms. Recently, most stud-
ies have adopted an explore-then-exploit strategy for 3-D scanning.
The strategy first generates a coarse model from a simple overhead
scanning and then plans an inspection path to cover the entire
surface of the coarse model. However, even though the inspection
path may be optimal, it is difficult to guarantee a complete and
accurate reconstruction result due to defective factors of MVS
such as occlusions, textureless surfaces, and insufficient parallaxes.
Furthermore, the entire procedure of this strategy is inefficiently
slow because of path redundancies and long MVS processing time.
Therefore, we propose a novel view-path-planning method for
3-D scanning based on an online MVS reconstruction algorithm.
The suggested method incrementally reconstructs the target model
online and iteratively plans view paths by analyzing the current par-
tial reconstructions. The method continuously analyzes the quality
of the model and detects inaccurately reconstructed surfaces. It
then plans an inspection path that provides a complete coverage
of the detected surfaces while maximizing the performance of
MVS. This method can construct a complete 3-D model in a single
scanning trial without the need for rescanning. Extensive experi-
ments show that our method outperforms the other state-of-the-art
methods, especially in terms of the model completeness of complex
structures.

Index Terms—3-D reconstruction, active sensing, multiview
stereo, unmanned aerial vehicles, view path planning.

I. INTRODUCTION

THE demand for high-quality 3-D models is continu-
ously increasing in many industrial applications, such as

geospatial applications, structural inspection, and content cre-
ation in computer games. To obtain high-quality 3-D models,
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multiview stereo (MVS) methods [1]–[3] have been widely used.
MVS is an offline approach that reconstructs a 3-D model by
batch processing a collection of calibrated images captured from
different viewpoints. MVS methods are particularly effective
for large-scale 3-D modeling because they can estimate a wide
range of depths and reconstruct detailed and dense 3-D shapes
of large-scale structures.

To acquire images for MVS reconstruction, microaerial vehi-
cles (MAVs) equipped with cameras could be a suitable platform
due to their high maneuverability and ability to reach almost
any vantage point. However, there are tradeoffs to consider for
MVS reconstruction through MAVs. MAVs have limited battery
capacity; it requires to collect images in a limited time. On
the other hand, the completeness and quality of MVS recon-
structions heavily depend on the set of images that densely
represent the target structure [2], [4], [5]. Therefore, an effi-
cient view-path-planning algorithm is required to successfully
reconstruct large-scale structures. Recently, several commercial
applications for flight planning [6], [7] have been developed to
facilitate 3-D scanning tasks. These applications produce simple
circular or lawnmower trajectories within a safe overhead area
for scanning. However, these approaches do not consider the
geometry of target structures; therefore, the vehicles cannot scan
occluded areas and thus produce incomplete 3-D models. To
address this issue, the explore-then-exploit method [8]–[11] has
been proposed. This method first constructs an initial coarse
model by scanning an entire scene using a simple fixed trajectory
within a safe area. Then, it computes an inspection path to
cover the entire surface of the coarse model. Based on the
computed inspection path, the method performs a rescanning
and reconstructs the final 3-D model of the target structure.

Although the explore-then-exploit methods can provide an
optimal inspection path for a given coarse geometry, their
modeling performance can be degraded due to several reasons.
First, these methods sometimes produce overlapping trajecto-
ries, which is inefficient in time because the same areas are
repeatedly scanned. Second, even if the acquired images provide
full coverage of the target structure, MVS methods do not guar-
antee the reconstruction of accurate and complete 3-D models
when textureless scenes, short baseline distances, or occlusions
are present. Finally, MVS methods generally take a long time
to process input images, which makes the entire procedure of
these methods very slow.

We present a novel view-path-planning method for 3-D
scanning based on online MVS reconstruction. The proposed
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Fig. 1. Reconstructed 3-D models of the real-world scene (Auditorium) with
trajectories taken by the MAV. (a) Reconstruction result of the explore-then-
exploit method [8] and offline MVS [3]. It generates a coarse model from a
default trajectory (in green) and then plans the inspection path (in blue). It takes
10.5 h in total (3.3 h for the coarse model and 7.2 h for detailed reconstruction)
to process all the acquired images. (b) Reconstruction result of our view-path-
planning method with online MVS. It incrementally constructs the 3-D model
in real time and completes the entire modeling process in a single scanning trial.

view-planning method continuously detects incompletely re-
constructed surfaces by analyzing the quality of the 3-D model
and plans view paths to scan them. The method computes the
best viewpoints to acquire reference and source images using
MVS heuristics. Based on the computed viewpoints, it provides
an optimal view path that satisfies the dual requirements of
scanning the incomplete surfaces and maximizing the recon-
struction performance of MVS. To enable the iterative view
path planning, our method incrementally updates 3-D models
in real time from an online MVS system, unlike existing offline
methods [8]–[11]. The proposed online MVS system estimates
camera poses using the simultaneous localization and mapping
(SLAM) module [12] in real time and computes depth maps
of keyframes using the deep-learning-based MVS method [13].
The system deals with excessive outliers in the estimated depths
by applying several filtering steps, including photometric and
geometric consistency checks. It continuously integrates esti-
mated depths into a large-scale 3-D model using surfel-based
mapping [14]. Finally, the proposed 3-D modeling framework
including online MVS reconstruction and view-path planning
can generate an accurate and complete 3-D reconstruction of
large structures in a single exploration trial without the need for
rescanning, unlike the explore-then-exploit methods (see Fig. 1).

A. Contributions and Outline

The major contributions of this study can be summarized as
follows:

1) Unlike existing explore-then-exploit approaches, we pro-
pose a comprehensive framework for autonomous 3-D

modeling, which features online MVS reconstruction,
repetitive reconstruction quality evaluation, and explo-
ration planning.

2) We propose a view-path-planning method that efficiently
explores the unknown areas and simultaneously analyzes
the quality of reconstructed surfaces. The computed path
provides full coverage of low-quality surfaces while max-
imizing the performance of MVS reconstruction.

3) We present an online 3-D-modeling system based on
SLAM and deep-learning-based MVS [13]. This system
applies strict outlier filtering and constructs a globally
consistent model using surfel-based mapping [14].

4) The proposed method is evaluated in both simulated and
real-world environments. The effectiveness and applica-
bility of the proposed method were evaluated and com-
pared with those of state-of-the-art methods.

A preliminary version of this article has been presented
in [15]. In this study, we used the deep-learning-based MVS
method [13] instead of monocular dense mapping [16] for depth
estimation. The deep-learning-based method can estimate a
high-quality depth map in real time and has better reconstruction
performance than the monocular mapping method. We provide
a more detailed explanation of the proposed framework and
present a thorough evaluation of it using various experimental
scenarios, including two real-world environments. Furthermore,
we address the performance of the proposed online MVS ex-
perimentally by comparing it with the existing offline MVS
method [3].

The remainder of this article is structured as follows.
Section II presents related work on many types of view-path-
planning methods. Section III describes the target problem and
an overview of the proposed framework. The proposed online 3-
D modeling system is detailed in Section IV, and the view-path-
planning method is detailed in Section V. Section VI describes
simulation and real-world experiments. Finally, we discuss our
findings and the limitations of our study in Section VII and
summarize the contributions of this study in Section VIII.

II. RELATED WORKS

The problem of determining the optimal viewpoints for re-
constructing 3-D models of scenes or objects is known as the
active vision or view-path-planning problem. This problem has
been extensively addressed for more than two decades [17]–[19].
Different types of 3-D modeling methods have been developed
and used in various view-path-planning studies. Table I presents
a summary of previous view-path-planning studies based on
the types of 3-D modeling methods, namely, volumetric map-
ping, dense surface mapping, and MVS. The following sections
present literature reviews on each type of modeling method.

A. Volumetric Mapping

The volumetric mapping method [20], [21] encodes the state
of an environment into an octree-based occupancy grid volu-
metric map. The volumetric map explicitly represents not only
the occupied volumes but also the free and unknown volumes. It
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TABLE I
PREVIOUS VIEW-PATH-PLANNING STUDIES ACCORDING TO THEIR 3-D MODELING METHODS

facilitates the visibility check for a specific volume and provides
direct access to the free space in the environment. These func-
tions are essential for the collision-free navigation of mobile
robots. Therefore, the volumetric mapping method is mainly
used for the exploration task in environment modeling.

Most exploration methods have focused on the next best view
(NBV) problem, in which the best viewpoint for incremen-
tally completing a model is determined using feedback from
the current partial reconstruction. NBVs are determined using
various metrics, such as the number of frontiers [22]–[24],
and information-theoretic [25], [26] or machine-learning-based
measures [27], [28]. Recently, some studies [29]–[31] have at-
tempted to compute the most informative view paths rather than a
single optimal viewpoint. They evaluated a set of candidate view
paths to determine the most informative path. Charrow et al. [29]
proposed a method that determines the most promising path from
global paths and local motion primitives and optimizes the path
according to an information-theoretic objective. Wang et al. [31]
planned an exploration path by building a 3-D topological road
map and used a potential field-based local planner to collect more
information along the exploration path. Several methods [32],

[33] used an inspection strategy to model an unknown environ-
ment. Unlike conventional inspection problems [50], [51], which
assume that the model is known in advance, they addressed on-
line inspection planning, starting from partially known models.
These methods completely scan local frontiers and thus improve
the completeness of the constructed volumetric models.

All these existing methods were based on depth sensors.
However, the sensing ranges of most depth sensors are relatively
shorter than 15 m. Therefore, robots need to get close to the
unvisited viewpoints, leading to inefficiencies in exploration
trajectories. On the other hand, our method can reconstruct
long-range scenes about 50 m or more using the online MVS,
thus enabling to plan exploration paths more efficiently.

B. Dense Surface Mapping

Dense-surface-mapping methods [14], [34] construct dense
models by directly accumulating RGB-D data obtained from
a depth sensor. Most of the mapping methods use a point
cloud registration method such as the iterative closest point
algorithm for data accumulation. NBV approaches have also
been frequently used for the view-path-planning problem in
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dense surface mapping. According to Scott et al. [18], NBV
approaches can be classified into two categories: volumetric and
surface-based.

Volumetric methods [35]–[37] analyze the spatial information
from a volumetric model to determine the NBV for dense
surface mapping. Vasquez-Gomez et al. [35] analyzed a set of
frontier voxels and determined the NBV for dense 3-D modeling
of small-scale objects. Delmerico et al. [36] provided several
metrics to quantify the volumetric information contained in the
voxels. Even if the volumetric model is complete, it does not
necessarily mean that the quality of the reconstructed surface
is also perfect. It is challenging to represent the reconstructed
surfaces of very complex structures as only free or occupied
volumes in volumetric models. Therefore, volumetric methods
are sometimes not appropriate for completing precise dense 3-D
models and may produce poorly reconstructed surfaces.

Surface-based methods [38], [40], [41] determine the NBV
by analyzing the shape and quality of the reconstructed sur-
faces. These methods concentrate on completing the surface
model, which is represented as a set of mesh surfaces or a
high-resolution point cloud. Chen and Li [38] proposed a math-
ematical model for predicting the surface trend of an object to
determine the NBV for the reconstruction of simple and smooth
surfaces. Wu et al. [40] estimated the confidence map, which
represents the completeness and smoothness of the constructed
Poisson isosurfaces. A confidence map is used to guide the
computation of an NBV. Lee et al. [41] proposed a 3-D scanning
method for mechanical parts. The method determined an NBV
by detecting surface primitives and the underlying shape of the
ground-truth model from the scanned partial data.

Some studies [42], [43] proposed a combination of surface
based and volumetric methods. Kriegel et al. [42] presented a
method to compute the best-scan-path for small-scale object
modeling. They generated scan path candidates by estimating
the surface trends and computed the information gain of each
scan path from the volumetric model. Song and Jo [43] proposed
an integrated approach of surface-based and volumetric meth-
ods for modeling a large-scale structure. This approach used a
volumetric map for fast exploration of an unknown area and
analyzed the surface model to improve the quality of the recon-
structed surfaces simultaneously. Similar to this approach [43],
our method also plans a path by analyzing both a volumetric
map and a surface model, but also accounts for the heuristic
MVS information to improve the performance of the MVS.

C. Multi-View-Stereo

MVS algorithms [1]–[3] reconstruct a dense 3-D model by
computing the stereo correspondences of calibrated images in a
batch. MVS algorithms have been frequently used for modeling
large-scale structures because they can estimate a wide depth
range of the target scene. Some methods [6], [7] acquired a set of
images for MVS reconstruction using simple circular or zigzag
trajectories in a safe overhead area. However, these methods do
not provide complete coverage of the target scene. Therefore,
as noted earlier, many studies that use MVS reconstruction
have commonly adopted the explore-then-exploit method [8]–
[11], [44]. Several methods [8], [9] formulated inspection path

planning as a submodular optimization problem. Hepp et al. [9]
used a volumetric model to evaluate the coverage trajectories.
They defined the information gain of a trajectory as the number
of visible voxels in the volumetric model and computed a cov-
erage path using submodular optimization. Roberts et al. [8]
defined the information gain of a scanning trajectory as the
total covered region of hemispheres around each surface point.
Their method finds an optimal coverage trajectory that scans
entire surfaces from diverse viewing directions by solving an
orienteering problem. Huang et al. [44] presented a relatively
fast MVS algorithm for coarse model reconstruction instead of
dense modeling. They computed the NBVs by evaluating the
coverage of the coarse model.

Several view-planning methods [45], [46] have been proposed
to determine the best viewpoints by analyzing a sparse point
cloud using structure-from-motion (SfM) [52], [53]. The SfM
aims to obtain camera poses and sparse point cloud using a
set of collected images before performing MVS reconstruction.
The view-planning methods [45], [46] compute view paths by
using the sparse point cloud to acquire the images necessary for
MVS. Hoppe et al. [45] presented an online SfM framework that
provides a human operator with visual feedback of the modeling
quality. The modeling quality is represented by the ground
sampling distance and image redundancy. Mauro et al. [46]
proposed a view importance measure for the NBV planning and
image selection. The view importance indicates the significance
of a viewpoint for 3-D reconstruction and is estimated through
several quality features extracted from a sparse SfM point cloud.

There have been only a few approaches [47]–[49] that con-
sider online MVS reconstruction. Mendez et al. [47], [48] re-
constructed a dense scene in real time using deep-learning-based
stereo matching [54]. They presented a next-best stereo method
that selects a stereo pair by jointly optimizing the baseline and
vergence to maximize the performance of pairwise stereo match-
ing. Forster et al. [49] addressed the view planning problem by
acquiring an informative motion trajectory for monocular dense
depth estimation [16]. They formulated a depth measurement
uncertainty that accounts for both the scene structure and texture
to evaluate a motion trajectory. These methods [47]–[49] focused
only on estimating local depth maps and did not consider global
model reconstruction. In contrast, our proposed framework ad-
dresses not only the local path for local depth mapping but also
the global path for constructing the entire model.

III. PROBLEM DESCRIPTION AND SYSTEM OVERVIEW

The problem considered in this study is exploring an unknown
and spatially bounded 3-D space V ⊂ R3 using a MAV while
reconstructing high-quality 3-D models of structures in the
space. The MAV is equipped with a forward-looking camera to
acquire image frames. The acquired image frames are processed
in real time to estimate the current localization and construct 3-D
models. Our approach constructs two 3-D models: a volumet-
ric map M and a surface model F . The volumetric map M
represents the workspace in three states (occupied Vocc ⊂ V ,
free Vfree ⊂ V , and unknown Vukn ⊂ V ) and is constructed
using the Octomap framework [20]. The free space information
Vfree can be directly accessed in the volumetric map for efficient
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Fig. 2. Overview of the proposed 3-D modeling framework. (a) Image frames are captured from a camera mounted on the MAV. (b) The 3-D modeling module
takes an image and estimates the camera pose of the frame using a SLAM system. It then infers the depth maps of selected frames and integrates them into a
volumetric map and surface model. (c) The path-planning module analyzes the volumetric map and surface model to compute the global path and local inspection
path, respectively. The local inspection path is then refined to maximize the performance of the MVS reconstruction. The MAV moves along the computed path
while continuously scanning. These steps are repeated until the reconstructed model is completed.

planning of a collision-free path. The unknown space Vukn
represents an unexplored area. This is required for evaluating
the utility of an exploration path. The surface modelF explicitly
represents densely reconstructed surfaces of the target structures.
The surface model is constructed using a surfel-based mapping
method [14]. This model comprises a collection of dense point
primitives known as surfels that contain various surface infor-
mation, such as the normal, confidence, and radius.

This work assumes that the MAV dynamics are differentially
flat [30] and that the MAV configuration q is composed of an
xyz-position and yaw orientation ψ with zero roll and pitch.
Using the same assumptions as in [30], we limit the maximum
translational speed vmax and the rotational speed ψ̇max to small
values for accurate state estimation and exact path following.
Let Q be a feasible configuration space that is composed of
all possible configurations. A path ξ : [0, 1]→ Q is defined
as a sequence of configurations. For collision-free navigation,
the path should lie in free space Vfree. The objective is to
generate a path that satisfies both of the following objectives
simultaneously: exploration of the entire unknown space in the
volumetric mapM within a short period, and reconstruction of
a high-quality surface model F that densely covers the surfaces
of target structures.

To solve this problem, we present a comprehensive 3-D mod-
eling framework consisting of two functional modules: online
3-D modeling and path planning. Fig. 2 depicts the proposed
framework. The 3-D modeling module builds a volumetric map
and surface model of the environment using acquired image
frames. This module first estimates the camera poses of the
image frames using a SLAM system [12]. It then computes
the depth maps of selected frames using an online MVS al-
gorithm [13]. The computed depth maps are integrated into a

volumetric map M and surface model F at the same time.
The path-planning module computes the exploration paths to
complete the 3-D models of the target structures. This planning
module first analyzes the volumetric map and determines a
global path with NBVs to explore a large unknown region.
Then, the module plans a local inspection path that scans the
low-confidence surfaces in the surface model. The planned local
path is optimized to improve the performance of the MVS
reconstruction. The MAV iteratively computes the optimized
path and navigates along the path until the entire environment is
completely explored.

IV. ONLINE 3-D MODELING

Fig. 2(b) illustrates the proposed online 3-D modeling system.
The system first estimates the camera poses of the obtained
image sequences using the SLAM module and subsequently
processes the online MVS to compute the local depth maps.
The system uses a keyframe-based SLAM method [12] that
computes the camera pose by estimating the sparse map points
from selected keyframes. At regular frame intervals, image-pose
pairs are consistently stored in a database and used as source
images for stereo matching. When a new keyframe is extracted,
the keyframe is set as the reference image for depth estimation.

A depth map of the reference image is estimated using the
deep-learning-based MVS method [13]. This method efficiently
estimates a high-quality depth map by applying a cascade cost-
volume formulation. Unlike existing online depth-estimation
algorithms [16], [55], which use subsequent sequential images as
source images for stereo matching, our method considers every
acquired frame in the image-pose pair database. Our method
selects the best set of source images in an active manner by
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considering heuristic information, such as the baseline distance
and triangulation angle, to improve the depth-estimation perfor-
mance. (See Section V-E on active image selection).

The depth maps estimated online have relatively more outliers
than those using the offline approaches [1], [3]. Therefore, our
method applies several outlier-filtering steps. The processed
depth maps are fused into volumetric mapM and surface model
F simultaneously. The surfel-based mapping method [14] is
used for surface modeling. This method maintains the dense de-
tailed geometric information about the large-scale point clouds.
It can efficiently process graphics operations, such as render-
ing and surface deformation. Our system also processes loop
closing by deforming the surface model and the volumetric map
according to the updated pose graph in the SLAM module.

Next, we describe how our method estimates a depth map
via deep-learning-based MVS (see Section IV-A), filters out
the outliers in the depth map, constructs the surface model (see
Section IV-B), and processes loop closing (see Section IV-C).

A. Depth Estimation

Given reference image Iref and a set of source images Isrc =
{I1, . . . , IN}, we infer depth map Dref of the reference image.
We use the cascade MVS network (CasMVSNet) [13] for depth
estimation. CasMVSNet extends the deep-learning-based MVS
method, MVSNet [56], by using multiple small cost volumes in-
stead of a single large cost volume to decrease the GPU memory
consumption and computation time. CasMVSNet progressively
regresses depth maps in a coarse-to-fine manner by reducing
the depth range and number of hypothesis planes at each cost
volume stage. This cascade approach makes it possible to obtain
high-resolution depth maps in real time. Moreover, CasMVSNet
provides one of the best reconstruction performances to date.
Therefore, it is appropriate for our online modeling system.

CasMVSNet first extracts multiscale features from a feature
pyramid network [57]. The extracted multiscale features are
used to build cascade cost volumes at gradually finer scales
using 3-D CNNs [56]. Each cost volume is regularized by
a multiscale 3-D CNN and then converted into a probability
volume by performing Softmax normalization along the depth
direction. For each stage, CasMVSNet estimates a depth map
by taking the expectation values on the probability volume and
propagates the depth map into the following stages to initialize
the hypothesis planes. Each stage refines the estimated depth
map from the previous stage with a finer depth hypothesis and
higher resolution. The final depth map is obtained from the
output of the last stage.

Depth Postprocessing: CasMVSNet produces depth maps that
include outliers in the background regions and occluded areas.
Furthermore, the depth maps estimated online have relatively
more outliers than those from offline estimations because of in-
sufficient source views restricted to previously acquired frames.
Therefore, it is necessary to remove outliers.

We consider geometric and photometric consistencies for
depth map filtering. Geometric consistency measures the con-
sistency of the predicted depth D̄ between neighboring depth
maps [1]. The depth maps {D1, . . . , DN} of the source images
{I1, . . . , IN} are already known because the previous frames

have been sequentially processed. We compute the discrepancy
between the estimated depth D̄ and {D1, . . . , DN} through
reverse-projection [1]. We first convert D̄ into a point cloud
and reproject it to each source image Isrc. We then calculate
each relative depth difference of a pixel p between the projected
depth D̄prj(p) and original depth Dsrc(p) in the source image
Isrc as

frel−diff (D̄prj(p), Dsrc(p)) =
|D̄prj(p)−Dsrc(p)|

Dsrc(p)
. (1)

If the relative depth difference is lower than 0.01, we consider
that the projected depth D̄prj(p) and original depthDsrc(p) are
consistent. Depths that do not satisfy three-view consistency are
regarded geometrically inconsistent and filter them out.

Photometric consistency describes the quality of the stereo
matching. Similar to the approach in [56], we estimate a confi-
dence map to measure the photometric consistency. The con-
fidence map can be estimated from the probability volume,
in which the probability distribution along a depth direction
represents the depth-estimation quality. The confidence value
of a depth is computed by taking the probability sum over the
four nearest-depth hypotheses on the probability volume [56].
Instead of estimating a single confidence map [56], we estimate
multiple confidence maps based on the multistage cost volumes
and integrate them into a representative confidence map. Let
Cl be a confidence map corresponding to depth map Dl at
stage l ∈ {1, . . ., L}. For each stage except the last stage L,
we upsample Cl and Dl to the same size as CL and DL. Each
representative confidence value C̄(p) at pixel p is then calculated
using the following weighted sum formula:

C̄(p) =

∑
l=1,...,LWl(p)Cl(p)∑

l=1,...,LWl(p)
(2)

where Cl(p) is the confidence value at pixel p and stage l
and Wl(p) its corresponding weight. The weight is defined by
the relative depth difference frel−diff (Dl, D̄(p)) between the
corresponding depth Dl(p) and the final depth D̄(p)

Wl(p) = exp

(−frel−diff (Dl, D̄(p))2

2σ2
wgt

)
(3)

where σwgt is a constant value. We regard a pixel p with a
confidence value C̄(p) lower than the threshold of 0.8 as an
inconsistent depth and filter it out. Fig. 3 shows examples of the
depth-filtering results.

B. Surfel Mapping

Surface model F represents a densely reconstructed surface
of the target structures constructed by integrating the estimated
depth maps using the surfel-based mapping method [14]. The
mapping method represents a reconstructed surface as a set of
surfels, where each surfel contains the following attributes: an
xyz-position, normal, color, weight, radius, update time, and
link to the attached keyframe. Given an estimated depth map
Dt with its image It and camera pose Tw,t, the surfels for the
current frame are initialized in the same way as in [14].

The initialized surfels are fused into the current surface model.
The fusion method first associates each initialized surfel with
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Fig. 3. Illustrations on depth estimation and filtering. (a) One reference
image of Auditorium scene. (b) Estimated depth map from CasMVSNet [13].
(c) Confidence map. (d) Filtered depth map after photometric and geometric
consistency checking. (e) Reconstructed point cloud.

the projected surfels in the surface model by rendering the
surface model as an index map. Each pixel in the index map
contains an index of a surfel in the surface model visible from
the current camera frame. For each associated surfel pair, the
method verifies the correspondence by checking if their depths
and normals are similar. If the correspondence is valid, they are
merged into the new surfel estimate using a weighted average of
their attributes. The surfel weight is updated by summing their
surfel weights. The rest of the initialized surfels are directly
added to the surface model.

This surfel mapping method is the same as the online version
of the conventional depth fusion in MVS [1], which fuses depths
of all consistent views by averaging their 3-D positions and
normals to suppress noise. The surfel mapping incrementally
integrates depth maps from different frames to averaged point
representations. We assume that the filtered depths are suffi-
ciently reliable and have the same significance, similar to the
conventional fusion approach [1]. So, we assign each initial
surfel weight as a constant value (1.0 in this study). Therefore,
the updated surfel weight represents how many times the surfel
is reconstructed by the MVS. Similar to [14], our method labels
the surfels that have not been updated within a certain period
as inactive and filters out low-weight inactive surfels from the
surface model. Therefore, the surface model is cleaned over time
based on the surfel weights.

C. Processing Loop Closing

When loop closing occurs in the SLAM module, our system
deforms the surface model and rebuilds the volumetric map
according to the updated pose graph. Our method uses the
nonrigid surfel deformation method [58] for the surface model.
This method individually transforms the position and normal
direction of each surfel to retain global consistency with the

updated pose graph, instead of using a deformation graph [34].
Each surfel stores a link to the attached keyframe in the pose
graph. For each surfel and its linked keyframe, the position and
normal of the surfel are transformed according to the updated
pose of the linked keyframe [58]. The surfels are updated in real
time by parallel processing using a GPU.

This study does not consider the model-to-model registration
that aims to minimize the point-to-plane error of the estimated
depth and surface model as in the original surfel mapping
method [14]. The registration approach could provide a more
precise loop-closing result once; it does not preserve the global
consistency of the surface model with the SLAM map-points.
Therefore, we employ the surfel deformation method [58] that
individually transforms the surfels based on the updated pose
graph in the SLAM module to preserve the global consistency.

After deformation of the surface model, our method rebuilds
the volumetric map. The method first reinitializes the entire
area of the volumetric map to an unknown state and maps the
deformed surfels to occupied volumes directly. It then extracts a
list of free volume octree keys by casting rays from each updated
pose into a view frustum. The ray-casting is performed at twice
the coarseness of the resolution ofM for fast updating. The keys
that are already assigned to an occupied volume are rejected from
the list. This avoids the situations where an occupied volume is
incorrectly updated to a free volume. Finally, the extracted octree
keys are updated to free volumes in batches.

V. PATH PLANNING METHOD

To solve the problem of surface reconstruction and the ex-
ploration of an unknown environment, our method iteratively
plans an exploration path by analyzing volumetric mapM and
surface model F . Unlike the existing methods [22]–[30] that
focus only on exploring a large unknown area, the proposed
method explores the entire unknown area while simultaneously
fully scanning the low-confidence surfaces to improve the per-
formance of MVS reconstruction. As shown in Fig. 2(c), the
newly proposed path-planning method is composed of the four
stages. The first stage is global path planning (see Section V-A),
in which a global path for efficiently exploring the remaining
unknown area ξglobal is computed by analyzing the volumetric
map. Our method iteratively computes global coverage of all
frontiers and sequentially completes the entire model according
to global coverage. A global path is determined as the first path
segment of global coverage. In the second stage (see Section V-
B), our method evaluates the reconstruction quality of the surface
model and extracts low-confidence surfaces. The method then
determines a set of target surface points X̄target that needs to be
scanned to achieve a high-quality surface model by clustering
the low-confidence surfaces. The third stage is local inspection
planning (see Section V-C), in which a local path ξlocal, which
provides full coverage of the target surface points, is computed.
The last stage is trajectory optimization (see Section V-D). This
stage refines the local path to an optimized path that maximizes
the performance of the MVS. Our method leverages heuristic
information about the MVS for trajectory optimization.

Algorithm 1 shows the pseudocode of the proposed path-
planning method. This algorithm represents an iterative step in a
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Algorithm 1: Proposed Path Planning Algorithm.
Input:Volumetric mapM, Surface model F , and Current

configuration qcurr.
/* Global path planning */

1: {V1, . . ., VN} ← FrontierClustering(M)
2: {Q1, . . ., QN} ← GlobalSampling({V1, . . ., VN})
3: {qπ1

, . . ., qπN
} ←

SolveGTSP ({Q1, . . ., QN}, qcurr)
4: {qNBV , ξglobal} ← GetPath(qcurr, qπ1

)
/* Local path planning */

5: while qcurr �= qNBV do
6: if TravelT ime > θtime then
7: F̄ ← PoissonSurfReconstruction(F)
8: X̄target ← GetTargetSurfPoints(F̄)
9: {Q̇1, . . ., Q̇M} ←

LocalSampling(X̄target, ξglobal)
10: {q̇π1

, . . ., q̇πM
} ←

SolveGTSP ({Q̇1, . . ., Q̇M}, qcurr, qNBV )
11: {Qref , ξlocal} ←

GetPath(qcurr, {q̇π1
, . . ., q̇πM

}, qNBV )
12: ξ∗local ← OptmizePath(X̄target, Qref , ξlocal)
13: end if
14: MoveToward(ξ∗local)
15: Update(M,F , ξglobal, qcurr)
16: end while

loop; therefore, the MAV starts to plan a global path immediately
after finishing the whole process of the algorithm. The method
first computes an NBV configuration qNBV and a global path
ξglobal for sequentially exploring unknown areas in volumetric
map M (lines 1–4). The method then plans local path ξlocal,
which provides comprehensive scanning of local low-confidence
surfaces in surface model F (lines 5–16). As mentioned pre-
viously, the local path is computed through three consecutive
stages: target surface extraction, inspection path planning, and
trajectory optimization. The local path is continually refined
according to the updated local surfaces until the MAV reaches
qNBV (line 5). Using this approach, the MAV can rapidly explore
the entire area while completely modeling the local surfaces of
the target structure.

A. Global Path Planning

Our method determines the global path ξglobal by computing
the global coverage path for the unexplored regions. The existing
greedy methods [22]–[30], which iteratively move to the largest
unknown area, sometimes generate inefficiently long trajectories
by revisiting already explored areas. On the other hand, our
method first obtains global coverage and sequentially explores
the entire environment accordingly; therefore, this reduces the
number of revisits to the same area and the total length of
the exploration trajectory. Similar to this study, our previous
methods [33], [43] decomposed an entire map into sectors
and sequentially explored the sectors by computing the sector
visitation order. However, the sector-based exploration method
is not appropriate for our approach because the MVS can cover

much wider range region than the decomposed sector. Therefore,
instead of sector decomposition, the proposed method directly
clusters the frontiers and sequentially explores each frontier
cluster using the online MVS.

Our method first computes the global coverage of all frontiers
to obtain a global path. FrontiersVfront ⊂ Vfree are determined
as the set of free volumes Vfree adjacent to the unknown
volumes Vunk in M. The method generates a set of frontier
clusters {V1, . . ., VN} from Vfront by greedily clustering the
local frontiers in a specific range Rfront (line 1). The global
coverage path is the shortest path that explores each frontier
cluster Vi once, starting from the current configuration qcurr.

To compute a global coverage path, our method first generates
a set of configuration samples to ensure that each frontier cluster
is observed and then determines the coverage path from the
sample set. For each frontier cluster Vi, the method computes
its centroid position c̄i and estimates the normal direction n̄i
based on local least square fitting. The method generates a set of
feasible robot configurationsQi ⊂ Q that obtain views of Vi by
the dual sampling method [51], [59] (line 2). The dual sampling
method determines a cover region Ωi, in which target cluster
Vi is visible, and then generates configuration samples in Ωi.
The cover region is determined by inversely composing a view
frustum from the center c̄i to its normal direction n̄i and checking
the visibility by casting a ray from c̄i into the view frustum. The
method generates a set of uniform samples Qi in Ωi and checks
whether each sample q ∈ Qi can observe the frontiers in Vi. As
some frontiers cannot be observed from any configuration inΩi,
our method checks if sample q satisfies a certain percentage of
coverage for Vi (80% in this study) rather than full coverage.
Samples that do not provide frontier coverage are eliminated
from Qi.

After dual sampling, the method computes a coverage path
of the frontier clusters {V1, . . ., VN} by finding the minimum
distance trajectory that visits at least one sample qi ∈ Qi from
each sample set Qi. This problem is formulated as a solution to
the generalized traveling salesman problem (GTSP). Given a set
of sample sets {Q1, . . ., QN}, the GTSP solution determines the
minimum-cost path starting from a current configuration qcurr
that visits each sample qi in each sample setQi exactly once (line
3). The determined optimal path is represented as a sequence of
selected samples {qπ1

, . . ., qπN
}, where Π = {π1, . . ., πN} is

the permutation of the sample set indices {1, . . . , N} represent-
ing the visitation sequence. To solve the GTSP, the generalized
2-opt neighborhood approach [60] is used.

The cost of each configuration pair is defined as the Euclidean
distance of their connected path. To efficiently compute the path
in the whole 3-D space, we use an approximate representation of
the environment by composing uniform grid cells from specific
depth nodes on a volumetric mapM. We construct a weighted,
undirected adjacency graph Gadj , where its vertices represent
the center positions of the uniform grid cells in free space,
and its edges are composed of adjacency connections with the
cost of Euclidean distance. A path of each configuration pair is
computed on the graphGadj using the A* planner. We define the
heuristic function of the A* planner as the Euclidean distance
from a vertex to a goal.
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Finally, the method determines an NBV qNBV as the first
sample qπ1

to sequentially visit the computed coverage path and
computes the global path ξglobal from qcurr to qNBV (line 4). It
first initializes the path ξglobal from the computed path on Gadj

and then computes the shortest piecewise-linear path using the
path shorten method, as in [61].

B. Target Surface Extraction

This section describes a method for extracting the scanning
targets that must be refined for high-quality surface modeling.
The scanning targets are determined by evaluating the recon-
struction quality of the surface model. The previous meth-
ods [10], [44] typically predicted the reconstruction quality of a
tentative coarse model by using a simple coverage information.
However, the proposed method more precisely evaluates the
reconstruction quality because the online reconstruction model
is denser than the tentative coarse model.

Our method first predicts a tentative 3-D model F̄ from
the surfels in surface model F and then evaluates the surface
quality of the tentative model (line 7). It applies the screened
Poisson reconstruction [62] to predict the tentative model. For
fast computation, the method sets the maximum depth parameter
of the reconstruction algorithm to eight. This study predicts
the whole model instead of considering a subregion as in [43]
because the MVS can cover a wide range of regions. However,
it will be possible to reduce the computation time for generating
a tentative model by focusing only on a subregion around the
global path.

Our method generally obtains the high-quality results of
Poisson reconstruction because the artifacts onF are thoroughly
removed by applying several filtering steps, including photomet-
ric and geometric consistency checks and surfel-weight-based
filtering. Furthermore, to provide a smoother and noise-reduced
reconstruction, we set the parameter of minimum sample number
in the Poisson reconstruction algorithm to 15, which is a large
value. The tentative model represents clean isosurfaces of the
raw surfels, from which the surface tendencies of the unscanned
area can be inferred. The reconstructed surfaces in F̄ are repre-
sented as a set of oriented pointsX , referred to as surface points,
where each point xk ∈ X contains a 3-D position and normal
values.

For each surface point xk, our method measures the confi-
dence value that represents the reconstruction quality in location
xk. We present a new confidence measure that considers both
density and weights of the neighboring surfels. The surfel weight
represents the reliability of the corresponding surfel, and a
high surfel weight indicates that the surfel has been updated
significantly. Our method first finds the set of neighboring surfel
pointsN (xk) by the K-nearest neighborhood of xk (K = 20 in
this study). It then calculates the confidence of surface point xk
using the following function:

fconf (xk) =

∑
xn∈N (xk)

fdist(xk, xn)w̄k

#(N (xk))
(4)

where #(N (xk)) is the number of neighboring surfels and
w̄k is a normalized surfel weight that ranges from zero to
one. It is defined as w̄k = min(wk/wmax, 1.0), where wk is

a surfel weight of xk, and wmax is a user-defined maximum
weight (wmax = 3.0 in this study). fdist(xk, xn) is the spatial
weighting function penalizing long distances between xk and
xn; it is defined as

fdist(xk, xn) = exp

(−‖xk − xn‖2
2σ2

dist

)
(5)

where ‖ · ‖ is the l2-norm in 3-D space (xyz-coordinates) and
σdist is a constant value. This function provides low confidence
to the surface points of sparsely reconstructed regions, so it
reflects the density of the neighboring surfels as well.

Our method determines the low-confidence surface points by
extracting the surface points whose confidences are lower than
0.2. The surface points far from the surfels inF are rejected from
the set of low-confidence surfaces because an empty region with
no surfels around is sometimes reconstructed inaccurately. The
method then groups adjacent low-confidence surface points us-
ing greedy Euclidean clustering. The clustering method selects
a surface point at random and clusters its neighboring points
within a distance range of Rsurf and an angle range of Rangle

between their normals. This grouping process is repeated until
every low-confidence surface point is assigned to a cluster. Clus-
ters with few surface points are removed. Finally, our method
determines a set of target surfaces X̄target by computing the
averaged surface point x̄ ∈ X̄target for each cluster (line 8).
Fig. 4 shows an example of the extraction process of the target
surface points.

C. Local Inspection Path Planning

This section describes the planning method of a local inspec-
tion path ξlocal that provides a full visual coverage of the target
surface points X̄target in the shortest distance. Similar to the
global coverage planning in Section V-A, our method uses dual
sampling and the GTSP algorithm to plan an inspection path.
For each target surface point x̄j ∈ X̄target, our method per-
forms dual sampling to generate a set of sample configurations
Q̇j ⊂ Q, where each sample q̇ ∈ Q̇j observes target point x̄j
(line 9). It inversely composes a view frustum from x̄j to its
normal direction and generates uniform samples Q̇j in the view
frustum by checking the visibility of x̄j . The incidence angle is
additionally considered for a visibility check; the angle between
the surface normal and view direction must be smaller than the
minimum incidence angle of 60◦. To prevent the computed path
from becoming significantly longer than ξglobal, we restrict the
sampling space Qsample ⊂ Q as

Qsample = {q ∈ Q|‖qcurr − q‖+ ‖q − qNBV ‖ ≤ γdglobal}
(6)

where dglobal is the path length of a global path ξglobal and γ is
a constant value (γ = 1.3 in this study). The method rejects
a sample qj outside the sampling space Qsample from each
sample set Q̇j . A target surface point with an empty sample
set is excluded from X̄target.

Given a set of configuration sets {Q̇1, . . ., Q̇M}, the GTSP
algorithm is also used to determine the minimum cost tour
(line 10). The tour starts from qcurr, visits a sample q̇j in each
sample set Q̇j exactly once, and ends at qNBV . The cost of two
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Fig. 4. Extraction process of target surface points: Our method first obtains (a) reconstructed surfel points and (b) their surfel weight values from surface model
F . The high-weight surfel points are shown in red and low weights in blue. The method then predicts (c) tentative 3D model F̄ from the surfel points using the
screened Poisson reconstruction algorithm. The method measures the confidence of each reconstructed surface point in F̄ . Finally, (d) the target surface points, gray
normal points, are determined by extracting the low confidence surfaces. The target surfaces on the sparse point region (zoomed-in local region) can be estimated
from the surface trend of F̄ .

Fig. 5. Illustration of the local inspection path planning. The global path
planning is also similar to this process except for the end configuration qNBV .
The process is depicted in 2-D for clarity. (a) Dual sampling method first gener-
ates a set of coverage samples Q̇j for each target surface point x̄j ∈ X̄target

by inversely composing a view frustum from x̄j to its normal direction. (b)
GTSP algorithm determines the minimum-cost path that starts from a current
configuration qcurr , visits a sample q̇j in each sample set Q̇j exactly once, and
ends at qNBV .

connecting configurations q1 and q2 is defined as the motion
execution time [50]:

fcost(q1, q2) = max

(‖q1 − q2‖
vmax

,
|ψ1 − ψ2|
ψ̇max

)
(7)

The optimal tour is represented as a sequence of samples
{q̇π1

, . . ., q̇πM
}, where Π = {π1, . . ., πM} is the permutation

of the sample set indices {1, . . . ,M}. Fig. 5 illustrates the dual
sampling and the GTSP results.

Finally, our method determines the local inspection path
ξlocal by directly connecting consecutive configurations in
{q̇π1

, . . ., q̇πM
} from qcurr to qNBV . Unlike global path plan-

ning (see Section V-A), local planning computes a path from
configurations sampled in a continuous space of a restricted
local area. The RRT* planner [63], a sampling-based approach,
effectively computes the local paths in a continuous space.
Collisions rarely occur on the local path planning because the
local paths mostly compute on open free spaces. Therefore, the
method first checks the direct connection and then uses the RRT*
planner (with path shorten as in [61]) if a collision occurs. The
set {q̇π1

, . . ., q̇πM
} is referred to as the reference configuration

set Qref , where the configurations are used as reference views
for reconstructing their target surfaces X̄target.

D. Trajectory Optimization

Even if the target surface points are fully scanned by the
planned inspection path ξlocal, the MVS method is not guaran-
teed to produce the accurate reconstruction. Therefore, in order
to construct the target surfaces more accurately, the inspection
path must be refined. This section introduces a new measure
to predict reconstruction quality using the MVS heuristic in-
formation. By applying the measure, our method optimizes the
local inspection path to enhance the accuracy of target surface
reconstruction. We formulate the path optimization problem as
an informative path planning problem. By solving the problem,
we can obtain a polynomial trajectory that increases the MVS
performance in a short travel time. Fig. 6 shows the examples of
the updated optimal trajectories with global and local paths.

The following sections introduce a score function for predict-
ing the MVS reconstruction quality and describe how to apply
it to the trajectory optimization problem.

1) Reconstruction Quality Prediction: We describe how to
incorporate heuristic information into the stereo-pair selection
for high-quality MVS reconstruction. Many studies [3], [11],
[47], [48], [64] have demonstrated that the reconstruction quality
of a surface point depends on several geometric factors, includ-
ing triangulation angles, relative image resolutions, and focus
angles. Given a stereo-pair of reference view configuration qref
and source view configuration qsrc, we define a new score func-
tion that predicts the reconstruction quality of a target surface
point x̄ as

fsrc(qsrc, qref , x̄) = fvis · fprx · frd · ffoc (8)

where fvis is a visibility function that returns the value 1 if qsrc
obtains a view of x̄, and 0 otherwise. fprx, frd, and ffoc are the
score functions that are related to MVS heuristics: parallax, rel-
ative distance, and focus, respectively. The following describes
each score function in detail:

Parallax: According to the parallax angle of a stereo pair,
there is a tradeoff between triangulation accuracy and matcha-
bility [3], [11], [55]. Wide-baseline measurements with a large
parallax angle can increase triangulation accuracy. On the other
hand, the success probability of stereo matching in the stereo
search along the long epipolar line decreases for a long baseline.
Given a parallax angleα between the stereo pair of qref and qsrc,
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Fig. 6. Examples of the global path (yellow), local inspection path (blue), and optimized path (green). The paths were iteratively computed based on the
incrementally updated models from (a) to (e). The gray and red arrows represent the target surface points and their reference view configurations, respectively.

score function fprx, which represents the informativeness of α
for reconstructing the correct surface, is defined as

fprx(α) = exp

(
− (α− α0)

2

2σ2
prx

)
(9)

where σprx is a constant value, and α0 is the desired parallax
angle, which is heuristically determined as 11◦.

Relative distance: The source image should have a resolution
similar to that of the reference image for accurate stereo match-
ing [3]. We assume that similar resolution images of a specific
surface can be obtained by views at the same distance from
the surface. Let distref and distsrc be the distance between
x̄ and reference view qref , and the distance between x̄ and the
source view qsrc, respectively. Score function frd for the relative
distance between distref and distsrc is defined as

frd(distsrc, distref ) =
min(distsrc, distref )

max(distsrc, distref )
. (10)

If distref and distsrc are similar, frd has a score close to 1.
Focus: It is preferable that the target surface region be pro-

jected around the principal point of the source image to reduce
the reprojection error in triangulation [47], [48]. Let rco and
rcx be rays from camera center c of a source image to principal
point o and to surface point x̄, respectively. Given focus angle β
between the rays rco and rcx, the score function ffoc penalizing
a large β is defined as

ffoc(β) = exp

(
− β2

2σ2
foc

)
(11)

where σfoc is a constant value.
2) Trajectory Optimization: After planning an inspection

path ξlocal for the target surfaces X̄target, our method refines the
path to maximize MVS performance (line 12). Our method com-
putes a path that visits each reference configuration qr ∈ Qref

while simultaneously improving the reconstruction quality of
each target surface x̄r ∈ X̄target. Let ξ = {ξ1, . . ., ξM} be a
set of disjoint path segments, where each segment ξs is a path
connecting consecutive reference configurations. The aim is to
find an optimal set of path segments ξ∗ that maximizes the
performance of MVS about the target surfaces while meeting a
budget constraint. We formulate the problem as an informative
path-planning problem, which finds the most informative path
passing predefined waypoints within the given budget constraint.
LetI(ξs) be a utility function that returns the information quality
gathered along ξs and TIME(ξs) be the corresponding travel
time. The most informative path is computed by solving the

following optimization problem:

ξ∗ = argmaxξ

∑
ξs∈ξ

I(ξs)
TIME(ξs)

s.t TIME(ξs) ≤ Bs for every segment s (12)

whereBs is the time budget of segment s. The budget is defined
as Bs = γ′ × TIME(ξs), where γ′ is a constant value of 1.3,
and ξs is the shortest path from the starting configuration to
the end configuration of ξs. Each ξs is determined from the
inspection path computed in Section V-C.

We define the informativeness of a path segment ξs as the re-
construction quality of target surfaces X̄target when performing
the MVS with the view configurations on ξs. Given sequential
reference configurations Qref = {q1, . . ., qM} and their target
surfaces X̄target = {x̄1, . . ., x̄M}, we assume that each refer-
ence configuration qr only participates in reconstructing its
target surface x̄r. A current path segment ξs is not involved
in reconstructing target surfaces {x̄1, . . ., x̄s−1} of the previous
reference configurations {q1, . . ., qs−1}; therefore, it considers
only a subset of reference configurations Q̄ref = {qs, . . ., qM}
and their target surfaces {x̄s, . . ., x̄M}. Our method extracts a
sample set of discrete configurationsQs at specific time intervals
along ξs. For each pair of a sample configuration qi ∈ Qs and
a reference configuration qr ∈ Q̄ref , the method predicts the
reconstruction quality of its target surface x̄r ∈ X̄target using
the heuristic function fsrc(qi, qr, x̄r) (8) and accumulates them
to measure the informativeness. The utility function I for a path
segment ξs is defined as

I(ξs) =
∑

qi∈Qs

∑
qr∈Q̄ref

fsrc(qi, qr, x̄r). (13)

This function quantifies the reconstruction quality of the target
surfaces by accumulating the MVS heuristic scores of discrete
configurations taken along ξs.

We use the online informative path-planning algorithm [65]
to solve the optimization problem (12). The algorithm first
determines global waypoints by greedily selecting the most
informative viewpoints. It then finds an optimal continuous
trajectory that passes the waypoints with maximum informa-
tiveness using an evolutionary strategy [66]. Our method sets
the reference configurations Qref as the global waypoints and
computes the most informative trajectory using the evolutionary
strategy, similar to [65].

As described in [65], our method computes a polynomial
trajectory [67] that a MAV can dynamically follow each
waypoint of the local path ξlocal. The polynomial trajectory
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ensures a smooth motion without requiring step inputs to the
MAV’s actuators. It also provides continuous motion at the
shared configuration between segments. We use a polynomial
segment to connect two waypoints of a ξs and evaluate the
informativeness of the segment using I(ξs).

An optimal polynomial trajectory is obtained by the co-
variance matrix adaptation evolution strategy (CMA-ES) [66].
The CMA-ES is based on evolutionary algorithms, which work
equally well for both nonlinear and nonconvex problems in con-
tinuous space. The CMA-ES first generates sample trajectories
according to a multivariate Gaussian distribution and evaluates
the utility for each sample trajectory using the utility function
I. It then selects the best candidate solutions and updates the
parameters of the distribution from the selected solutions. The
CMA-ES iterates this optimization process until the solutions
converge.

E. Reference and Source View Selection

The camera moves along the computed optimal path ξ∗local
while storing the image frames in the SLAM database. Our
method consistently determines the reference images every
time a keyframe is extracted. The keyframes are consistently
extracted at regular frame intervals. Our view selection method
extracts neighboring keyframes using the covisibility graph in
the SLAM module and then selects the source images from
among them. When the camera moves along a path segment
ξs ⊂ ξ∗local, our method focuses on reconstructing the corre-
sponding target surface xs ∈ X̄target. Given a reference image
with its target surface, the method selects five keyframes among
the neighboring keyframes as source images by evaluating the
score function. The NBV configuration qNBV at the end of
ξ∗local does not have a target surface point; thus, it selects the
five keyframes that share most map-point observations as source
images.

VI. EXPERIMENTAL RESULTS

We conducted simulations and real-world experiments to
evaluate the performance of the proposed method. In the simu-
lation experiments, the modeling performance of the proposed
method was quantitatively compared with the performance of
existing view-planning methods. Because ground-truth infor-
mation can be used in simulation environments, it is possible
to make a reliable quantitative comparison of the modeling
performance. On the other hand, in real-world experiments, it is
difficult to evaluate results quantitatively because ground-truth
information is not available for real-world scenes. Therefore,
we considered a qualitative evaluation and feasibility demon-
stration of our method in real-world applications, rather than a
quantitative evaluation.

A. Simulation Experiments

We conducted the simulation experiments in the RotorS sim-
ulation environment [68] and used a Firefly hexacopter MAV
model as the scanning platform. The MAV was equipped with
a forward-looking stereo camera, which had a field of view

[60◦, 90◦] and a pitch angle of 15◦ downward. The camera
captured image frames with a resolution of 752× 480. A stereo
version of ORB-SLAM [12] was used to estimate the camera
poses and map points on a metric scale. For reliable pose
estimation, we composed feature-rich environments by covering
the background with textured scenes. We also restricted the
maximum translational speed to 0.5 m/s and rotational speed
to 0.25 rad/s. We used only the left images of the stereo camera
to process the MVS reconstruction.

We considered four target infrastructures:1 Alexander Nevsky
Cathedral (scenario 1), State Capitol (scenario 2), Castle (sce-
nario 3), and Notre Dame Cathedral (scenario 4). The structures
in scenarios 1 and 2 are composed of relatively fewer textured
surfaces and include dome-shaped substructures. The structures
in scenarios 3 and 4 are composed of highly textured surfaces
and complex subregions. In particular, the structure in scenario
4 contains many complex parts in which occlusion occurred
frequently during scanning.

We separately demonstrated the effectiveness of each plan-
ning stage (global path planning G, local inspection path plan-
ning L, and trajectory optimization O) in our method by con-
ducting the following ablation experiments:
� OursG: Only GPP, as described in Section V-A. This

produces an exploration path that simply follows the global
coverage of all frontiers.

� OursG+L: Local inspection path planning with GPP as
described in Section V-C. This plans an inspection path
that covers low-confidence surface points.

� OursG+L+O: Path-planning method including all stages.
This contains the trajectory optimization discussed in Sec-
tion V-D and view-selection methods from Section V-E.

The proposed methods were compared with explore-then-
exploit methods [8], [44]. The explore-then-exploit methods
first construct an initial coarse model from a default trajectory
and then compute the rescanning paths by analyzing the coarse
model. We considered two state-of-the-art explore-then-exploit
methods:
� NBV [44]: This method iteratively determines the best

viewpoint online by evaluating the surface coverage. The
determined viewpoint observes the largest uncovered area
based on partial reconstruction. The method first generates
a set of sampled surface points, iso-points, by perform-
ing Poisson reconstruction and Poisson disk sampling.
The method uniformly samples the viewpoints within a
restricted range (20 m) around the current location to im-
prove the path efficiency. For each viewpoint, it evaluates
the uncovered area by accumulating the projection ratio of
uncovered iso-points. It then determines an NBV and com-
putes the path to the NBV. Like our local path-planning,
the method first checks the straight-line path and then uses
the RRT* planner if a collision occurs.

� Submodular coverage (Sub-Cov) [8]: This method com-
putes the coverage path of an initial coarse model by
solving a submodular orienteering problem. Similar to our
global path-planning, it first generates an adjacency graph

1[Online]. Available: http://3dwarehouse.sketchup.com/
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TABLE II
COMPARISON OF MODELING QUALITY FOR DIFFERENT PATH-PLANNING METHODS ON THE FOUR SIMULATION SCENARIOS

Fig. 7. Path efficiency results of the simulation scenarios comparing different
path-planning methods on the four simulation scenarios. The results of NBV and
Sub-Cov show the cumulative time and path length during the whole explore-
then-exploit process.

representing the entire environment and then computes a
coverage path on the graph. The method finds a path that
observes the target surfaces from diverse viewing angles as
much as possible in the graph. Each path of a configuration
pair is computed from the adjacency graph using the A*
planner.

To reconstruct a coarse model, we performed an initial scan
with a circular trajectory around the target space at a camera
pitch of 25◦. To achieve a detailed reconstruction at a specific
resolution, we restricted the maximum scanning range to 50 m
for path planning. We used a circular trajectory as the path to
scan the largest target area with the maximum scanning range.
Both the initial and final 3-D models were constructed using
the proposed online modeling system in Section IV. NBV and
Sub-Cov do not extract target surface points; thus, they use the
neighbor frames that share most map points as source images.
We set the total travel budgets of Sub-Cov and NBV as the
averaged path distance result from OursG+L+O.

The performances were evaluated based on two perspectives:
path efficiency and modeling quality. To evaluate the path effi-
ciency, we computed the completion time and path length. The
modeling quality refers to the evaluation process and metrics
described by Knapitsch et al. [69]. We first aligned the recon-
structed point cloud to the ground-truth model by registering
the estimated camera poses to ground-truth camera poses. We
then performed iterative closest point registration to refine the
alignment of the reconstructed point cloud. After the alignment,

we resampled the reconstructed and ground-truth point clouds
on a voxel grid with a voxel size of 0.05 m. Both point clouds
were compared using precision and recall. Precision is defined
as the percentage of reconstructed points that are close to a
ground-truth point, and recall is defined as the percentage of
ground-truth points that are close to a reconstructed point. The
close points are determined by a distance threshold τ , which
was set to 0.1 m in these experiments. Both precision and recall
can be captured in a representative metric: the F − score =
2(precision× recall)
precision+ recall

. Fig. 7 and Table II present the exper-

imental results for the path efficiency and modeling quality
averaged over five executions, respectively. Fig. 8 depicts the
reconstructed models and MAV trajectories of the best trial.

Our methods had better path efficiency performance in terms
of completion time and path length compared to the other
methods because our methods do not require an initial scan.
As compared to Sub-Cov (with initial scan), OursG+L+O reduced
the average completion time by 20.42% and the average path
length by 31.75%. As shown in Fig. 8, NBV generated complex
trajectories that frequently overlapped because it focused only
on planning the local path. The paths of Sub-Cov sometimes
revisited routes that had already been passed in an earlier tra-
jectory. On the other hand, our method reduced the number
of revisits by considering the global coverage sequence and
completely scanning the local regions. Thus, our method can
achieve improved path efficiency performance without prior
model information.

OursG+L+O achieved the best modeling performance in terms
of F-score. The F-scores of NBV were the poorest compared to
Sub-Cov and OursG+L+O in all scenarios. NBV focuses only on
scanning the largest uncovered surface area while disregarding
minor surfaces, so its reconstructed models may be incomplete.
In scenarios 1 and 2, the performance gaps of the recalls between
Sub-Cov and OursG+L+O are not significant because occlusion
rarely occurred during scanning. However, the precision of
OursG+L+O was much higher than those of Sub-Cov; this indi-
cates that the path considering the MVS heuristics can increase
the reconstruction accuracy. In scenario 4, occlusions of complex
parts occurred frequently during scanning, so a complete and
accurate modeling of the scene was not guaranteed. Therefore,
most methods have low precision and recall performances, but
OursG+L+O showed superior performance. OursG+L+O focuses
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Fig. 8. Reconstructed 3-D models and volumetric maps with trajectories taken by the MAV (first row: Scenario 1, second row: Scenario 2, third row: Scenario
3, and fourth row: Scenario 4). For each 3-D model, we provide a zoomed-in detail view for the region highlighted with orange boxes. Our method was able to
obtain denser and more accurate point clouds that made more complete models, compared to other methods.

on completing the insufficiently reconstructed regions by ex-
amining the completeness of the reconstructed surfaces. This
approach enhances the modeling performance even in complex
scenes, such as in scenario 4.

OursG completed the modeling in the shortest time but had
the lowest modeling performance. OursG+L generally has better
modeling performance than NBV because it covers poorly re-
constructed local surfaces through multiple viewpoints instead
of a single viewpoint. As compared to OursG+L, OursG+L+O

increased the average F-score by 0.028. This suggests that the
proposed trajectory optimization method is effective for MVS
reconstruction.

B. Evaluation of Surface Coverage

In this experiment, we evaluated the performance of our
method in terms of the surface coverage and investigated the
relationship between the surface coverage and the model com-
pleteness. The surface coverage refers to the percentage of the
observable surfaces given the entire surfaces of the ground-truth
3-D model. The observable surfaces were estimated by evalu-
ating the viewpoints sampled at regular time intervals from a
planned path. The coverage performance of our method was
compared with that of Sub-Cov and the sampling-based cover-
age method (Sample-Cov) [70]. Sample-Cov plans a coverage

path of a target 3-D model offline by using a sampling-based
approach. Sample-Cov first generates a set of coverage samples
by dual-sampling [71] in a continuous space and then com-
putes their connecting path by solving the multigoal planning
problem using the RRT* planner. Sample-Cov guarantees the
property of probabilistic completeness, meaning the algorithm
will eventually find a feasible solution if it exists. Furthermore, it
significantly reduces the total path length by the asymptotically
optimal local improvements. We considered the coverage path
of Sample-Cov as a solution close to optimal and compared it
with the result of our method.

Fig. 9 shows the coverage and modeling performance of each
method under different path lengths in scenario 4. The model
completeness was evaluated by measuring the recall of a re-
constructed model. Sub-Cov and Sample-Cov generated several
coverage paths with different path lengths by changing the time
budget and the number of coverage samples, respectively. Their
coverage paths were computed from the ground-truth 3-D model
instead of a coarse model. The performances of our method
(OursG+L+O) were measured using the final exploration trajectory
that was planned online without the ground-truth information.
We also generated the exploration paths with different path
lengths by increasing the parameter γ from 1.15 to 1.45. The
minimum number of observations for classification of covered
surface was set as three.
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Fig. 9. Performances of (a) surface coverage and (b) model completeness
(recall) under different path lengths using Sub-Cov [8], Sample-Cov [70], and
ours in scenario 4. Both Sub-Cov and Sample-Cov computed the different
coverage paths for the ground-truth 3-D model by changing the time budget
and the number of coverage samples, respectively. Our method (OursG+L+O)
planned the different exploration paths by changing the parameter γ.

As seen in Fig. 9(a), Sample-Cov achieved the best coverage
performances. Sub-Cov plans a coverage path from restricted
samples in a discretized environment; therefore, it always had
lower coverage performances than Sample-Cov. Our method
had better coverage performances than Sub-Cov in the paths
longer than 860 m while it had worse performances in the shorter
paths. The local inspection planning in our method also plans
a coverage path using a sampling-based approach similar to
Sample-Cov. If there is no limitation of the sampling area, the
proposed method can eventually find the complete coverage
solution as well. However, some target surfaces cannot always
be covered given the sampling area limited by γ. The higher
value of γ, the more target surfaces can be covered. Therefore,
our method has significantly better coverage performance as the
path length increases.

Fig. 9(b) shows the modeling performances with respect to
the model completeness. As can be seen in the figure, our
method had better modeling performances than Sample-Cov.
This indicates that a high surface coverage does not always
guarantee better MVS reconstruction performance. As in our
method, determining the scanning paths online is more effective
for the MVS reconstruction.

C. Evaluation of Online 3-D Modeling System

To verify the performance of the proposed online MVS
method, we conducted a comparative experiment with an of-
fline MVS method in the simulation environment. We used the
popular state-of-the-art method, COLMAP [3], for offline MVS
reconstruction. Both online and offline MVS reconstructions
were performed based on two sets of images taken by the trajec-
tories of OursG+L+O and Sub-Cov in scenario 4 in Section VI-A.
Furthermore, we separately evaluated the performances of the
online MVS method with and without the use of view selection
to measure the benefits of the view selection method described
in Section V-E. As in Sub-Cov, the online MVS method without
view selection determines the source images by extracting the
neighboring frames that share the most SLAM map points.

Fig. 11 shows the precision and recall curves of each recon-
structed model over distance thresholds τ . The online MVS
method generally had higher precision performance than the

Fig. 10. Reconstruction results of (top row) offline and (bottom row) online
MVS methods. Each model was constructed from the same image set taken by
the trajectory of OursG+L+O in scenario 4. The 3-D models show (a), (c) the
reconstructed point clouds with (a), (c) original colors and (b), (d) per-point
errors coded by color as described in [69]. The offline MVS generated more
artifacts than the online MVS around the complex structures (zoomed-in view).

Fig. 11. Comparative modeling results of the proposed online MVS method
and an existing offline MVS method (COLMAP). Each method reconstructed 3-
D models by processing two set of images taken by the trajectories of OursG+L+O
and Sub-Cov in scenario 4. The online MVS reconstruction without the use of
the view selection (w/o VS) was also performed. The graphs show (a) precision
and (b) recall curves of each reconstructed model over distance thresholds.

offline MVS method. The online method applies various outlier
filtering methods, including photometric and geometric consis-
tency checks and surfel-weight-based filtering. Therefore, many
outliers are removed, so it can obtain high-precision results.
Fig. 10 shows the reconstruction results of online and offline
MVS with per-point errors coded by color. As can be seen in
Fig. 10, the result of online MVS contains significantly fewer
artifacts than offline MVS around the complex structures. The
outlier filtering approaches in the online MVS could clearly
remove outliers even in complex areas.

On the other hand, the online method generally had a lower
recall performance than the offline method. The online method
selects the source images from insufficient candidate images re-
stricted to previously acquired frames, while the offline method
determines the source images from the entire image set. The
offline method can use various source images in which many
image areas overlap with a reference image. Therefore, the
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TABLE III
COMPUTATION TIME OF EACH SUBMODULE AND GPU MEMORY

CONSUMPTIONS OF DEPTH ESTIMATION AND SURFEL MAPPING IN THE

SIMULATION SCENARIOS

offline method succeeds in stereo matching for many image areas
and can obtain higher recall results than the online method.

The online MVS method with view selection had better per-
formance in both precision and recall than when view selection
was not performed. This suggests that view selection considering
visibility and geometric factors for a specific target surface,
rather than focusing on the entire image area, is effective in
complex structure modeling, as in scenario 4.

D. Computation Time Analysis

This section analyzes the computational performances of the
proposed method. Table III tabulates the computation times and
GPU memory consumptions. Each computation time represents
the average time processing an image frame for 3-D modeling
or a single planning iteration in the simulation experiments. All
submodules were processed on a standard desktop PC with an
Intel Core i7-6700 K 4 GHz CPU, 64 GB of RAM, and Nvidia
GTX 1080Ti GPU with 11 GB of memory. The 3-D modeling
module takes about 0.338 s to process a single image frame and
10.092 s if loop-closing occurs. The offline MVS method [3]
takes about 6 h to process 300 images, but our method only
takes about 2 min to process the same number of images. Our
method also requires 2327 MB of GPU memory to estimate the
depth of a 720× 480 resolution image and 2392 MB to maintain
the maximum 9437 K surfels.

Our path-planning module takes 4.658 ss on average to
compute a scanning path at a single iteration. Similar to our
method, the NBV method iteratively computes a scanning path
by performing the Poisson reconstruction, which takes 2.812 s
on average. The NBV only determines a single viewpoint in an
iteration, while our method determines multiple viewpoints and
trajectory optimization. Compare with the NBV, our method
takes more computation time of 1.846 s, but it is not much
time considering that our method had much higher modeling
performances.

E. Real-World Experiments

We conducted real-world experiments to demonstrate the
feasibility of the proposed method in real-world environments.
A DJI Matrice-100 drone was used as the MAV platform in the
experiments. As shown in Fig. 12(a), we mounted a monocular

Fig. 12. (a) MAV platform with gimbal camera used in the real-world exper-
iments. Experimental environments of (b) Auditorium and (c) Office Building.

camera, a Zenmuse Z3, and an embedded board, a Jetson TX2,
on the MAV. The camera captured image frames at a resolu-
tion of 1600× 900, and the embedded board transmitted the
image frames to a laptop at the ground station through LTE
data streaming. The laptop processed the online 3D modeling
with camera-pose estimation and computed scanning paths. A
monocular version of ORB-SLAM was used for pose estimation.

In reality, it is difficult for the MAV to follow a planned path
precisely because of several factors, including internal sensor
noise and wind gusts. For safety reasons, instead of flying
autonomously, the MAV was manually controlled to follow
the planned path. An operator checked the planned path and
the MAV’s moving trajectory online on display and manually
controlled the MAV using a controller to follow the trajectory.
To achieve accurate pose estimation and precise manual control,
we restricted the maximum translational speed to 0.2 m/s and
the rotational speed to 0.3 rad/s. We also used a gimbal camera
stabilizer for stable image acquisition. To verify if the man-
ually operated trajectories accord the planned trajectories, we
performed the trajectory alignment between the two trajectories
and calculated the absolute trajectory error [72]. We conducted
the experiments several times for each method and then se-
lected the result with the lowest trajectory error for performance
evaluation.

We considered two real-world scenarios: modeling a sin-
gle structure [Auditorium; Fig. 12(b)] and modeling multiple
structures [Office Building; Fig. 12(c)]. The performance of
our method was compared with that of Sub-Cov [8]. In the
same way as the original explore-then-exploit methods, both the
coarse and detailed models for Sub-Cov were computed by the
offline MVS program, COLMAP [3]. The total travel budgets
of Sub-Cov was set as the path distance result from our method.
The explore-then-exploit method has already been widely used
in real-world applications; therefore, its modeling results can be
an appropriate baseline for the feasibility demonstration.

Figs. 1 and 13 show the reconstruction results of the Audito-
rium and Office Building scenes, respectively. As can be seen in
Fig. 1, the reconstructed models using our method and Sub-Cov
are similar and of high quality. They produced a complete
model of a single structure (Auditorium) with satisfactory re-
construction. In multiple-structure modeling (Office Building),
our method generally had better qualitative performance than
Sub-Cov. Our method obtains dense point clouds that represent
the entire surfaces of the multiple structures. Even if Sub-Cov
performed a thorough scanning to cover all surfaces of the target
structures, it is not guaranteed to reconstruct a perfect model
due to the inherent weakness of MVS from occlusions and
surface textures. Our method, on the other hand, has good re-
construction performances even on complex structures because
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Fig. 13. Reconstruction results of the real-world scene (Office Building) obtained using (a) circular trajectory, (b) Sub-Cov, and (c) our method. The top figures
show the entire scenes of the reconstructed 3-D models. The bottom figures show close-up renderings of each reconstruction.

it continuously analyzes the reconstruction quality and plans
a path for rescanning incompletely reconstructed surfaces. This
result demonstrates the feasibility of the proposed 3-D modeling
system and path-planning method in real-world environments.

VII. LIMITATIONS AND DISCUSSION

Although the proposed approach can achieve compelling
results in experiments, there are still several major limitations.
First, the output of the online 3-D modeling system is very
sensitive to localization errors. When scanning a specific region
several times with different reference views, a high localization
error may produce an inconsistent reconstruction with multilayer
surfaces of the region. For accurate pose estimation, we set
up texture-rich scenes in the simulation scenarios and used a
gimbal camera stabilizer to obtain stable images in real-world
experiments. Furthermore, we restricted the maximum limit of
the MAV’s motion speed to be small. As a result, it was possible
to obtain accurate localization results with performance similar
to that of offline SfM [53]. However, as shown in Fig. 13, a few
minor regions were reconstructed somewhat inaccurately be-
cause the SLAM was not possible to estimate perfectly accurate
camera poses. Our method generated some incorrectly aligned
point clouds and failed to reconstruct several thin structures.

There are several solutions to address this localization prob-
lem. Dynamic movements of MAVs can decrease SLAM perfor-
mance due to tracking errors. This can be mitigated by applying
visual-inertial SLAM [73] or event-based SLAM [74]. They
aim to measure stable pose information against dynamic and
fast motions of MAVs by using IMU or event camera. The
dense bundle adjustment method [75] may also be applicable
for more precise loop-closing. The method optimizes camera
poses and depth estimations simultaneously by solving a dense
SfM problem. It enables to obtain a densely registered surface
model while preserving the consistency with the pose graph.
Another approach can be to consider the localization uncertainty
of SLAM for path planning. For future work, active SLAM ap-
proaches [76], [77] could be applied to our method to minimize
localization errors.

Second, because of memory requirements to perform depth
estimation and surfel mapping in our method, the range and

resolution of a target 3-D model are limited. This can limit
the proposed model to be used onboard. The online MVS [13]
performs cost-volume regularization and depth regression using
3-D CNNs, which requires large GPU memory. Therefore, we
reduced the image resolution to 1600× 900 in the real-world
experiments to efficiently process the online MVS on a Nvidia
GTX 1080Ti GPU (total 11 GB memory). Furthermore, the
surfel mapping method processes a large amount of point cloud
data using GPU. The number of surfel points can increase
significantly as the image resolution and scene size increase;
therefore, the maximum scene size must be limited to the avail-
able GPU memory. This can be addressed by dividing the target
environment by parts and process independently. First, we need
to decompose the entire environment into subregions that can be
sufficiently covered given hardware specs. After scanning each
subregion independently, we could obtain the final 3-D model
of the larger scale target structure by integrating the constructed
submodels. Based on this, the proposed method also could be
sufficiently processed on an onboard platform. To increase on-
board usability, it would be a future study to incorporate a model
compression method [78] into the aforementioned method.

Finally, our method only considers the geometric factors
for trajectory optimization and view selection. The quality of
MVS reconstruction can be affected by various factors, such
as texture, dynamic lighting, and shadows; therefore, it is dif-
ficult to model the reconstruction quality using only geometric
factors. Photometric factors such as visual saliency [79] and
image gradient [49] can be additionally considered for view
path planning. In addition, 3-D reconstruction uncertainty can
also be measured and incorporated with the path planning.
Several studies [80], [81] train deep neural networks to obtain
reconstruction uncertainty of a scene. The uncertainty enables
us to evaluate viewpoints that are likely to provide the most
accurate evaluated surface prior to performing MVS. A future
work would be to apply the reconstruction uncertainty factor to
our path-planning module.

VIII. CONCLUSION

In this article, we presented a novel framework for
autonomous 3-D modeling based on online MVS reconstruction.
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The proposed framework incrementally constructs a dense 3-D
model of a large-scale structure using an online MVS and
surfel-based mapping. The framework also iteratively plans
view paths using online feedback based on reconstruction
quality. It explores the entire unknown area efficiently while
providing comprehensive scanning of local low-quality surfaces.
This approach improves the completeness of the reconstructed
3-D models. Furthermore, our method performs trajectory opti-
mization and active image selection based on MVS heuristics to
enhance the quality of MVS reconstruction. Our simulation re-
sults show that our method has better modeling performance than
the explore-then-exploit methods, even with a single exploration
trial without rescanning. In particular, our method successfully
constructed complete 3-D models of very complex structures.
The results of real-world experiments demonstrate the practical
feasibility of our method in real-world environments. To the
best of our knowledge, this is the first work that implements
exploration planning for a MAV to construct high-quality 3-D
models based on an online MVS reconstruction.
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